版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
圖形的旋轉(zhuǎn)一.選擇題1.將數(shù)字“6”旋轉(zhuǎn)180°,得到數(shù)字“9”,將數(shù)字“9”旋轉(zhuǎn)180°,得到數(shù)字“6”,現(xiàn)將數(shù)字“69”旋轉(zhuǎn)180°,得到的數(shù)字是()A.96 B.69 C.66 2.如圖,在△ABC中,∠C=90°,AC=4,BC=3,將△ABC繞點A逆時針旋轉(zhuǎn),使點C落在線段AB上的點E處,點B落在點D處,則B、D兩點間的距離為()A. B.2 C.3 D.23.如圖所示,將一個含30°角的直角三角板ABC繞點A旋轉(zhuǎn),使得點B,A,C′在同一條直線上,則三角板ABC旋轉(zhuǎn)的角度是()A.60° B.90° C.120° D.150°4.如圖,在三角形ABC中,∠ACB=90°,∠B=50°,將此三角形繞點C沿順時針方向旋轉(zhuǎn)后得到三角形A′B′C,若點B′恰好落在線段AB上,AC、A′B′交于點O,則∠COA′的度數(shù)是()A.50° B.60° C.70° D.80°5.把一副三角板按如圖放置,其中∠ABC=∠DEB=90°,∠A=45°,∠D=30°,斜邊AC=BD=10,若將三角板DEB繞點B逆時針旋轉(zhuǎn)45°得到△D′E′B,則點A在△D′E′B的()A.內(nèi)部 B.外部 C.邊上 D.以上都有可能6.如圖,Rt△ABC中,∠C=90°,∠ABC=30°,AC=2,△ABC繞點C順時針旋轉(zhuǎn)得△A1B1C,當A1落在AB邊上時,連接B1B,取BB1的中點D,連接A1D,則A1A. B.2 C.3 D.27.規(guī)定:在平面內(nèi),將一個圖形繞著某一點旋轉(zhuǎn)一定的角度(小于周角)后能和自身重合,則稱此圖形為旋轉(zhuǎn)對稱圖形.下列圖形是旋轉(zhuǎn)對稱圖形,且有一個旋轉(zhuǎn)角為60°的是()A.正三角形 B.正方形 C.正六邊形 D.正十邊形二.填空題8.旋轉(zhuǎn)不改變圖形的和.9.如圖,在Rt△ABC中,∠B=90°,AB=BC=2,將△ABC繞點C順時針旋轉(zhuǎn)60°,得到△DEC,則AE的長是.10.如圖,在△ACB中,∠BAC=50°,AC=2,AB=3,現(xiàn)將△ACB繞點A逆時針旋轉(zhuǎn)50°得到△AC1B1,則陰影部分的面積為.11.如圖,將△ABC繞點A逆時針旋轉(zhuǎn)得到△ADE,點C和點E是對應(yīng)點,若∠CAE=90°,AB=1,則BD=.12.如圖,將△ABC繞點C按順時針方向旋轉(zhuǎn)至△A′B′C,使點A′落在BC的延長線上.已知∠A=27°,∠B=40°,則∠ACB′=度.13.兩個全等的三角尺重疊放在△ACB的位置,將其中一個三角尺繞著點C按逆時針方向旋轉(zhuǎn)至△DCE的位置,使點A恰好落在邊DE上,AB與CE相交于點F.已知∠ACB=∠DCE=90°,∠B=30°,AB=8cm,則CF=cm.14.如圖,P是等邊三角形ABC內(nèi)一點,將線段AP繞點A順時針旋轉(zhuǎn)60°得到線段AQ,連接BQ.若PA=6,PB=8,PC=10,則四邊形APBQ的面積為.15.如圖,在Rt△ABC中,∠C=90°,AC=3,BC=4,把△ABC繞AB邊上的點D順時針旋轉(zhuǎn)90°得到△A′B′C′,A′C′交AB于點E,若AD=BE,則△A′DE的面積是.16.如圖,在Rt△ABC中,∠BAC=90°,AB=4,AC=3,點D、E分別是AB、AC的中點,點G、F在BC邊上(均不與端點重合),DG∥EF.將△BDG繞點D順時針旋轉(zhuǎn)180°,將△CEF繞點E逆時針旋轉(zhuǎn)180°,拼成四邊形MGFN,則四邊形MGFN周長l的取值范圍是.17.如圖,在四邊形ABCD中,∠ABC=30°,將△DCB繞點C順時針旋轉(zhuǎn)60°后,點D的對應(yīng)點恰好與點A重合,得到△ACE,若AB=3,BC=4,則BD=(提示:可連接BE)三.解答題18.我們在學完“平移、軸對稱、旋轉(zhuǎn)”三種圖形的變化后,可以進行進一步研究,請根據(jù)示例圖形,完成下表.