版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
PARTIFUNDAMENTALPRINCIPLES(基本原理)InpartI,wecoversomeofthebasicprinciplesthatapplytoaerodynamicsingeneral.ThesearethepillarsonwhichallofaerodynamicsisbasedChapter2Aerodynamics:SomeFundamentalPrinciplesandEquationsThereissogreatadifferencebetweenafluidandacollectionofsolidparticlesthatthelawsofpressureandofequilibriumoffluidsareverydifferentfromthelawsofthepressureandequilibriumofsolids.JeanLeRondd’Alembert,17682.1IntroductionandRoadMapPreparationoftoolsfortheanalysisofaerodynamicsEveryaerodynamictoolwedevelopedinthisandsubsequentchaptersisimportantfortheanalysisandunderstandingofpracticalproblemsOrientationofferedbytheroadmap2.2ReviewofVectorrelations2.2.1to2.2.10Skippedover2.2.11Relationsbetweenline,surface,andvolumeintegralsThelineintegralofAoverCisrelatedtothesurfaceintegralofA(curlofA)overSbyStokes’theorem:WhereaeraSisboundedbytheclosedcurveC:ThesurfaceintegralofAoverSisrelatedtothevolumeintegralofA(divergenceofA)overVbydivergence’theorem:WherevolumeVisboundedbytheclosedsurfaceS:Ifprepresentsascalarfield,avectorrelationshipanalogoustodivergencetheoremisgivenbygradienttheorem:2.3Modelsofthefluid:controlvolumesandfluidparticlesImportancetocreatephysicalfeelingfromphysicalobservation.Howtomakereasonablejudgmentsondifficultproblems.
Inthischapter,basicequationsofaerodynamicswillbederived.PhilosophicalprocedureinvolvedwiththedevelopmentoftheseequationsInvokethreefundamentalphysicalprincipleswhicharedeeplyentrenchedinourmacroscopicobservationsofnature,namely,a.Massisconserved,that’stosay,masscanbeneithercreatednordestroyed.b.Newton’ssecondlaw:force=mass?accelerationc.Energyisconserved;itcanonlychangefromoneformtoanother2.Determineasuitablemodelofthefluid.3.Applythefundamentalphysicalprincipleslistedinitem1tothemodelofthefluiddeterminedinitem2inordertoobtainmathematicalequationswhichproperlydescribethephysicsoftheflow.Emphasisofthissection:Whatisasuitablemodelofthefluid?Howdowevisualizethissquishysubstanceinordertoapplythethreefundamentalprinciples?Threedifferentmodelsmostlyusedtodealwithaerodynamics.
finitecontrolvolume(有限控制體)infinitesimalfluidelement(無限小流體微團(tuán))molecular(自由分子)
2.3.1FinitecontrolvolumeapproachDefinitionoffinitecontrolvolume:
aclosedvolumesculpturedwithinafiniteregionoftheflow.ThevolumeiscalledcontrolvolumeV,andthecurvedsurfacewhichenvelopsthisregionisdefinedascontrolsurfaceS.Fixedcontrolvolumeandmovingcontrolvolume.Focusofourinvestigationforfluidflow.2.3.2InfinitesimalfluidelementapproachDefinitionofinfinitesimalfluidelement:
aninfinitesimallysmallfluidelementintheflow,withadifferentialvolume.ItcontainshugelargeamountofmoleculesFixedandmovinginfinitesimalfluidelement.Focusofourinvestigationforfluidflow.Thefluidelementmaybefixedinspacewithfluidmovingthroughit,oritmaybemovingalongastreamlinewithvelocityVequaltotheflowvelocityateachpointaswell.2.3.3MoleculeapproachDefinitionofmoleculeapproach:
Thefluidpropertiesaredefinedwiththeuseofsuitablestatisticalaveraginginthemicroscopewhereinthefundamentallawsofnatureareapplieddirectlytoatomsandmolecules.Insummary,althoughmanyvariationsonthethemecanbefoundindifferenttextsforthederivationofthegeneralequationsofthefluidflow,theflowmodelcanbeusuallybecategorizedunderoneoftheapproachdescribedabove.2.3.4PhysicalmeaningofthedivergenceofvelocityDefinitionof:
isphysicallythetimerateofchangeofthevolumeofamovingfluidelementoffixedmassperunitvolumeofthatelement.Analysisoftheabovedefinition:Step1.Selectasuitablemodeltogiveaframeunderwhichtheflowfieldisbeingdescribed.
