版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
章末綜合測評(二)推理與證明(時間120分鐘,滿分150分)一、選擇題(本大題共12小題,每小題5分,共60分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.?dāng)?shù)列2,5,11,20,x,47,…中的x等于()A.28 B.32C.33 D.27【解析】觀察知數(shù)列{an}滿足:a1=2,an+1-an=3n,故x=20+3×4=32.【答案】B2.有一段“三段論”推理是這樣的:對于可導(dǎo)函數(shù)f(x),若f(x0)=0,則x=x0是函數(shù)f(x)的極值點.因為f(x)=x3在x=0處的導(dǎo)數(shù)值f′(0)=0,所以x=0是f(x)=x3的極值點.以上推理中()A.大前提錯誤 B.小前提錯誤C.推理形式錯誤 D.結(jié)論正確【解析】大前提是錯誤的,若f′(x0)=0,x=x0不一定是函數(shù)f(x)的極值點,故選A.【答案】A3.用反證法證明命題“三角形的內(nèi)角中至少有一個角不大于60°”時,應(yīng)假設(shè)()A.三角形的三個內(nèi)角都不大于60°B.三角形的三個內(nèi)角都大于60°C.三角形的三個內(nèi)角至多有一個大于60°D.三角形的三個內(nèi)角至少有兩個大于60°【解析】其假設(shè)應(yīng)是對“至少有一個角不大于60°”的否定,即“都大于60°”.【答案】B4.下面幾種推理是合情推理的是()①由圓的性質(zhì)類比出球的有關(guān)性質(zhì);②由直角三角形、等腰三角形、等邊三角形內(nèi)角和是180°歸納出所有三角形的內(nèi)角和都是180°;③由f(x)=sinx,滿足f(-x)=-f(x),x∈R,推出f(x)=sinx是奇函數(shù);④三角形內(nèi)角和是180°,四邊形內(nèi)角和是360°,五邊形內(nèi)角和是540°,由此得凸多邊形內(nèi)角和是(n-2)·180°.A.①② B.①③④C.①②④ D.②④【解析】合情推理分為類比推理和歸納推理,①是類比推理,②④是歸納推理,③是演繹推理.【答案】C5.設(shè)a=+,b=7,則a,b的大小關(guān)系是()A.a(chǎn)>b B.a(chǎn)=bC.a(chǎn)<b D.a(chǎn)>2(b+1)【解析】因為a=+>2eq\r·=8>7,故a>b.【答案】A6.已知點A(x1,xeq\o\al(2,1)),B(x2,xeq\o\al(2,2))是函數(shù)y=x2圖象上任意不同的兩點,依據(jù)圖象知,線段AB總是位于A,B兩點之間函數(shù)圖象的上方,因此有結(jié)論eq\f(x\o\al(2,1)+x\o\al(2,2),2)>eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(x1+x2,2)))2成立,運用類比方法可知,若點A(x1,sinx1),B(x2,sinx2)是函數(shù)y=sinx(x∈(0,π))圖象上不同的兩點,則類似地有結(jié)論()\f(sinx1+sinx2,2)>sineq\f(x1+x2,2)\f(sinx1+sinx2,2)<sineq\f(x1+x2,2)\f(sinx1+sinx2,2)≥sineq\f(x1+x2,2)\f(sinx1+sinx2,2)≤sineq\f(x1+x2,2)【解析】畫出y=x2的圖象,由已知得AB的中點eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(x1+x2,2),\f(x\o\al(2,1)+x\o\al(2,2),2)))恒在點eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(x1+x2,2),\b\lc\(\rc\)(\a\vs4\al\co1(\f(x1+x2,2)))2))的上方,畫出y=sinx,x∈(0,π)的圖象可得A,B的中點eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(x1+x2,2),\f(sinx1+sinx2,2)))恒在點eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(x1+x2,2),sin\f(x1+x2,2)))的下方,故B正確.