版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
第五章關(guān)聯(lián)5.1單電子近似的理論基礎(chǔ)5.2費米液體理論5.3強關(guān)聯(lián)體系多電子體系(AfterBorn-Oppenheimer絕熱近似):5.1單電子近似的理論基礎(chǔ)關(guān)聯(lián):電子-電子相互作用弱:單電子近似,電子平均場1.Hartree方程(1928)連乘積形式:按變分原理,的選取E達到極小正交歸一條件單電子方程Hartree方程中的勢:第二項是全部電子在r處形成的勢,與相抵消第三項是須扣除的自作用,與j有關(guān),但如取r為計算原點:所以對凝膠模型,Hartree方程:相互作用→沒有相互作用電子+正電荷背景→自由電子氣3.Hartree-Fock方程(1930)Hartree方程不滿足Pauli不相容原理電子:費米子單電子波函數(shù)f:→N電子體系的總波函數(shù):
不涉及自旋-軌道耦合時:N電子體系能量期待值:1.第二項j,j'可以相等,自相互作用2.自相互作用嚴格相消(通過第二,三項)3.第三項為交換項,同自旋電子通過變分:么正變換:單電子方程:與Hartree方程的差別:第三項對全體電子,第四項新增,交換作用項。求和只涉及與j態(tài)自旋平行的j’態(tài),是電子服從Fermi統(tǒng)計的反映。4.Koopmann定理(1934)單電子軌道能量等于N電子體系從第j個軌道上取走一個電子并保持N-1個電子狀態(tài)不不變的總能變化值。定性討論:假設(shè)Fermihole:與某電子自旋相同的其余鄰近電子在圍繞該電子形成總量為1的密度虧欠域energyasafunctionoftheoneelectrondensity,nuclear-electronattraction,electron-electronrepulsionThomas-FermiapproximationforthekineticenergySlaterapproximationfortheexchangeenergy6.密度泛函理論(Densityfunctionaltheory)
(1)Thomas-Fermi-DiracModel(2)TheHohenberg-KohnTheorem
propertiesareuniquelydeterminedbytheground-stateelectron
In1964,HohenbergandKohnprovedthatmolecularenergy,wavefunction
andallothermolecularelectronic
probabilitydensity
namely,Phys.Rev.136,13864(1964)
.”Densityfunctionaltheory(DFT)attemptstoandotherground-statemolecularproperties
fromtheground-stateelectrondensity
“Formoleculeswitha
nondegenerate
groundstate,theground-state
calculate
Nowweneedtoprovethattheground-stateelectronprobabilitydensitythenumberofelectrons.
theexternalpotential(exceptforanarbitraryadditiveconstant)
a)Sincedeterminesthenumberofelectrons.b)Toseethatdeterminestheexternalpotential,wesupposethatthisisfalseandthattherearetwoexternalpotentialsand(differingbymorethanaconstant)thateachgiveriseto
thesameground-stateelectrondensity.determinestheexactground-statewavefunctionandenergyoftheexactground-statewavefunctionandenergyofLetSinceanddifferbymorethanaconstant,andmustbe
differentfunctions.Proof:Assumethusthuswhichcontradictsthegiveninformation.function,theexactground-statewavefunction
stateenergy
foragivenHamiltonianIfthegroundstateisnondegenerate,thenthereisonlyonenormalizedthatgivestheexactgroundLetbeafunctionofthespatialcoordinatesofelectroni,thenUsingtheaboveresult,wegetSimilarly,ifwegothroughthesamereasoning
withaandbinterchanged,wegetByhypothesis,thetwodifferentwavefunctionsgivethesameelectron.Puttingandaddingtheabovetwoinequalitiesdensity:
yieldpotentialscouldproducethesameground-stateelectrondensitymustbefalse.
energy)
andalsodeterminesthenumberofelectrons.Thisresultisfalse,soourinitialassumptionthattwodifferentexternalpotential(towithinanadditiveconstantthat
simplyaffectsthezerolevel
ofHence,the
ground-stateelectronprobabilitydensity
determinestheexternalprobabilitydensityandotherproperties”emphasizesthedependenceoftheexternalpotential
differs
fordifferentmolecules.“Forsystemswithanondegenerategroundstate,theground-stateelectrondeterminestheground-statewavefunctionandenergy,,whichHowever,thefunctionalsareunknown.isalsowrittenasThefunctionalindependentoftheexternalonispotential.withHamiltonian.AccordingtothevariationtheoremLetususethewavefunctionasatrialvariationfunctionforthe
moleculeSincethelefthandsideofthisinequalitycanberewrittenasOnegetsstates.Subsequently,Levyprovedthetheoremsfordegenerategroundstates.