amovingcontrolvolumeisselected.Step2.Selectasuitablemodeltogiveaframeunderwhichtheflowfieldisbeingdescribed.
amovingcontrolvolumeisselected.Step3.Howaboutthecharacteristicsforthismovingcontrolvolume?volume,controlsurfaceanddensitywillbechangingasitmovestodifferentregionoftheflow.Step4.ChanginvolumeduetothemovementofaninfinitesimalelementofthesurfacedS
over
.
ThetotalchangeinvolumeofthewholecontrolvolumeoverthetimeincrementisobviouslygivenasbellowStep5.Iftheintegralaboveisdividedby
.theresultisphysicallythetimeratechangeofthecontrolvolume
Step6.ApplyingGausstheorem,wehave
Step7.Asthemovingcontrolvolumeapproachestoainfinitesimalvolume,.Thentheaboveequationcanberewrittenas
Assumethatissmallenoughsuchthatisthesamethroughout.Then,theintegralcanbeapproximatedas,wehaveorDefinitionof:
isphysicallythetimerateofchangeofthevolumeofamovingfluidelementoffixedmassperunitvolumeofthatelement.Anotherdescriptionofand:Assumeisacontrolsurfacecorrespondingtocontrolvolume,whichisselectedinthespaceattime.Attimethefluidparticlesenclosedbyattimewillhavemovedtotheregionenclosedbythesurface.ThevolumeofthegroupofparticleswithfixedidentityenclosedbyattimeisthesumofthevolumeinregionAandB.Andattime,thisvolumewillbethesumofthevolumeinregionBandC.Astimeintervalapproachestozero,coincideswith.Ifisconsideredasafixedcontrolvolume,then,theregioninAcanbeimaginedasthevolumeenterintothecontrolsurface,Cleaveout.Basedontheargumentabove,theintegralofcanbeexpressedasvolumefluxthroughfixedcontrolsurface.Further,canbeexpressedastherateatwhichfluidvolumeisleavingapointperunitvolume.Theaveragevalueofthevelocitycomponentontheright-handxfaceisTherateofvolumeflowoutoftheright-handxfaceisThatintotheleft-handxfaceisThenetoutflowfromthexfacesisperunittimeThenetoutflowfromallthefacesinx,y,zdirectionsperunittimeisThefluxofvolumefromapointis2.4ContinuityequationInthissection,wewillapplyfundamentalphysicalprinciplestothefluidmodel.Moreattentionshouldbegivenforthewayweareprogressinginthederivationofbasicflowequations.DerivationofcontinuityequationStep1.Selectionoffluidmodel.Afixedfinitecontrolvolumeisemployedastheframefortheanalysisoftheflow.Herein,thecontrolsurfaceandcontrolvolumeisfixedinspace.Step2.Introductionoftheconceptofmassflow.LetagivenareaAisarbitrarilyorientedinaflow,thefiguregivenbellowisanedgeview.IfAissmallenough,thenthevelocityVovertheareaisuniformacrossA.ThevolumeacrosstheareaAintimeintervaldt
canbegivenasThemassinsidetheshadedvolumeisThemassflowthroughisdefinedasthemasscrossingAperunitsecond,anddenotedasorTheequationabovestatesthatmassflowthroughAisgivenbytheproductAreaXdensityXcomponentofflowvelocitynormaltotheareamassfluxisdefinedasthemassflowperunitareaStep3.