【答案】B7.證明命題:“f(x)=ex+eq\f(1,ex)在(0,+∞)上是增函數(shù)”.現(xiàn)給出的證法如下:因為f(x)=ex+eq\f(1,ex),所以f′(x)=ex-eq\f(1,ex).因為x>0,所以ex>1,0<eq\f(1,ex)<1.所以ex-eq\f(1,ex)>0,即f′(x)>0.所以f(x)在(0,+∞)上是增函數(shù),使用的證明方法是()A.綜合法 B.分析法C.反證法 D.以上都不是【解析】從已知條件出發(fā)利用已知的定理證得結(jié)論,是綜合法.【答案】A8.對“a,b,c是不全相等的正數(shù)”,給出下列判斷:①(a-b)2+(b-c)2+(c-a)2≠0;②a=b與b=c及a=c中至少有一個成立;③a≠c,b≠c,a≠b不能同時成立.其中判斷正確的個數(shù)為()A.0 B.1C.2 D.3【解析】若(a-b)2+(b-c)2+(c-a)2=0,則a=b=c,與“a,b,c是不全相等的正數(shù)”矛盾,故①正確.a(chǎn)=b與b=c及a=c中最多只能有一個成立,故②不正確.由于“a,b,c是不全相等的正數(shù)”,有兩種情形:至多有兩個數(shù)相等或三個數(shù)都互不相等,故③不正確.【答案】B9.設(shè)n為正整數(shù),f(n)=1+eq\f(1,2)+eq\f(1,3)+…+eq\f(1,n),經(jīng)計算得f(2)=eq\f(3,2),f(4)>2,f(8)>eq\f(5,2),f(16)>3,f(32)>eq\f(7,2),觀察上述結(jié)果,可推測出一般結(jié)論()A.f(2n)>eq\f(2n+1,2) B.f(n2)≥eq\f(n+2,2)C.f(2n)≥eq\f(n+2,2) D.以上都不對【解析】f(2)=eq\f(3,2),f(4)=f(22)>eq\f(2+2,2),f(8)=f(23)>eq\f(3+2,2),f(16)=f(24)>eq\f(4+2,2),f(32)=f(25)>eq\f(5+2,2).由此可推知f(2n)≥eq\f(n+2,2).故選C.【答案】C10.定義A*B,B*C,C*D,D*A的運算分別對應(yīng)下面圖1中的(1)(2)(3)(4),則圖1中a,b對應(yīng)的運算是()圖1A.B*D,A*D B.B*D,A*CC.B*C,A*D D.C*D,A*D【解析】根據(jù)(1)(2)(3)(4)可知A對應(yīng)橫線,B對應(yīng)矩形,C對應(yīng)豎線,D對應(yīng)橢圓.由此可知選B.【答案】B11.觀察下列各式:a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,…,則a10+b10=()A.28 B.76C.123 D.199【解析】從給出的式子特點觀察可推知,等式右端的值,從第三項開始,后一個式子的右端值等于它前面兩個式子右端值的和,照此規(guī)律,則a10+b10=123.【答案】C12.在等差數(shù)列{an}中,若an>0,公差d>0,則有a4·a6>a3·a7,類比上述性質(zhì),在等比數(shù)列{bn}中,若bn>0,公比q>1,則b4,b5,b7,b8的一個不等關(guān)系是()A.b4+b8>b5+b7 B.b4+b8<b5+b7C.b4+b7>b5+b8 D.b4+b7<b5+b8【解析】在等差數(shù)列{an}中,由于4+6=3+7時,有a4·a6>a3·a7,所以在等比數(shù)列{bn}中,由于4+8=5+7,所以應(yīng)有b4+b8>b5+b7或b4+b8<b5+b7.因為b4=b1q3,b5=b1q4,b7=b1q6,b8=b1q7,所以(b4+b8)-(b5+b7)=(b1q3+b1q7)-(b1q4+b1q6)=b1q6·(q-1)-b1q3(q-1)=(b1q6-b1q3)(q-1)=b1q3(q3-1)(q-1).因為q>1,bn>0,所以b4+b8>b5+b7.【答案】A二、填空題(本大題共4小題,每小題5分,共20分.將答案填在題中的橫線上.)13.