圖形的變化示例圖形與對應(yīng)線段有關(guān)的結(jié)論與對應(yīng)點有關(guān)的結(jié)論平移(1)AA′=BB′AA′∥BB′軸對稱(2)(3)旋轉(zhuǎn)AB=A′B′;對應(yīng)線段AB和A′B′所在的直線相交所成的角與旋轉(zhuǎn)角相等或互補.(4)19.如圖,將等腰△ABC繞頂點B逆時針方向旋轉(zhuǎn)α度到△A1BC1的位置,AB與A1C1相交于點D,AC與A1C1、BC(1)求證:△BCF≌△BA1D.(2)當∠C=α度時,判定四邊形A1BCE的形狀并說明理由.20.如圖,在Rt△ABC中,∠ACB=90°,點D,E分別在AB,AC上,CE=BC,連接CD,將線段CD繞點C按順時針方向旋轉(zhuǎn)90°后得CF,連接EF.(1)補充完成圖形;(2)若EF∥CD,求證:∠BDC=90°.21.如圖,在平面直角坐標系xOy中,點A的坐標為(﹣2,0),等邊三角形AOC經(jīng)過平移或軸對稱或旋轉(zhuǎn)都可以得到△OBD.(1)△AOC沿x軸向右平移得到△OBD,則平移的距離是個單位長度;△AOC與△BOD關(guān)于直線對稱,則對稱軸是;△AOC繞原點O順時針旋轉(zhuǎn)得到△DOB,則旋轉(zhuǎn)角度可以是度;(2)連結(jié)AD,交OC于點E,求∠AEO的度數(shù).22.如圖1,在△ABC中,∠A=36°,AB=AC,∠ABC的平分線BE交AC于E.(1)求證:AE=BC;(2)如圖(2),過點E作EF∥BC交AB于F,將△AEF繞點A逆時針旋轉(zhuǎn)角α(0°<α<144°)得到△AE′F′,連結(jié)CE′,BF′,求證:CE′=BF′;(3)在(2)的旋轉(zhuǎn)過程中是否存在CE′∥AB?若存在,求出相應(yīng)的旋轉(zhuǎn)角α;若不存在,請說明理由.23.如圖1,在△ABC中,AB=AC,∠BAC=90°,D、E分別是AB、AC邊的中點.將△ABC繞點A順時針旋轉(zhuǎn)α角(0°<α<180°),得到△AB′C′(如圖2).(1)探究DB′與EC′的數(shù)量關(guān)系,并給予證明;(2)當DB′∥AE時,試求旋轉(zhuǎn)角α的度數(shù).答案與解析一.選擇題1.(2023?呼和浩特)將數(shù)字“6”旋轉(zhuǎn)180°,得到數(shù)字“9”,將數(shù)字“9”旋轉(zhuǎn)180°,得到數(shù)字“6”,現(xiàn)將數(shù)字“69”旋轉(zhuǎn)180°,得到的數(shù)字是()A.96 B.69 C.66 D.99【分析】直接利用中心對稱圖形的性質(zhì)結(jié)合69的特點得出答案.【解答】解:現(xiàn)將數(shù)字“69”旋轉(zhuǎn)180°,得到的數(shù)字是:69.故選:B.【點評】此題主要考查了生活中的旋轉(zhuǎn)現(xiàn)象,正確想象出旋轉(zhuǎn)后圖形是解題關(guān)鍵.2.(2023?宜賓)如圖,在△ABC中,∠C=90°,AC=4,BC=3,將△ABC繞點A逆時針旋轉(zhuǎn),使點C落在線段AB上的點E處,點B落在點D處,則B、D兩點間的距離為()A. B.2 C.3 D.2【分析】通過勾股定理計算出AB長度,利用旋轉(zhuǎn)性質(zhì)求出各對應(yīng)線段長度,利用勾股定理求出B、D兩點間的距離.【解答】解:∵在△ABC中,∠C=90°,AC=4,BC=3,∴AB=5,∵將△ABC繞點A逆時針旋轉(zhuǎn),使點C落在線段AB上的點E處,點B落在點D處,∴AE=4,DE=3,∴BE=1,在Rt△BED中,BD==.故選:A.【點評】題目考查勾股定理和旋轉(zhuǎn)的基本性質(zhì),解決此類問題的關(guān)鍵是掌握旋轉(zhuǎn)的基本性質(zhì),特別是線段之間的關(guān)系.題目整體較為簡單,適合隨堂訓練.3.(2023?新疆)如圖所示,將一個含30°角的直角三角板ABC繞點A旋轉(zhuǎn),使得點B,A,C′在同一條直線上,則三角板ABC旋轉(zhuǎn)的角度是()A.60° B.90° C.120° D.150°【分析】根據(jù)旋轉(zhuǎn)角的定義,兩對應(yīng)邊的夾角就是旋轉(zhuǎn)角,即可求解.