HohenbergandKohnprovedtheirtheoremsonlyfornondegenerateground(4)TheKohn-Shammethod
Ifweknowtheground-stateelectrondensity
molecularpropertiesfromfunction.,theHohenberg-Kohntheoremtellsusthatitispossibleinprincipletocalculatealltheground-state,withouthavingtofindthemolecularwave
1965,KohnandShamdevisedapracticalmethodforfinding
andforfinding
from.[Phys.Rev.,140,A1133(1965)].Theirmethod
iscapable,inprinciple,ofyieldingexactresults,butbecausetheequationsof
theKohn-Sham(KS)methodcontainanunknownfunctionalthatmustbeapproximated,theKSformationofDFTyield
approximateresults.沈呂九electronsthateachexperiencethesameexternalpotential
theground-stateelectronprobabilitydensity
equaltotheexactofthemoleculeweareinterestedin:.KohnandShamconsideredafictitiousreferencesystemsofnnoninteractingthatmakesofthereferencesystemSincetheelectronsdonot
interactwithoneanotherinthereferencesystem,theHamiltonianofthereferencesystemiswhereistheone-electronKohn-ShamHamiltonian.
RememberthatWiththeabovedefinitions,
canbewrittenasDefinetheexchange-correlationenergyfunctionalbyNowwehaveside
are
easytoevaluatefromgetagoodapproximationto
totheground-stateenergy.
Thefourthquantity
accurately.
ThekeytoaccurateKSDFT
calculationofmolecular
propertiesisto
Thefirstthreetermsontherightisarelativelysmallterm,butisnoteasytoevaluate
andtheymakethe
maincontributionsThusbecomes.Nowweneedexplicitequationstofindtheground-stateelectrondensity.sameelectrondensityasthatinthegroundstateofthemolecule:isreadilyprovedthatSincethefictitioussystemofnoninteractingelectronsisdefinedtohavethe,it(6)Variousapproximatefunctionals
DFcalculations.Thefunctionalandacorrelation-energyfunctionalAmongvariousCommonlyusedandPW91(PerdewandWang’s1991functional)Lee-Yang-Parr(LYP)functionalareusedinmolecularapproximations,gradient-corrected
exchangeandcorrelationenergyfunctionalsarethemostaccurate.PW86(PerdewandWang’s1986functional)B88(Becke’s1988functional)P86(the
Perdew1986correlationfunctional)
(7)NowadaysKSDFTmethodsaregenerallybelievedtobebetterthantheHFmethod,andinmostcasestheyareevenbetterthanMP2
iswrittenasthesumofanexchange-energyfunctional
XLocalexchangeApproximatedensityfunctionaltheoriesforexchangeandcorrelationX:
LocalexchangefunctionalofthehomogeneouselectrongasLDALocalexchange+localcorrelationGGALocalexchange+localcorrelation+gradientcorrections3rdGenerationoffunctionalsLDA:Localexchangefunctional+localcorrelationfunctionalofthehomogeneouselectrongasGGA:SameasLDA+“non-local”gradientcorrectionstoexchangeandcorrelation3rdGenerationoffunctionals:SameasGGA+instilationof“exact-exchange”and+2ndderivativesofthedensitycorrectionsTermsinDensityFunctionalsr Localdensityrs Seitzradius=(3/4pr)1/3kF Fermiwavenumber=(3p2r)1/3t Densitygradient=|gradr|/2fksrz Spinpolarization=(rup-rdown)/rf Spinscalingfactor=[(1+z)2/3+(1-z)2/3]/2ks