Physicalprinciple
Masscanbeneithercreatednordestroyed.Step4.Descriptionoftheflowfield,controlvolumeandcontrolsurface.DirectionalelementarysurfaceareaonthecontrolsurfaceElementaryvolumeinsidethefinitecontrolvolumeStep5.Applythemassconservationlawtothiscontrolvolume.NetmassflowoutofcontrolvolumethroughsurfaceSTimeratedecreaseofmassinsidecontrolvolumeVorStep6.MathematicalexpressionofBTheelementalmassflowacrosstheareaisThephysicalmeaningofpositiveandnegativeofThenetmassflowoutofthewholecontrolsurfaceS
Step7.MathematicalexpressionofCThemasscontainedinsidetheelementalvolumeVisThemassinsidetheentirecontrolvolumeisThetimerateofincreaseofthemassinsideVisThetimerateofdecreaseofthemassinsideVisStep8.FinalresultofthederivationLetB=C,thenwegetorDerivationwithmovingcontrolvolumeMassattimeMassattimeBasedonmassconservationlawConsiderthelimitsasThenwegetthemathematicaldescriptionofthemassconservationlawwiththeuseofmovingcontrolvolumeWhythefinalresultsderivedwithdifferentfluidmodelarethesame??Step9.NotesfortheContinuityEquationaboveThecontinuityequationaboveisinintegralform,itgivesthephysicalbehaviouroverafiniteregionofspacewithoutdetailedconcernsforeverydistinctpoint.Thisfeaturegivesusnumerousopportunitiestoapplytheintegralformofcontinuityequationforpracticalfluiddynamicoraerodynamicproblems.Ifwewanttogetthedetailedperformanceatagivenpoint,then,whatshallwedealwiththeintegralformabovetogetapropermathematicdescriptionformassconservationlaw?Step10.
ContinuityEquationinDifferentialformControlvolumeisfixedinspaceTheintegrallimitisnotthesameTheintegrallimitisthesameorApossiblecasefortheintegraloverthecontrolvolumeIfthefinitecontrolvolumeisarbitrarilychoseninthespace,theonlywaytomaketheequationbeingsatisfiedisthat,theintegrandoftheequationmustbezeroatallpointswithinthecontrolvolume.Thatis,Thatisthecontinuityequationinapartialdifferentialform.ItconcernstheflowfieldvariablesatapointintheflowwithrespecttothemassconservationlawItisimportanttokeepinmindthatthecontinuityequationsinintegralformanddifferentialformareequallyvalidstatementsofthephysicalprinciplesofconservationofmass.theyaremathematicalrepresentations,butalwaysrememberthattheyspeakwords.Step11.
LimitationsoftheequationsderivedContinuumflowormolecularflowAsthenatureofthefluidisassumedasContinuumflowinthederivationsoItsatisfiesonlyforContinuumflowSteadyfloworunsteadyflowItsatisfiesbothsteadyandunsteadyflowsviscousfloworinviscidflowItsatisfiesbothviscousandinviscidflowsCompressiblefloworincompressiblwflowItsatisfiesbothCompressibleandincompressiblwflowsDifferencebetweensteadyandunsteadyflowUnsteadyflow:Theflow-fieldvariablesareafunctionofbothspatiallocationandtime,thatisSteadyflow:Theflow-fieldvariablesareafunctionofspatiallocationonly,thatisForsteadyflow:Forsteadyincompressibleflow:2.5MomentumequationNewton’ssecondlawwhereForceexertedonabodyofmassMassofthebodyAccelerationConsiderafinitemovingcontrolvolume,themassinsidethiscontrolvolumeshouldbeconstantasthecontrolvolumemovingthroughtheflowfield.Sothat,Newton’ssecondlawcanberewrittenasDerivationofmomentumequationStep1.Selectionoffluidmodel.Afixedfinitecontrolvolumeisemployedastheframefortheanalysisoftheflow.Step2.