已知x,y∈R,且x+y>2,則x,y中至少有一個大于1,在用反證法證明時假設(shè)應(yīng)為________.【解析】“至少有一個”的否定為“一個也沒有”,故假設(shè)應(yīng)為“x,y均不大于1”(或x≤1且y≤1).【答案】x,y均不大于1(或x≤1且y≤1)14.如圖2,第n個圖形是由正n+2邊形“擴展”而來(n=1,2,3,…),則第n-2(n>2)個圖形中共有________個頂點.圖2【解析】設(shè)第n個圖形中有an個頂點,則a1=3+3×3,a2=4+4×4,…,an=(n+2)+(n+2)·(n+2),an-2=n2+n.【答案】n2+n15.設(shè)a>0,b>0,則下面兩式的大小關(guān)系為lg(1+eq\r(ab))________eq\f(1,2)[lg(1+a)+lg(1+b)].【解析】因為(1+eq\r(ab))2-(1+a)(1+b)=1+2eq\r(ab)+ab-1-a-b-ab=2eq\r(ab)-(a+b)=-(eq\r(a)-eq\r(b))2≤0,所以(1+eq\r(ab))2≤(1+a)(1+b),所以lg(1+eq\r(ab))≤eq\f(1,2)[lg(1+a)+lg(1+b)].【答案】≤16.對于命題“如果O是線段AB上一點,則|eq\o(OB,\s\up6(→))|·eq\o(OA,\s\up6(→))+|eq\o(OA,\s\up6(→))|·eq\o(OB,\s\up6(→))=0”將它類比到平面的情形是:若O是△ABC內(nèi)一點,有S△OBC·eq\o(OA,\s\up6(→))+S△OCA·eq\o(OB,\s\up6(→))+S△OBA·eq\o(OC,\s\up6(→))=0,將它類比到空間的情形應(yīng)為:若O是四面體ABCD內(nèi)一點,則有_________.【導(dǎo)學(xué)號:81092033】【解析】根據(jù)類比的特點和規(guī)律,所得結(jié)論形式上一致,又線段類比平面,平面類比到空間,又線段長類比為三角形面積,再類比成四面體的體積,故可以類比為VO-BCD·eq\o(OA,\s\up6(→))+VO-ACD·eq\o(OB,\s\up6(→))+VO-ABD·eq\o(OC,\s\up6(→))+VO-ABC·eq\o(OD,\s\up6(→))=0.【答案】VO-BCD·eq\o(OA,\s\up6(→))+VO-ACD·eq\o(OB,\s\up6(→))+VO-ABD·eq\o(OC,\s\up6(→))+VO-ABC·eq\o(OD,\s\up6(→))=0三、解答題(本大題共6小題,共70分.解答時應(yīng)寫出必要的文字說明、證明過程或演算步驟.)17.(本小題滿分10分)在平面幾何中,對于Rt△ABC,∠C=90°,設(shè)AB=c,AC=b,BC=a,則(1)a2+b2=c2;(2)cos2A+cos2B(3)Rt△ABC的外接圓半徑r=eq\f(\r(a2+b2),2).把上面的結(jié)論類比到空間寫出類似的結(jié)論,無需證明.【解】在空間選取三個面兩兩垂直的四面體作為直角三角形的類比對象.(1)設(shè)三個兩兩垂直的側(cè)面的面積分別為S1,S2,S3,底面積為S,則Seq\o\al(2,1)+Seq\o\al(2,2)+Seq\o\al(2,3)=S2.(2)設(shè)三個兩兩垂直的側(cè)面與底面所成的角分別為α,β,γ,則cos2α+cos2β+cos2γ=1.(3)設(shè)三個兩兩垂直的側(cè)面形成的側(cè)棱長分別為a,b,c,則這個四面體的外接球半徑R=eq\f(\r(a2+b2+c2),2).18.(本題滿分12分)設(shè)f(x)=x2+ax+b,求證:|f(1)|、|f(2)|、|f(3)|中至少有一個不小于eq\f(1,2).【證明】假設(shè)|f(1)|<eq\f(1,2),|f(2)|<eq\f(1,2),|f(3)|<eq\f(1,2),于是有-eq\f(1,2)<1+a+b<eq\f(1,2), ①-eq\f(1,2)<4+2a+b<eq\f(1,2), ②-eq\f(1,2)<9+3a+b<eq\f(1,2), ③①+③,得-1<10+4a+2b<1,所以-3<8+4a+2b<-1,所以-eq\f(3,2)<4+2a+b<-eq\f(1,2).