Thomas-Fermiscreeningwavenumber =(4kF/pa0)1/2s Anotherdensitygradient=|gradr|/2kFrJ.Chem.Phys.,100,1290(1994);PRL77,3865(1996).LocalDensityApproximationLocalSpinDensityApproximationLocalSpinDensityCorrelationFunctionalNotforthefaintofheart:GeneralizedGradientApproximationFunctionalsTheNobelPrizeinChemistry1998“forhisdevelopmentofthedensity-functionaltheory"WalterKohn(1923-)5.2費米液體理論費米體系費米溫度:均勻的無相互作用的三維系統(tǒng),費米溫度:費米簡并系統(tǒng):費米子系統(tǒng)的溫度通常運運低于費米溫度
室溫下金屬中的傳導電子費米溫度給出了系統(tǒng)中元激發(fā)存在與否的標度在費米溫度以下,系統(tǒng)的性質(zhì)由數(shù)目有限的低激發(fā)態(tài)決定。有相互作用和無相互作用的簡并費米子系統(tǒng)中,低激發(fā)態(tài)的性質(zhì)具有較強的對應(yīng)性。2.費米液體金屬中電子通常是可遷移的,稱為電子氣,電子動能:電子勢能:在高密度下,電子動能為主,自由電子氣模型是較好的近似。在低密度下,電子之間的勢能或關(guān)聯(lián)變得越來越重要,電子可能由于這種關(guān)聯(lián)作用進入液相甚至晶相。較強關(guān)聯(lián)下,電子系統(tǒng)被稱為電子液體或費米液體或Luttinger液體(1D)相互作用:(1)單電子能級分布變化(勢的變化);(2)電子散射導致某一態(tài)上有限壽命(馳豫時間)3.朗道費米液體理論單電子圖象不是一個正確的出發(fā)點,但只要把電子改成準粒子或準電子,就能描述費米液體。準粒子遵從費米統(tǒng)計,準粒子數(shù)守恒,因而費米面包含的體積不發(fā)生變化。假設(shè)激發(fā)態(tài)用動量表示朗道費米液體理論的適用條件:(1).必須有可明確定義的費米面存在(2).準粒子有足夠長的壽命FermiLiquidTheorySimplePictureforFermiLiquid朗道費米液體理論是處理相互作用費米子體系的唯象理論。在相互作用不是很強時,理論對三維液體正確。二維情況下,多大程度上成立不知道。一維情況下,不成立。luttinger液體一維:低能激發(fā)為自旋為1/2的電中性自旋子和無自旋荷電為的波色子的激發(fā)。非費米液體行為:與費米液體理論預言相偏離的性質(zhì)THEPHYSICS
OFLUTTINGERLIQUIDSFERMISURFACEHASONLYTWOPOINTSfailureofLandau′sFermiliquidpictureELECTRONSFORMAHARMONICCHAINATLOWENERGIES
Coulomb+PauliinteractionTHELUTTINGERLIQUID:INTERACTINGSYSTEMOF1DELECTRONSATLOWENERGIEScollectiveexcitationsarevibrationalmodesREMARKABLEPROPERTIESAbsenceofelectron-likequasi-particles(onlycollectivebosonicexcitations)Spin-chargeseparation(spinandchargearedecoupledandpropagatewithdifferentvelocities)AbsenceofjumpdiscontinuityinthemomentumdistributionatPower-lawbehaviorofvariouscorrelationfunctionsandtransportquantities.Theexponentdependsontheelectron-electroninteractionOUTLINEWhatisaFermiliquid,andwhytheFermiliquidconceptbreaksin1DTheTomonaga-LuttingermodelTheTL-HamiltoniananditsbosonizationDiagonalizationBosonicfieldsandelectronoperatorsLocaldensityofstatesTunnelingintoaLuttingerliquidLuttingerliquidwithasingleimpurityPhysicalrealizationsofLuttingerliquidsLITERATURE
K.FlensbergLecturenotesontheone-dimensionalelectrongasandthetheoryofLuttingerliquids