Physicalprinciple
Force=timeratechangeofmomentumStep3.ExpressionoftheleftsideoftheequationofNewton’ssecondlaw,i.e.,theforceexertedonthefluidasitflowsthroughthecontrolvolume.Twosourcesforthisforce:Bodyforces:overeverypartofV2.Surfaceforces:overeveryelementalsurfaceofSBodyforceonaelementalvolumeBodyforceoverthecontrolvolumeSurfaceforcesoverthecontrolsurfacecanbedividedintotwoparts,oneisduetothepressuredistribution,andtheotherisduetotheviscousdistribution.PressureforceactingontheelementalsurfaceNote:indicationofthenegativesignCompletepressureforceovertheentirecontrolsurfaceThesurfaceforceduetotheviscouseffectissimplyexpressedbyTotalforceactingonthefluidinsidethecontrolvolumeasitissweepingthroughthefixedcontrolvolumeisgivenasthesumofalltheforceswehaveanalyzedStep4.ExpressionoftherightsideoftheequationofNewton’ssecondlaw,i.e.,thetimeratechangeofmomentumofthefluidasitsweepsthroughthefixedcontrolvolume.MovingcontrolvolumeLetbethemomentumofthefluidwithinregionA,
B,andC.forinstance,Attime,themomentuminsideisAttime,themomentuminsideisThemomentumchangeduringthetimeintervalorAsthetimeintervalapproachestozero,theregionBwillcoincidewithSinthespace,andthetwolimitsNetmomentumflowoutofcontrolvolumeacrosssurfaceSTimeratechangeofmomentumduetounsteadyfluctuationsofflowpropertiesinsideVTheexplanationsabovehelpsustomakeabetterunderstandingoftheargumentsgiveninthetextbookbellowNetmomentumflowoutofcontrolvolumeacrosssurfaceSTimerateofchangeofmomentumduetounsteadyfluctuationsofflowpropertiesinsidecontrolvolumeVStep5.MathematicaldescriptionofmassflowacrosstheelementalareadSismomentumflowacrosstheelementalareadSisThenetflowofmomentumoutofthecontrolvolumethroughSisStep6.MathematicaldescriptionofThemomentumintheelementalvolumedV
isThemomentumcontainedatanyinstantinsidethecontrolvolumeV
isItstimeratechangeduetounsteadyflowfluctuationisBeawareofthedifferencebetweenandStep7.FinalresultofthederivationCombinetheexpressionsoftheforcesactingonthefluidandthetimeratechangeduetotermand,respectively,accordingtoNewton’ssecondlowIt’sthemomentumequationinintegralformIt’savectorequationAdvantagesformomentumequationinintegralformStep8.
MomentumEquationinDifferentialformTrytorearrangetheeveryintegralstosharethesamelimitgradienttheoremcontrolvolumeisfixedinspaceThenwegetSplitthisvectorequationasthreescalarequationswithMomentumequationinxdirectionisdivergencetheoremAsthecontrolvolumeisarbitrarychosen,thentheintegrandshouldbeequaltozeroatanypoint,thatisxdirectionydirectionzdirectionTheseequationscanappliedforunsteady,3Dflowofanyfluid,compressibleorincompressible,viscousorinviscid.SteadyandinviscidflowwithoutbodyforcesEuler’sEquationsandNavier-StokesequationsWhetherthe