【解答】解:旋轉(zhuǎn)角是∠CAC′=180°﹣30°=150°.故選:D.【點評】本題考查的是旋轉(zhuǎn)的性質(zhì),掌握對應(yīng)點與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角是解題的關(guān)鍵.4.(2023?株洲)如圖,在三角形ABC中,∠ACB=90°,∠B=50°,將此三角形繞點C沿順時針方向旋轉(zhuǎn)后得到三角形A′B′C,若點B′恰好落在線段AB上,AC、A′B′交于點O,則∠COA′的度數(shù)是()A.50° B.60° C.70° D.80°【分析】由三角形的內(nèi)角和為180°可得出∠A=40°,由旋轉(zhuǎn)的性質(zhì)可得出BC=B′C,從而得出∠B=∠BB′C=50°,再依據(jù)三角形外角的性質(zhì)結(jié)合角的計算即可得出結(jié)論.【解答】解:∵在三角形ABC中,∠ACB=90°,∠B=50°,∴∠A=180°﹣∠ACB﹣∠B=40°.由旋轉(zhuǎn)的性質(zhì)可知:BC=B′C,∴∠B=∠BB′C=50°.又∵∠BB′C=∠A+∠ACB′=40°+∠ACB′,∴∠ACB′=10°,∴∠COA′=∠AOB′=∠OB′C+∠ACB′=∠B+∠ACB′=60°.故選B.【點評】本題考查了旋轉(zhuǎn)的性質(zhì)、角的計算依據(jù)外角的性質(zhì),解題的關(guān)鍵是算出∠ACB′=10°.本題屬于基礎(chǔ)題,難度不大,解決該題型題目時,依據(jù)旋轉(zhuǎn)的性質(zhì)找出相等的角和相等的邊,再通過角的計算求出角的度數(shù)是關(guān)鍵.5.(2023?玉林)把一副三角板按如圖放置,其中∠ABC=∠DEB=90°,∠A=45°,∠D=30°,斜邊AC=BD=10,若將三角板DEB繞點B逆時針旋轉(zhuǎn)45°得到△D′E′B,則點A在△D′E′B的()A.內(nèi)部 B.外部 C.邊上 D.以上都有可能【分析】先根據(jù)勾股定理求出兩直角三角形的各邊長,再由旋轉(zhuǎn)的性質(zhì)得:∠EBE′=45°,∠E′=∠DEB=90°,求出E′D′與直線AB的交點到B的距離也是5,與AB的值相等,所以點A在△D′E′B的邊上.【解答】解:∵AC=BD=10,又∵∠ABC=∠DEB=90°,∠A=45°,∠D=30°,∴BE=5,AB=BC=5,由三角板DEB繞點B逆時針旋轉(zhuǎn)45°得到△D′E′B,設(shè)△D′E′B與直線AB交于G,可知:∠EBE′=45°,∠E′=∠DEB=90°,∴△GE′B是等腰直角三角形,且BE′=BE=5,∴BG==5,∴BG=AB,∴點A在△D′E′B的邊上,故選C.【點評】本題考查了旋轉(zhuǎn)的性質(zhì)和勾股定理,利用30°和45°的直角三角形的性質(zhì)求出各邊的長;注意:在直角三角形中,30度角所對的直角邊等于斜邊的一半,45°角所對的兩直角邊相等,熟練掌握此內(nèi)容是解決問題的關(guān)鍵.6.(2023?無錫)如圖,Rt△ABC中,∠C=90°,∠ABC=30°,AC=2,△ABC繞點C順時針旋轉(zhuǎn)得△A1B1C,當A1落在AB邊上時,連接B1B,取BB1的中點D,連接A1D,則A1A. B.2 C.3 D.2【分析】首先證明△ACA1,△BCB1是等邊三角形,推出△A1BD是直角三角形即可解決問題.【解答】解:∵∠ACB=90°,∠ABC=30°,AC=2,∴∠A=90°﹣∠ABC=60°,AB=4,BC=2,∵CA=CA1,∴△ACA1是等邊三角形,AA1=AC=BA1=2,∴∠BCB1=∠ACA1=60°,∵CB=CB1,∴△BCB1是等邊三角形,∴BB1=2,BA1=2,∠A1BB1=90°,∴BD=DB1=,∴A1D==.故選A.【點評】本題考查旋轉(zhuǎn)的性質(zhì)、30度角的直角三角形性質(zhì)、等邊三角形的判定和性質(zhì)、勾股定理等知識,解題的關(guān)鍵是證明△ACA1,△BCB1是等邊三角形,屬于中考常考題型.7.(2023?