J.vonDelftandH.SchoellerBosonizationforbeginnersrefermionizationforexperts,cond-mat/9805275J.VoitOne-dimensionalFermiliquids,Rep.Prog.Phys.58,977(1995)H.J.Schulz,G.CunibertiandP.PieriFermiliquidsandLuttingerliquids,cond-mat/9807366SHORTLYABOUTFERMILIQUIDSLandau1957-1959Alsocollectiveexcitationsoccur(e.g.zerosound)atfiniteenergiesLowenergyexcitationsofasystemofinteractingparticlesdescribedintermsof``quasi-particles``(single-particleexcitations)Keypoint:quasi-particleshavesamequantumnumbersasthecorrespondingnon-interactingsystem(adiabaticcontinuity)StartfromappropriatenoninteractingsystemRenormalizationofasetofparameters(e.g.effectivemass)FERMILIQUIDSIIPauliexclusionprinciple
onlystateswithinkTaroundFermisphereavailablequasiparticlestatesnearFermispherescatteronlyweaklyQUASI-PARTICLEPICTUREISAPPLICABLEIN3DEffectofCoulombinteractionistoinduceafinitelife-timet3DFERMILIQUIDSIIIcollectiveexcitations(plasmons)single-particleexcitations12340132DISPERSIONOFEXCITATIONSIN3D0nointeractingT=0FinitejumpinmomentumdistributionZZquasi-particleweightLIFETIMEOF``QUASI-PARTICLES′′scatteringoutofstatekscatteringintostatekspinscreenedCoulombinteractionenergyconservationIn3Danintegrationoverangulardependencetakescareofd-functionFermi′sgoldenruleyieldsforthelifetimetT=0LIFETIMEOF``QUASI-PARTICLES′′IIIn1Dk,k′arescalars.Integrationoverk′yieldsWhataboutthelifetimetin1D?formally,itdivergesatsmallqbutwecaninsertasmallcut-offAtsmallTi.e.,thisratiocannotbemadearbitrarilysmallasin3DBREAKDOWNOFLANDAUTHEORYIN1D12340132DISPERSIONOFEXCITATIONSIN1D
collectiveexcitationsareplasmonswith(RPA)singleparticlegaplessplasmon
COLLECTIVEAND
SINGLE-PARTICLEEXCITATIONNONDISTINCT
nolongerdivergesat(noangularintegrationoverdirectionofasin3D)THETOMONAGA-LUTTINGERMODELEXACTLYSOLVABLEMODELFORINTERACTING1DELECTRONSATLOWENERGIESDispersionrelationislinearizednear(bothcollectiveandsingle-particleexcitationshavelineardispersion)ModelbecomesexactwhenlinearizedbranchesextendfromAssumptions:OnlysmallmomentaexchangesareincludedTOMONAGA-LUTTINGERHAMILTONIANFreepart
freepartinteraction
fermionicannihilation/creationoperatorsIntroducerightmoving
k>0,andleftmovingk<0electronsTLHAMILTONIANIIInteractions
freepartinteractionbackscatteringforwardumklappforwardBOSONIZATIONBOSONIZATION:EXPRESSFERMIONICHAMILTONIANINTERMSOFBOSONICOPERATORSconstructbosonicHamiltonianwiththesamespectrun(a)(b)(c)(d)(a)and(b)havesamespectrumbutdifferentgroundstateEXCITEDSTATECANBEWRITTENINTERMSOFCHARGEEXCITATIONS,ORBOSONICELECTRON-HOLEEXCITATIONSSTEP1WHICHOPERATORSDOTHEJOB?Introducethedensityoperators(createexcitationofmomentumq)andconsidertheircommutationrelations
nearlybosonic
commutationrelationsSTEP1:PROOFConsidere.g.algebraoffermionicoperatorsoccupationoperatorSTEP2ExaminenowBOSONIZEDHAMILTONIANSTATESCREATEDBYAREEIGENSTATESOFWITHENERGY