viscouseffectsarebeingconsideredornotEulersEquations:inviscidflowNavier-Stokesequations:viscousflowDeepunderstandingofdifferenttermsincontinuityandmomentumequationsTimeratechangeofmassinsidecontrolvolumeTimeratechangeofmomentuminsidecontrolvolumeNetflowofmassoutofthecontrolvolumethroughcontrolsurfaceSNetflowofvolumeoutofthecontrolvolumethroughcontrolsurfaceSNetflowofmomentumoutofthecontrolvolumethroughcontrolsurfaceSBodyforcethroughoutthecontrolvolumeVSurfaceforceoverthecontrolsurfaceSWhatwecanforeseetheapplicationsforaerodynamicproblemswithbasicflowequationsonhand?IfthesteadyincompressibleinviscidflowsareconcernedPartialdifferentialequationforvelocityPartialdifferentialequationforvelocityandpressure2.6Anapplicationofthemomentumequation:dragofa2DbodyHowtodesigna2Dwindtunneltest?Howtomeasuretheliftanddragexertedontheairfoilbythefluid?AselectedcontrolvolumearoundanairfoilDescriptionsofthecontrolvolume1.Theupperandlowerstreamlinesfaraboveandbelowthebody(abandhi).2.Linesperpendiculartotheflowvelocityfaraheadandbehindthebody(ai
andbh)3.Acutthatsurroundsandwrapsthesurfaceofthebody(cdefg)1.Pressureatabandhi.2.Pressureataiandbh
.,velocity,3.Thepressureforceoverthesurfaceabhi4.Thesurfaceforceondefbythepresenceofthebody,thisforceincludestheskinfrictiondrag,anddenotedasperunitspan.5.Thesurfaceforcesoncdandfgcanceleachother.6.Thetotalsurfaceforceontheentirecontrolvolumeis7.ThebodyforceisnegligibleApplytomomentumequation,wehaveforsteadyflowNote:it’savectorequation.Ifweonlyconcernthexcomponentoftheequation,withrepresentsthexcomponentof.Asboundariesofthecontrolvolumeabhiarechosenfarawayfromthebody,thepressureperturbationduetothepresenceofthebodycanbeneglected,thatmeans,thepressurethereequaltothefreestreampressure.Ifthepressuredistributionoverabhiisconstant,thenSothatAsab,hi,defarestreamlines,thenAscd,fg
areareadjacenttoeachother,thenTheonlycontributiontomomentumflowthroughthecontrolsurfacecomefromtheboundariesaiandbh.FordS=dy(1),themomentumflowthroughthecontrolsurfaceisNote:Thesigninfrontofeachintegralsontherighthandsideoftheequation2.TheintegrallimitsforeachintegralsontherighthandsideoftheequationConsidertheintegralformofthecontinuityequationforsteadyflow,orAsisaconstantThefinalresultgivesthedragperunitspanThedragperunitspancanbeexpressedintermsoftheknownfreestreamvelocityandflow-fieldproperties,acrossaverticalstationdownstreamofthebody.PhysicalmeaningbehindtheequationMassflowoutofthecontrolvolumeVelocitydecrementMomentumdecrementpersecondForincompressibleflow,thatis,thedensityisconstant2.6.1CommentsWiththeapplicationofmomentumprincipletoalarge,fixedcontrolvolume,anaccurateresultforoverallquantitysuchasdragonabodycanbepredictedwithknowingthedetailedflowpropertiesalongthecontrolsurface.Thattosay,itisunnecessarytoknowthethedetailsalongthesurfaceofthebody.2.7EnergyequationContinuityequationMomentumequationUnknowns:ForsteadyincompressibleinvicidflowsForcompressibleflowsisanadditionalvariable,andthereforeweneedanadditionalfundamentalequationtocompletethesystem.Thisfundamentalequationistheenergyequation,whichwearegoingtodevelop.Twoadditionalflow-fieldvariableswillappeartotheenergyequation,thatisinternalenergyandtemperature.Energyequationisonlynecessaryforcompressibleflows.Physicalprinciple(firstlawofthermodynamics)Energycanbeneithercreatednordestroyed;itcanonlychangeinform