莆田)規(guī)定:在平面內(nèi),將一個圖形繞著某一點旋轉(zhuǎn)一定的角度(小于周角)后能和自身重合,則稱此圖形為旋轉(zhuǎn)對稱圖形.下列圖形是旋轉(zhuǎn)對稱圖形,且有一個旋轉(zhuǎn)角為60°的是()A.正三角形 B.正方形 C.正六邊形 D.正十邊形【分析】分別求出各旋轉(zhuǎn)對稱圖形的最小旋轉(zhuǎn)角,繼而可作出判斷.【解答】解:A、正三角形的最小旋轉(zhuǎn)角是120°,故此選項錯誤;B、正方形的旋轉(zhuǎn)角度是90°,故此選項錯誤;C、正六邊形的最小旋轉(zhuǎn)角是60°,故此選項正確;D、正十角形的最小旋轉(zhuǎn)角是36°,故此選項錯誤;故選:C.【點評】本題考查了旋轉(zhuǎn)對稱圖形的知識,解答本題的關(guān)鍵是掌握旋轉(zhuǎn)角度的定義,求出旋轉(zhuǎn)角.二.填空題8.(2023?懷化)旋轉(zhuǎn)不改變圖形的形狀和大?。痉治觥扛鶕?jù)旋轉(zhuǎn)的性質(zhì)(旋轉(zhuǎn)不改變圖形的大小與形狀,只改變圖形的位置.也就是旋轉(zhuǎn)前后圖形全等,對應(yīng)點與旋轉(zhuǎn)中心所連線段間的夾角為旋轉(zhuǎn)角)即可得出答案.【解答】解:旋轉(zhuǎn)不改變圖形的形狀和大小,只改變圖形的位置,故答案為:形狀,大?。军c評】本題考查了有關(guān)旋轉(zhuǎn)的性質(zhì)的應(yīng)用,注意:(1)旋轉(zhuǎn)是指一個圖形繞一點沿一定方向旋轉(zhuǎn)一定的角度,它有三要素:①旋轉(zhuǎn)中心(繞著轉(zhuǎn)的那個點),②旋轉(zhuǎn)方向(順時針還是逆時針)③旋轉(zhuǎn)的角度;(2)旋轉(zhuǎn)的性質(zhì)是:①旋轉(zhuǎn)不改變圖形的大小與形狀,只改變圖形的位置,也就是旋轉(zhuǎn)前后圖形全等;②對應(yīng)點與旋轉(zhuǎn)中心所連線段間的夾角為旋轉(zhuǎn)角.9.(2023?巴彥淖爾)如圖,在Rt△ABC中,∠B=90°,AB=BC=2,將△ABC繞點C順時針旋轉(zhuǎn)60°,得到△DEC,則AE的長是+.【分析】如圖,連接AD,由題意得:CA=CD,∠ACD=60°,得到△ACD為等邊三角形根據(jù)AC=AD,CE=ED,得出AE垂直平分DC,于是求出EO=DC=,OA=AC?sin60°=,最終得到答案AE=EO+OA=+.【解答】解:如圖,連接AD,由題意得:CA=CD,∠ACD=60°,∴△ACD為等邊三角形,∴AD=CA,∠DAC=∠DCA=∠ADC=60°;∵∠ABC=90°,AB=BC=2,∴AC=AD=2,∵AC=AD,CE=ED,∴AE垂直平分DC,∴EO=DC=,OA=CA?sin60°=,∴AE=EO+OA=+,故答案為+.【點評】本題考查了圖形的變換﹣旋轉(zhuǎn),等腰直角三角形的性質(zhì),等邊三角形的判定和性質(zhì),線段的垂直平分線的性質(zhì),準確把握旋轉(zhuǎn)的性質(zhì)是解題的關(guān)鍵.10.(2023?黔東南州)如圖,在△ACB中,∠BAC=50°,AC=2,AB=3,現(xiàn)將△ACB繞點A逆時針旋轉(zhuǎn)50°得到△AC1B1,則陰影部分的面積為π.【分析】根據(jù)旋轉(zhuǎn)的性質(zhì)可知,由此可得S陰影=,根據(jù)扇形面積公式即可得出結(jié)論.【解答】解:∵,∴S陰影==πAB2=π.故答案為:π.【點評】本題考查了旋轉(zhuǎn)的性質(zhì)以及扇形的面積公式,解題的關(guān)鍵是找出S陰影=.本題屬于基礎(chǔ)題,難度不大,解決該題型題目時,根據(jù)旋轉(zhuǎn)的性質(zhì)找出陰影部分的面積等于扇形的面積是關(guān)鍵.11.(2023?大連)如圖,將△ABC繞點A逆時針旋轉(zhuǎn)得到△ADE,點C和點E是對應(yīng)點,若∠CAE=90°,AB=1,則BD=.【分析】由旋轉(zhuǎn)的性質(zhì)得:AB=AD=1,∠BAD=∠CAE=90°,再根據(jù)勾股定理即可求出BD.【解答】解:∵將△ABC繞點A逆時針旋轉(zhuǎn)的到△ADE,點C和點E是對應(yīng)點,∴AB=AD=1,∠BAD=∠CAE=90°,∴BD===.故答案為.