andinteractionsSTEP2:PROOFExample:STEP3IntroducethebosonicoperatorsyieldingDIAGONALIZATIONSPIN-CHARGESEPARATIONandinteraction(satisfyingSU2symmetry)Ifweincludespin,itgetsslightlymorecomplicated...andinterestingIntroducethespinandchargedensitiesHamiltoniandecoupleintwoindependentspinandchargeparts,withexcitationspropagatingwithvelocitiesSPACEREPRESENTATIONLongwavelengthlimit(interactions)AppropriatelinearcombinationsP,qofthefieldr(x)canbedefined.ThenonefindswhereLuttingerparameterg<1repulsiveinteractionBOSONICREPRESENTATIONOFYFermionicoperatorWheree.g.Expressyintheformofabosonicdisplacementoperator
B
from
decreasesthenumberofelectronsbyonedisplacesthebosonconfigurationforthatstateBOSONIZATIONIDENTITYifac-numberUladderoperator,qbosonicLOCALDENSITYOFSTATESi)Localdensityofstatesatx=0ndensityofstatesofnon-interactingsystematT=0ii)LocaldensityofstatesattheendofaLuttingerliquidatT=0cut-offenergyG
gammafunctionMEASURINGTHELDOS
Measurementofthelocaldensityofstatessystem1system2couplingIVbytunnelingSeee.g.carbonnanotubeexperimentbyBockrathetal.Nature,397,598(1999)MEASURINGTHELDOSIItunnelingrateitojTunnelingcurrentcanbeevaluatedbyuseofFermi′sgoldenruleconstant
LLtoLLLLtometalSINGLEIMPURITYAgaintunnelingcurrentcanbeevaluatedbyuseofFermi′sgoldenrule
endtoendWeaklinkx=0However,nowistunnelingfromtheendofaLLChargedensitywaveispinnedattheimpurityPHYSICALREALIZATIONS
SemiconductingquantumwiresEdgestatesinfractionalquantumHalleffectSingle-walledmetalliccarbonnanotubesEFEnergymetallic1Dconductorwith
2linearbandsk5.3強關(guān)聯(lián)體系窄能帶現(xiàn)象金屬與絕緣體之分:(1)能帶框架下的區(qū)分:導帶導帶價帶價帶(2)無序引起的Anderson轉(zhuǎn)變:局域態(tài)擴展態(tài)局域態(tài)局域態(tài)局域態(tài)擴展態(tài)EFEF(3)電子間關(guān)聯(lián)導致的Mott金屬-絕緣體轉(zhuǎn)變(a).MnO:5個3d未滿3d帶;O2-2p是滿帶不與3d能帶重疊能帶論MnO的3d帶將具有金屬導電性實際上,MnO是絕緣體!(b).ReO3:能帶論絕緣體。實際上是金屬。(c).一些過渡金屬氧化物當溫度升高時會從絕緣體金屬f電子或d電子波函數(shù)的分布范圍是否和近鄰產(chǎn)生重疊,是電子離域還是局域化的基本判據(jù)l殼層體積與Winger-Seitz元胞體積的比值:4f最小,5f次之,3d,4d,5d…多電子態(tài)的局域化強度的順序:4f>5f>3d>4d>5d______________能帶寬度上升另外,從左往右穿過周期表,部分填充殼層的半徑逐步降低,關(guān)聯(lián)重要性增加。4f,5f元素和3d,4d,5d元素的殼層體積與Winger-Seitz元胞體積的比值YScSmith和Kmetko準周期表窄帶區(qū)域重費米子強鐵磁性超導體離域性局域性另一類窄帶現(xiàn)象:來自能帶中的近自由電子與溶在晶格中具有3d,5f或4f殼層電子的溶質(zhì)原子相互作用
Friedel與Anderson稀土元素或過渡金屬化合物中的能隙不可能僅用“電荷轉(zhuǎn)移能”、“雜化能隙”、“有效庫侖相關(guān)能”三者之一來描述,而應(yīng)該說三者同時發(fā)揮作用。稀土化合物部分存在混價“mixedvalence”?;靸r的作用導致在Fermi面附近存在非常窄的能帶(部分填充f能帶或f能級),電子可以在4f能級和離域化能帶之間轉(zhuǎn)移,對固體基態(tài)性質(zhì)產(chǎn)生顯著影響。2.窄能帶現(xiàn)象的理論模型選擇經(jīng)驗參數(shù)的模型Hamilton量方法Hubbard模型和Anderson模型TheHubbardModelFromsimplequantummechanicstomany-particleinteractioninsolids-ashortintroductionHistoricalfactsHubbardModelwasfirstintroducedbyJohnHubbardin1963.WhowasHubbard?Hewasbornin1931anddied1980.Theoreticianinsolidstatephysics,fieldofwork:Electroncorrelationinelectrongasandsmallbandsystems.HeworkedattheA.E.R.E.,Harwell,U.K.,andattheIBMResearchLabs,SanJosé,USA.Picturetakenfrom:PhysicsToday,Vol.34,No4,1981What,ingeneral,istheHM?