DefinitionsofsystemandinternalenergyperunitmasseDefinitionofsurroundingsHeattransferredfromthesurroundingstothesystemWorkdoneonthesurroundingsbythesystemChangeofinternalenergyinsystemduetotheheattransferredandtheworkdoneAsenergyisconserved,soApplythefirstlawtothefluidflowingtroughthefixedcontrolvolume,andletB1=rateofheataddedtofluidinsidecontrolvolumefromsurroundings.B2=rateofworkdoneonfluidinsidecontrolvolume.B3=rateofchangeofenergyoffluidasitflowsthroughcontrolvolume.Asfirstlawshouldbesatisfied,thenB1+B2=B3Actuallyspeaking,theequationaboveisapowerequation.RateofvolumetricheatingIftheflowisviscousB1=Rateofvolumetricheating=TheforceincludesthreepartsPressureforce,bodyforceandskinfrictionforce
RateofworkdoneonfluidinsideVduetopressureforceonSRateofworkdoneonfluidinsideVduetobodyforceB2=Sincethefluidinsidethecontrolvolumeisnotstationary,itismovingatthelocalvelocitywithaconsequentkineticenergyperunitmass,so,thetotalenergyperunitmassisNetrateofflowoftotalenergyacrosscontrolsurfaceSTimeratechangeoftotalenergyinsideVduetotransientvariationsofflow-fieldpropertiesB3=B1+B2=B3EnergyequationinintegralformNotesinthetextbookEnergyequationinpartialdifferentialformIftheflowissteady,inviscid,adiabatic,withoutbodyforceAfterapplythreefundamentalphysicalprinciples,wehavederivedthreebasicequationsforfluidflow.Andtherearethreevariables,suchasForcaloricallyperfectgasesThen,onemorepropertyisadded,butwithperfectgasequationContinuity,momentumandenergyequationwithtwoadditionalequationsarefiveindependentequations,andtherefiveunknowns.Sothatwehavegotaclosedsystemfortheflowproblems.2.8Interimsummary2.9SubstantialderivativesFocusoureyeonainfinitesimalfluidelementmovingthroughaflowfield.ThevelocityfieldcanbegivenasThedensitycanbegivenasWiththeuseofTaylorseriesexpansionaboutpoint1Dividingbyincartesiancoordinates,thenSubstantialderivativeLocalderivativeconvectivederivative2.10FundamentalequationsintermofsubstantialderivativeInthissection,thecontinuity,momentumandenergyequationswillbegivenintermsofsubstantialderivativeThecontinuityequationindifferentialformisorSinceSoThisisthecontinuityequationintermsofsubstantialderivativeThexcomponentofthemomentumequationindifferentialformisorContinuityEquationhenceInthesamewaywecangetthesearethemomentumequationsintermsofsubstantialderivativeinx,y,zdirectionsrespectivelyEnergyequationintermsofsubstantialderivativeDetaileddescriptionsforthecomparisonbetweenthebasicflowequationsindifferentforms,refertothetextbook2.11Pathlines
andstreamlinesofaflowSkippedover2.12Angularvelocity,vorticityandstrainInthissection,moreattentionwillbepaidtoexaminetheorientationofthefluidelementanditsshapeasitmovesthroughastreamlineintheflowfield.Animportantquantity,vorticity,willbeintroduced.MotionofafluidelementalongastreamlineTrytosetuptherelationshipsbetweenwithandDistanceinydirectionthatAmovesduringtimeincrementDistanceinydirectionthatCmovesduringtimeincrementNetdisplacementinydirectionofCrelativetoASinceisasmallangleSimilarlyDefinition:angularvelocityofthefluidelementistheaverageangularvelocityoflinesABandAC,theyareperpendiculartoeachotheratthetimetvorticityInavelocityfield,thecurlofthevelocityisequaltothevorticityIfateverypointinaflowfield,theflowiscalledrotational.ThisimpliesthatthefluidelementshaveafiniteangularvelocityIfateverypointinaflow,theflowiscalledirrotational.Thisimpliesthatthefluidelementhavenoangularvelocity;theirmotionthroughspaceisapuretranslationDefinitionofstrain:thestrainofthefluidelementinxyplaneisthechangeofink,wherethepositivestraincorrespondstoadecreasingk.andkistheanglebetweensidesABandAC,theyareperpendiculartoeachotheratthetimetStrain=ThetimerateofstraininxyplaneisInthematrixabovewhichiscomposedofvelocityderivatives,thediagonaltermsrepresentthedilatation(擴(kuò)張)
ofafluidelement.Theoffdiagonaltermsareassociatedwithrotationandstrainoffluidelement.Relationsbetweenviscouseffectandrotationofafluidelement.Irrotationalandrotationalflowsinpracticalaerodynamicproblems2.13CirculationImportanttoolforwetoobtainsolutionsforsomeverypracticalandexcitingaerodynamicproblems.Circulationcanbeusedtocalculateliftexertedonanairfoilwithunitspan.Definitionofcirculation
Note:thenegativesigninfrontofthelineintegralStokes’theoremReferringtothevectoranalysis,whatisthephysicalmeaningthattheequationbellowspeak?2.14StreamfunctionInasteady2Dsteadyflow,thedifferentialformofstreamlinescanbeexpressedasIfareknownfunctionsof,then,aftertheequationabovebeingintegrated,wecangetthealgebraicequationofthestreamlineForeachstreamline,isaconstant.Itsvaluevarieswithdifferentstreamlines.Replacingthesymbolwith,thenwehaveThefunctioniscalledstreamfunction.Differentvalueofthe,i.e,,representsdifferentstreamlinesintheflowfield.TwostreamlinesrespectingwithdifferentvaluesofPhysicalmeaningofthestreamfunctionArbitrarinessoftheintegrandconstantDifferenceinstreamfunctionbetweentwoindividualstreamlinesMassflowbetweenthetwostreamlinesab
andcd.(perunitdepthperpendiculartothepage)Howtoremovethearbitrarinessoftheconstantofintegration?Whatwillbethemassflowthroughanarbitrarycurveconnectingtwopointsonastreamline?Forasteadyflow,themassflowinsideagivenstreamtubeisconstant.Forasteadyflow,thecontinuityequationshouldbesatisfied,then,themassflowthroughaclosedcurveCiszero.ThatmeansthemassflowthroughL1isthesametothatofL2.Forasteadyflowandphysicalpossibleflows,the
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 樂隊(duì)訓(xùn)練第二學(xué)期計(jì)劃2篇
- 主診醫(yī)師述職報(bào)告范文(6篇)
- 中學(xué)生繁星春水讀后感
- 高職傷逝課件教學(xué)課件
- 探究性閱讀課教案
- 美術(shù)大綱課件教學(xué)課件
- 輪椅車座椅 第14部分:與外力控制以維持組織完整性有關(guān)的概念 征求意見稿
- 農(nóng)小蜂-中國(guó)香蕉市場(chǎng)動(dòng)態(tài)監(jiān)測(cè)(2024年10月)
- 八年級(jí)上學(xué)期語文1月月考試卷
- 初中化學(xué)基礎(chǔ)知識(shí)與題目(含答案)
- 2024年湖南省長(zhǎng)沙市中考?xì)v史試卷真題(含答案解析)
- 石料倉儲(chǔ)合同范本
- 第1-4單元期中核心素質(zhì)檢測(cè)卷(試題)-2024-2025學(xué)年數(shù)學(xué)三年級(jí)上冊(cè)北師大版
- 摩托車維修技術(shù)考核試卷
- 6 我的家庭貢獻(xiàn)與責(zé)任(教學(xué)設(shè)計(jì)) 部編版道德與法治四年級(jí)上冊(cè)
- 期中測(cè)試題-2024-2025學(xué)年道德與法治六年級(jí)上冊(cè)統(tǒng)編版
- 《珍愛生命拒絕毒品》主題班會(huì)課件
- 2024年貴州畢節(jié)市委政法委所屬事業(yè)單位考調(diào)6人歷年高頻500題難、易錯(cuò)點(diǎn)模擬試題附帶答案詳解
- GB/T 32399-2024信息技術(shù)云計(jì)算參考架構(gòu)
- 2024粵東西粵北地區(qū)教師全員輪訓(xùn)培訓(xùn)心得總結(jié)
- 安全生產(chǎn)治本攻堅(jiān)三年行動(dòng)方案2024~2026(工貿(mào))
評(píng)論
0/150
提交評(píng)論