【點評】本題考查了旋轉(zhuǎn)的性質(zhì):①對應(yīng)點到旋轉(zhuǎn)中心的距離相等;②對應(yīng)點與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;③旋轉(zhuǎn)前、后的圖形全等.也考查了勾股定理,掌握旋轉(zhuǎn)的性質(zhì)是解決問題的關(guān)鍵.12.(2023?溫州)如圖,將△ABC繞點C按順時針方向旋轉(zhuǎn)至△A′B′C,使點A′落在BC的延長線上.已知∠A=27°,∠B=40°,則∠ACB′=46度.【分析】先根據(jù)三角形外角的性質(zhì)求出∠ACA′=67°,再由△ABC繞點C按順時針方向旋轉(zhuǎn)至△A′B′C,得到△ABC≌△A′B′C,證明∠BCB′=∠ACA′,利用平角即可解答.【解答】解:∵∠A=27°,∠B=40°,∴∠ACA′=∠A+∠B=27°+40°=67°,∵△ABC繞點C按順時針方向旋轉(zhuǎn)至△A′B′C,∴△ABC≌△A′B′C,∴∠ACB=∠A′CB′,∴∠ACB﹣∠B′CA=∠A′CB﹣∠B′CA,即∠BCB′=∠ACA′,∴∠BCB′=67°,∴∠ACB′=180°∠ACA′﹣∠BCB′=180°﹣67°﹣67°=46°,故答案為:46.【點評】本題考查了旋轉(zhuǎn)的性質(zhì),解決本題的關(guān)鍵是由旋轉(zhuǎn)得到△ABC≌△A′B′C.13.(2023?荊門)兩個全等的三角尺重疊放在△ACB的位置,將其中一個三角尺繞著點C按逆時針方向旋轉(zhuǎn)至△DCE的位置,使點A恰好落在邊DE上,AB與CE相交于點F.已知∠ACB=∠DCE=90°,∠B=30°,AB=8cm,則CF=2cm.【分析】利用旋轉(zhuǎn)的性質(zhì)得出DC=AC,∠D=∠CAB,再利用已知角度得出∠AFC=90°,再利用直角三角形的性質(zhì)得出FC的長.【解答】解:∵將其中一個三角尺繞著點C按逆時針方向旋轉(zhuǎn)至△DCE的位置,使點A恰好落在邊DE上,∴DC=AC,∠D=∠CAB,∴∠D=∠DAC,∵∠ACB=∠DCE=90°,∠B=30°,∴∠D=∠CAB=60°,∴∠DCA=60°,∴∠ACF=30°,可得∠AFC=90°,∵AB=8cm,∴AC=4cm,∴FC=4cos30°=2(cm).故答案為:2.【點評】此題主要考查了旋轉(zhuǎn)的性質(zhì)以及直角三角形的性質(zhì),正確得出∠AFC的度數(shù)是解題關(guān)鍵.14.(2023?達州)如圖,P是等邊三角形ABC內(nèi)一點,將線段AP繞點A順時針旋轉(zhuǎn)60°得到線段AQ,連接BQ.若PA=6,PB=8,PC=10,則四邊形APBQ的面積為24+9.【分析】連結(jié)PQ,如圖,根據(jù)等邊三角形的性質(zhì)得∠BAC=60°,AB=AC,再根據(jù)旋轉(zhuǎn)的性質(zhì)得AP=PQ=6,∠PAQ=60°,則可判斷△APQ為等邊三角形,所以PQ=AP=6,接著證明△APC≌△ABQ得到PC=QB=10,然后利用勾股定理的逆定理證明△PBQ為直角三角形,再根據(jù)三角形面積公式,利用S四邊形APBQ=S△BPQ+S△APQ進行計算.【解答】解:連結(jié)PQ,如圖,∵△ABC為等邊三角形,∴∠BAC=60°,AB=AC,∵線段AP繞點A順時針旋轉(zhuǎn)60°得到線段AQ,∴AP=PQ=6,∠PAQ=60°,∴△APQ為等邊三角形,∴PQ=AP=6,∵∠CAP+∠BAP=60°,∠BAP+∠BAQ=60°,∴∠CAP=∠BAQ,在△APC和△ABQ中,,∴△APC≌△ABQ,∴PC=QB=10,在△BPQ中,∵PB2=82=64,PQ2=62,BQ2=102,而64+36=100,∴PB2+PQ2=BQ2,∴△PBQ為直角三角形,∠BPQ=90°,∴S四邊形APBQ=S△BPQ+S△APQ=×6×8+×62=24+9.故答案為24+9.【點評】本題考查了旋轉(zhuǎn)的性質(zhì):對應(yīng)點到旋轉(zhuǎn)中心的距離相等;對應(yīng)點與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;旋轉(zhuǎn)前、后的圖形全等.