這與②-eq\f(1,2)<4+2a+b<eq\f(1,2)矛盾,所以假設(shè)不成立,即|f(1)|,|f(2)|,|f(3)|中至少有一個不小于eq\f(1,2).19.(本小題滿分12分)已知△ABC的三條邊分別為a,b,c,且a>b,求證:eq\f(\r(ab),1+\r(ab))<eq\f(a+b,1+a+b).【證明】依題意a>0,b>0,所以1+eq\r(ab)>0,1+a+b>0.所以要證eq\f(\r(ab),1+\r(ab))<eq\f(a+b,1+a+b),只需證eq\r(ab)(1+a+b)<(1+eq\r(ab))(a+b),只需證eq\r(ab)<a+b,因為a>b,所以eq\r(ab)<2eq\r(ab)<a+b,所以eq\f(\r(ab),1+\r(ab))<eq\f(a+b,1+a+b).20.(本小題滿分12分)在數(shù)列{an}中,a1=1,an+1=eq\f(2an,2+an),n∈N*,求a2,a3,a4,并猜想數(shù)列的通項公式,并給出證明.【解】數(shù)列{an}中,a1=1,a2=eq\f(2a1,2+a1)=eq\f(2,3),a3=eq\f(2a2,2+a2)=eq\f(1,2)=eq\f(2,4),a4=eq\f(2a3,2+a3)=eq\f(2,5),…,所以猜想{an}的通項公式an=eq\f(2,n+1)(n∈N*).此猜想正確.證明如下:因為a1=1,an+1=eq\f(2an,2+an),所以eq\f(1,an+1)=eq\f(2+an,2an)=eq\f(1,an)+eq\f(1,2),即eq\f(1,an+1)-eq\f(1,an)=eq\f(1,2),所以數(shù)列eq\b\lc\{\rc\}(\a\vs4\al\co1(\f(1,an)))是以eq\f(1,a1)=1為首項,公差為eq\f(1,2)的等差數(shù)列,所以eq\f(1,an)=1+(n-1)eq\f(1,2)=eq\f(n,2)+eq\f(1,2),即通項公式an=eq\f(2,n+1)(n∈N*).21.(本小題滿分12分)已知函數(shù)f(x)=x3-x2,x∈R.(1)若正數(shù)m,n滿足m·n>1,證明:f(m),f(n)至少有一個不小于零;(2)若a,b為不相等的正實數(shù)且滿足f(a)=f(b),求證:a+b<eq\f(4,3).【證明】(1)假設(shè)f(m)<0,f(n)<0,即m3-m2<0,n3-n2<0,∵m>0,n>0,∴m-1<0,n-1<0,∴0<m<1,0<n<1,∴mn<1,這與m·n>1矛盾,∴假設(shè)不成立,即f(m),f(n)至少有一個不小于零.(2)證明:由f(a)=f(b
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 四川西南航空職業(yè)學(xué)院《視傳藝術(shù)考察》2023-2024學(xué)年第一學(xué)期期末試卷
- 2024年花卉產(chǎn)業(yè)扶貧項目合作合同協(xié)議3篇
- 二零二五年度按揭貸款房屋改造貸款合同范本2篇
- 2024影視行業(yè)人才中介服務(wù)合同
- 二零二五版戶外廣告牌制作、安裝與維護全流程服務(wù)合同3篇
- 紹興文理學(xué)院元培學(xué)院《影視動畫海報設(shè)計》2023-2024學(xué)年第一學(xué)期期末試卷
- 個人所得稅代扣代繳協(xié)議(2024年版)
- 二零二五年度水泥管行業(yè)市場競爭策略合同
- 二零二五年度專業(yè)安保公司員工勞動合同范本2篇
- 山東輕工職業(yè)學(xué)院《期貨投資》2023-2024學(xué)年第一學(xué)期期末試卷
- 2023年德宏隴川縣人民法院招聘聘用制書記員考試真題及答案
- 第四章-國防動員
- 酒店行業(yè)pest模型分析
- 汽車經(jīng)營計劃書
- 2024屆山東省濱州無棣縣聯(lián)考物理九上期末綜合測試試題含解析
- 兩高環(huán)境污染罪司法解釋解讀
- 部編版小學(xué)六年級語文上冊第六單元集體備課記錄表
- 肩袖損傷的護理查房課件
- 財務(wù)情況說明書
- 無人值守汽車衡解決方案
- 動脈瘤介入術(shù)后護理查房課件
評論
0/150
提交評論