Hubbardmodelisaquantumtheoreticalmodelformany-particleinteractioninandwithaperiodiclatticeItisbasedonaninteractionHamitonian,sometransformationsandassumptionstobeabletotreatcertainproblems(e.g.magneticbehaviourandphasetransitions)withsolidstatetheoryQuantummechanicsBasics:Schr?dingerequation
Expectationvalues
Orthonormalityandclosurerelation
Thebra-ketnotationBasistransformation,mathematicallyAbasistransformationcanbesimplyperformed:Anequationistransformedthesameway:SingleparticleequationsParticleinapotential:
Periodicpotentials:
Solutionforweakcouplingtopotential:
BlochwaveSingleparticleequationsDispersionrelationforfreeelectrons(dashedline):DispersionrelationforBlochelectrons(quasi-free)(solidline):Theenergiesat arenolongerdegenerated.Twoeigenenergiesatthosepoints.GraphfromGerdCzycholl,?TheoretischeFestk?rperphysik“,Vieweg-VerlagSingleparticleequationsWannierstatesproduceanorthonormalbaseoflocalizedstates;atomicwavefunctionswouldalsobelocalized,buttheyarenotorthonormal.Strongerlatticepotential:couplingtolatticepointsoccurs;amodifiedBlochwaveisused,e.g.WannierstatesresultingfromtheTight-Binding-Model:ComparisonbetweenthetwonewwavefunctionsBlochwavefunctionWannierwavefunction(w-part)GraphfromGerdCzycholl,?TheoretischeFestk?rperphysik“,Vieweg-VerlagGraphfromGerdCzycholl,?TheoretischeFestk?rperphysik“,Vieweg-VerlagWavefunctionformanyparticlesWavefunctionisnotsimplytheproductofallsingleparticlewavefunctions;ParticlescannotbedifferedFermionsmustobeyPauliprincipleAnsatz:SlaterdeterminanteSecondQuantizationforFermionsCreationanddistructionoperatorscreateordestroystates:SecondQuantizationTheoperatorsfulfillthecommutatorrelation:Thisisamust,otherwiseonewoulddisturbclosurerelationandorthonormalityofwavefunctionsdescribedbysecondquantizationHamiltonianformanyparticlesSummationoverallsingleparticlesHamiltonians+interactionHamiltonian:interactionpotentialuistherepulsiveCoulombinteractionOperatorsinsecondquantizationOperatorsinsecondquantizationHamiltonianinsecondquantizationIstransformedliketheone-particleoperatorA(1)andthetwo-particleoperatorA(2)HamiltonianinsecondquantizationNow:Matrixelement mustbedetermined.Herefore,awavefunctionhastobechosen.Example:Bloch-waveComingclosertoHubbard...EvaluationofmatrixelementswithWannierwavefunctions:FinalAssumptionsNow:onlydirectneighborinteractions,restrictiontooneband.Meaningofmatrixelementst:singleparticlehoppingU:Hubbard-U,describesonsite-CoulombinteractionV:Nearest-neighbor(density)interactionX:conditionalhoppinginteractionTheHubbardModelssimpleHubbardmodelextendedHubbardmodelandanycombinationofmatrixelements...Mott-Hubbardtransition,insulating(Mott)phaseCase1:Strongcoupling,U/t>>1:Mottinsulating
stateforahalf-filledsystem.Thedensityofstates(availablestatesforaddingorremovingparticle)consitsof
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度個人反擔保合同規(guī)范范本-設(shè)備租賃專用2篇
- 房地產(chǎn)市場調(diào)查與分析
- 2025年度鋼構(gòu)工程風險評估與控制合同
- 小學生數(shù)學思維能力的提升方法
- 金融市場的變化與對公客戶的應(yīng)對策略
- 二零二五年度蟲草產(chǎn)品研發(fā)與市場拓展合同4篇
- 二零二五年度蟲草收購與銷售一體化合同4篇
- 2025年度環(huán)保設(shè)施建設(shè)合同履行的環(huán)境治理擔保協(xié)議3篇
- 2025年度個人旅游預付款延期退還協(xié)議4篇
- 跨領(lǐng)域?qū)W生綜合素養(yǎng)提升的實踐探索
- 危險品倉儲危險廢物處置與管理考核試卷
- 2024版汽車融資擔保合同范本版B版
- 浙江寧波鎮(zhèn)海區(qū)2025屆中考生物對點突破模擬試卷含解析
- 湖南省長沙市2025年新高考適應(yīng)性考試生物學模擬試題(含答案)
- 工業(yè)自動化設(shè)備維護保養(yǎng)方案
- 《中醫(yī)心理學》課件
- envi二次開發(fā)素材包-idl培訓
- 2022年上海市初中語文課程終結(jié)性評價指南
- 醫(yī)院手術(shù)室醫(yī)院感染管理質(zhì)量督查評分表
- 心內(nèi)電生理導管及器械
- 保潔服務(wù)崗位檢查考核評分標準
評論
0/150
提交評論