也考查了勾股定理和等邊三角形的性質(zhì).15.(2023?呼倫貝爾)如圖,在Rt△ABC中,∠C=90°,AC=3,BC=4,把△ABC繞AB邊上的點D順時針旋轉(zhuǎn)90°得到△A′B′C′,A′C′交AB于點E,若AD=BE,則△A′DE的面積是.【分析】在Rt△ABC中,由勾股定理求得AB=5,由旋轉(zhuǎn)的性質(zhì)可知AD=A′D,設(shè)AD=A′D=BE=x,則DE=5﹣2x,根據(jù)旋轉(zhuǎn)90°可證△A′DE∽△ACB,利用相似比求x,再求△A′DE的面積.【解答】解:Rt△ABC中,由勾股定理求AB==5,由旋轉(zhuǎn)的性質(zhì),設(shè)AD=A′D=BE=x,則DE=5﹣2x,∵△ABC繞AB邊上的點D順時針旋轉(zhuǎn)90°得到△A′B′C′,∴∠A′=∠A,∠A′DE=∠C=90°,∴△A′DE∽△ACB,∴=,即=,解得x=,∴S△A′DE=DE×A′D=×(5﹣2×)×=,故答案為:.【點評】本題考查了相似三角形的判定與性質(zhì),勾股定理及旋轉(zhuǎn)的性質(zhì).關(guān)鍵是根據(jù)旋轉(zhuǎn)的性質(zhì)得出相似三角形,利用相似比求解.16.(2023?寧德)如圖,在Rt△ABC中,∠BAC=90°,AB=4,AC=3,點D、E分別是AB、AC的中點,點G、F在BC邊上(均不與端點重合),DG∥EF.將△BDG繞點D順時針旋轉(zhuǎn)180°,將△CEF繞點E逆時針旋轉(zhuǎn)180°,拼成四邊形MGFN,則四邊形MGFN周長l的取值范圍是≤l<13..【分析】如圖,連接DE,作AH⊥BC于H.首先證明GF=DE=,要求四邊形MNFG周長的取值范圍,只要求出MG的最大值和最小值即可.【解答】解:如圖,連接DE,作AH⊥BC于H.在Rt△ABC中,∵∠BAC=90°,AB=4,AC=3,∴BC==5,∵?AB?AC=?BC?AH,∴AH=,∵AD=DB,AE=EC,∴DE∥CB,DE=BC=,∵DG∥EF,∴四邊形DGFE是平行四邊形,∴GF=DE=,由題意MN∥BC,GM∥FN,∴四邊形MNFG是平行四邊形,∴當MG=NF=AH時,可得四邊形MNFG周長的最小值=2×+2×=,當G與B重合時可得周長的最大值為13,∵G不與B重合,∴≤l<13.故答案為≤l<13.【點評】本題考查旋轉(zhuǎn)變換、勾股定理、平行四邊形的性質(zhì)、三角形中位線定理等知識,解題的關(guān)鍵是靈活運用所學知識解決問題,學會取特殊點解決問題,屬于中考常考題型.17.(2023?綏化)如圖,在四邊形ABCD中,∠ABC=30°,將△DCB繞點C順時針旋轉(zhuǎn)60°后,點D的對應(yīng)點恰好與點A重合,得到△ACE,若AB=3,BC=4,則BD=5(提示:可連接BE)【分析】要求BD的長,根據(jù)旋轉(zhuǎn)的性質(zhì),只要求出AE的長即可,由題意可得到三角形ABE的形狀,從而可以求得AE的長,本題得以解決.【解答】解:連接BE,如右圖所示,∵△DCB繞點C順時針旋轉(zhuǎn)60°得到△ACE,AB=3,BC=4,∠ABC=30°,∴∠BCE=60°,CB=CE,AE=BD,∴△BCE是等邊三角形,∴∠CBE=60°,BE=BC=4,∴∠ABE=∠ABC+∠CBE=30°+60°=90°,∴AE=,又∵AE=BD,∴BD=5,故答案為:5.【點評】本題考查旋轉(zhuǎn)的性質(zhì),解題的關(guān)鍵是明確題意,找出所求問題需要的條件.三.解答題18.(2023?南京)我們在學完“平移、軸對稱、旋轉(zhuǎn)”三種圖形的變化后,可以進行進一步研究,請根據(jù)示例圖形,完成下表.圖形的變化示例圖形與對應(yīng)線段有關(guān)的結(jié)論與對應(yīng)點有關(guān)的結(jié)論平移(1)AB=A′B′,AB∥A′B′AA′=BB′AA′∥BB′軸對稱(2)AB=A′B′;對應(yīng)線段AB和A′B′所在的直線如果相交,交點在對稱軸l上.(3)l垂直平分AA′旋轉(zhuǎn)AB=A′B′;對應(yīng)線段AB和A′B′所在的直線相交所成的角與旋轉(zhuǎn)角相等或互補.(4)OA=OA′,∠AOA′=∠BOB′【分析】(1)根據(jù)平移的性質(zhì)即可得到結(jié)論;(2)根據(jù)軸對稱的性質(zhì)即可得到結(jié)論;(3)同(2);(4)由旋轉(zhuǎn)的性質(zhì)即可得到結(jié)論.【解答】解:(1)平移的性質(zhì):平移前后的對應(yīng)線段相等且平行.所以與對應(yīng)線段有關(guān)的結(jié)論為:AB=A′B′,AB∥A′B′;(2)軸對稱的性質(zhì):AB=A′B′;對應(yīng)線段AB和A′B′所在的直線如果相交,交點在對稱軸l上.(3)軸對稱的性質(zhì):軸對稱圖形對稱軸是任何一對對應(yīng)點所連線段的垂直平分線.所以與對應(yīng)點有關(guān)的結(jié)論為:l垂直平分AA′.(4)OA=OA′,∠AOA′=∠BOB′.故答案為:(1)AB=A′B′,AB∥A′B′;(2)AB=A′B′;對應(yīng)線段AB和A′B′所在的直線如果相交,交點在對稱軸l上.;(3)l垂直平分AA′;(4)OA=OA′,∠AOA′=∠BOB′.【點評】本題考查了旋轉(zhuǎn)的性質(zhì),平移的性質(zhì),軸對稱的性質(zhì),余角和補角的性質(zhì),熟練掌握各性質(zhì)是解題的關(guān)鍵.19.(2023?婁底)如圖,將等腰△ABC繞頂點B逆時針方向旋轉(zhuǎn)α度到△A1BC1的位置,AB與A1C1相交于點D,AC與A1C1、BC(1)求證:△BCF≌△BA1D.(2)當∠C=α度時,判定四邊形A1BCE的形狀并說明理由.【分析】(1)根據(jù)等腰三角形的性質(zhì)得到AB=BC,∠A=∠C,由旋轉(zhuǎn)的性質(zhì)得到A1B=AB=BC,∠A=∠A1=∠C,∠A1BD=∠CBC1,根據(jù)全等三角形的判定定理得到△BCF≌△BA1D;(2)由旋轉(zhuǎn)的性質(zhì)得到∠A1=∠A,根據(jù)平角的定義得到∠DEC=180°﹣α,根據(jù)四邊形的內(nèi)角和得到∠ABC=360°﹣∠A1﹣∠C﹣∠A1EC=180°﹣α,證得四邊形A1BCE是平行四邊形,由于A1B=BC,即可得到四邊形A1BCE是菱形.【解答】(1)證明:∵△ABC是等腰三角形,∴AB=BC,∠A=∠C,∵將等腰△ABC繞頂點B逆時針方向旋轉(zhuǎn)α度到△A1BC1的位置,∴A1B=AB=BC,∠A=∠A1=∠C,∠A1BD=∠CBC1,在△BCF與△BA1D中,,∴△BCF≌△BA1D;(2)解:四邊形A1BCE是菱形,∵將等腰△ABC繞頂點B逆時針方向旋轉(zhuǎn)α度到△A1BC1的位置,∴∠A1=∠A,∵∠ADE=∠A1DB,∴∠AED=∠A1BD=α,∴∠DEC=180°﹣α,∵∠C=α,∴∠A1=α,∴∠ABC=360°﹣∠A1﹣∠C﹣∠A1EC=180°﹣α,∴∠A1=∠C,∠A1BC=∠AEC,∴四邊形A1BCE是平行四邊形,∴A1B=BC,∴四邊形A1BCE是菱形.【點評】本題考查了旋轉(zhuǎn)的性質(zhì),全等三角形的判定和性質(zhì),等腰三角形的性質(zhì),正確的理解題意是解題的關(guān)鍵.20.(2023?荊門)如圖,在Rt△ABC中,∠ACB=90°,點D,E分別在AB,AC上,CE=BC,連接CD,將線段CD繞點C按順時針方向旋轉(zhuǎn)90°后得CF,連接EF.(1)補充完成圖形;(2)若EF∥CD,求證:∠BDC=90°.【分析】(1)根據(jù)題意補全圖形,如圖所示;(2)由旋轉(zhuǎn)的性質(zhì)得到∠DCF為直角,由EF與CD平行,得到∠EFC為直角,利用SAS得到三角形BDC與三角形EFC全等,利用全等三角形對應(yīng)角相等即可得證.【解答】解:(1)補全圖形,如圖所示;(2)由旋轉(zhuǎn)的性質(zhì)得:∠DCF=90°,∴∠DCE+∠ECF=90°,∵∠ACB=90°,∴∠DCE+∠BCD=90°,∴∠ECF=∠BCD,∵EF∥DC,∴∠EFC+∠DCF=180°,∴∠EFC=90°,在△BDC和△EFC中,,∴△BDC≌△EFC(SAS),∴∠BDC=∠EFC=90°.【點評】此題考查了旋轉(zhuǎn)的性質(zhì),以及全等三角形的判定與性質(zhì),熟練掌握旋轉(zhuǎn)的性質(zhì)是解本題的關(guān)鍵.21.如圖,在平面直角坐標系xOy中,點A的坐標為(﹣2,0),等邊三角形AOC經(jīng)過平移或軸對稱或旋轉(zhuǎn)都可以得到△OBD.(1)△AOC沿x軸向右平移得到△OBD,則平移的距離是2個單位長度;△AOC與△BOD關(guān)于直線對稱,則對稱軸是y軸;△AOC繞原點O順時針旋轉(zhuǎn)得到△DOB,則旋轉(zhuǎn)角度可以是120度;(2)連結(jié)AD,交OC于點E,求∠AEO的度數(shù).【分析】(1)由點A的坐標為(﹣2,0),根據(jù)平移的性質(zhì)得到△AOC沿x軸向右平移2個單位得到△OBD,則△AOC與△BOD關(guān)于y軸對稱;根據(jù)等邊三角形的性質(zhì)得∠AOC=∠BOD=60°,則∠AOD=120°,根據(jù)旋轉(zhuǎn)的定義得△AOC繞原點O順時針旋轉(zhuǎn)120°得到△DOB;(2)根據(jù)旋轉(zhuǎn)的性質(zhì)得到OA=OD,而∠AOC=∠BOD=60°,得到∠DOC=60°,所以O(shè)E為等腰△AOD的頂角的平分線,根據(jù)等腰三角形的性質(zhì)得到OE垂直平分AD,則∠AEO=90°.【解答】解:(1)∵點A的坐標為(﹣2,0),∴△AOC沿x軸向右平移2個單位得到△OBD;∴△AOC與△BOD關(guān)于y軸對稱;∵△AOC為等邊三角形,∴∠AOC=∠BOD=60°,∴∠AOD=120°,∴△AOC繞原點O順時針旋轉(zhuǎn)120°得到△DOB.(2)如圖,∵等邊△AOC繞原點O順時針旋轉(zhuǎn)120°得到△DOB,∴OA=OD,∵∠AOC=∠BOD=60°,∴∠DOC=60°,即OE為等腰△AOD的頂角的平分線,∴OE垂直平分AD,∴∠AEO=90°.故答案為2;y軸;120.【點評】本題考查了旋轉(zhuǎn)的性質(zhì):旋轉(zhuǎn)前后兩圖形全等;對應(yīng)點到旋轉(zhuǎn)中心的距離相等;對應(yīng)點與旋轉(zhuǎn)中心的連線段的夾角等于旋轉(zhuǎn)角.也考查了等邊三角形的性質(zhì)、軸對稱的性質(zhì)以及平移的性質(zhì).22.如圖1,在△ABC中,∠A=36°,AB=AC,∠ABC的平分線BE交AC于E.(1)求證:AE=BC;(2)如圖(2),過點E作EF∥BC交AB于F,將△AEF繞點A逆時針旋轉(zhuǎn)角α(0°<α<144°)得到△AE′F′,連結(jié)C
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年魯科五四新版九年級地理上冊月考試卷含答案
- 2025年滬教版選擇性必修2語文上冊階段測試試卷
- 2025年蘇人新版七年級歷史下冊階段測試試卷含答案
- 2025年仁愛科普版必修1歷史下冊月考試卷含答案
- 二零二五年度藝術(shù)面磚采購及安裝服務(wù)合同4篇
- 抵押合同范本(2篇)
- 承包經(jīng)營合同(2篇)
- 2025年度文化場館日常清掃與保養(yǎng)合同4篇
- 二零二五年度廠房買賣合同范本:生物醫(yī)藥產(chǎn)業(yè)園區(qū)3篇
- 2025年度門診部財務(wù)審計與咨詢服務(wù)合同4篇
- GB/T 45107-2024表土剝離及其再利用技術(shù)要求
- 2024-2025學年八年級上學期1月期末物理試題(含答案)
- 商場電氣設(shè)備維護勞務(wù)合同
- 《妊娠期惡心嘔吐及妊娠劇吐管理指南(2024年)》解讀
- 2023年國家公務(wù)員錄用考試《行測》真題(行政執(zhí)法)及答案解析
- 全國教學設(shè)計大賽一等獎英語七年級上冊(人教2024年新編)《Unit 2 Were Family!》單元教學設(shè)計
- 2024智慧醫(yī)療數(shù)據(jù)字典標準值域代碼
- 年產(chǎn)12萬噸裝配式智能鋼結(jié)構(gòu)項目可行性研究報告模板-立項備案
- 【獨家揭秘】2024年企業(yè)微信年費全解析:9大行業(yè)收費標準一覽
- 醫(yī)療器械經(jīng)銷商會議
- 《±1100kV特高壓直流換流變壓器使用技術(shù)條件》
評論
0/150
提交評論