![隔壁計(jì)量的-2015s簡(jiǎn)單多元回歸推斷之一_第1頁(yè)](http://file4.renrendoc.com/view/bef5c0d6f0f8c923d13899b4722d1375/bef5c0d6f0f8c923d13899b4722d13751.gif)
![隔壁計(jì)量的-2015s簡(jiǎn)單多元回歸推斷之一_第2頁(yè)](http://file4.renrendoc.com/view/bef5c0d6f0f8c923d13899b4722d1375/bef5c0d6f0f8c923d13899b4722d13752.gif)
![隔壁計(jì)量的-2015s簡(jiǎn)單多元回歸推斷之一_第3頁(yè)](http://file4.renrendoc.com/view/bef5c0d6f0f8c923d13899b4722d1375/bef5c0d6f0f8c923d13899b4722d13753.gif)
![隔壁計(jì)量的-2015s簡(jiǎn)單多元回歸推斷之一_第4頁(yè)](http://file4.renrendoc.com/view/bef5c0d6f0f8c923d13899b4722d1375/bef5c0d6f0f8c923d13899b4722d13754.gif)
![隔壁計(jì)量的-2015s簡(jiǎn)單多元回歸推斷之一_第5頁(yè)](http://file4.renrendoc.com/view/bef5c0d6f0f8c923d13899b4722d1375/bef5c0d6f0f8c923d13899b4722d13755.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
INTERMEDIATE簡(jiǎn)單多元回歸推國(guó)家發(fā)2015年ChapterOutline本章提SamplingDistributionsoftheOLSEstimatorsTestingHypothesisAboutaSinglePopulationParameter:Thettest單個(gè)總體參數(shù)的假設(shè)檢驗(yàn):t置信區(qū)TestingHypothesesAboutaSingleLinearCombinationoftheParameters參數(shù)線性組合的假設(shè)檢驗(yàn)(一維情形TestingMultipleLinearRestrictions:TheF多個(gè)線性約束的假設(shè)檢驗(yàn):F檢ReportingRegression 報(bào)告回歸結(jié) Lecture 本課提樣本分布CLMassumptionsandSamplingDistributionsoftheOLSEstimators經(jīng)典假設(shè)與OLS估計(jì)量的樣Backgroundreviewofhypothesis假設(shè)檢驗(yàn)的背景知One-sidedandtwo-sidedt單邊與雙邊t檢Calculatingthep計(jì)算p SamplingDistribution:Samplingdistributionsplayacentralroleinthedevelopmentofstatisticalandeconometricprocedures.抽樣分布在統(tǒng)計(jì)學(xué)和計(jì)量經(jīng)濟(jì)學(xué)發(fā)展中具 地Itistheprobabilitydistributionofanestimatoroverall 指一個(gè)估計(jì)量在其所有可能取值上的概Therearetwoapproachescharacteringsamplingdistributions:an“exact”approachandan“approximate”刻畫抽樣分布有兩種方式:“準(zhǔn)確”方 The“exact”approach:derivesaformulaforthedistributionthatholdsforanyvalueof“準(zhǔn)確”方式需要對(duì)任何n的取值都得到樣本分布的精這樣的分布被稱為準(zhǔn)確分布或者有限樣本分Forexample,ifyisnormallydistributed,andy1,y2,…,ynarei.i.d,thentheiraveragehasanexactdistributionofnormal例如,如果y服從正態(tài)分布,且y1,y2,…,yn獨(dú)立同分其均值恰好服從正態(tài) SamplingDistribution:theasymptoticThe“approximate”approachusesapproximationstothesamplingdistributionsthatrelyonthesamplesizebeinglarge.“近似”方式對(duì)樣本分布進(jìn)行大樣本下的近Theasymptoticdistribution:Thelargesampleapproximationtothesamplingdistribution.對(duì)樣本分布的大樣本近似常稱為Theasymptoticdistributionscanbecountedontoprovidegoodapproximationstotheexactsamplingdistribution,aslongasthesamplesizeis只要樣本量足夠大,漸近分布就是對(duì)準(zhǔn)確分布的很好 似 SamplingDistribution:theasymptoticTwokeytools:thelawoflargenumbers(LLN),andthecentrallimittheorem(CLT).兩個(gè)重要工具:大數(shù)定律,中心極限定Whythesetwotheoremsareimportant?Mostestimatorsencounteredinstatisticsandeconometricscanbewrittenasfunctionsofsampleaverages,hencecanapplythesetwotheoremtogettheasymptoticdistribution.ComebacktotheminChapter SamplingDistributionofOLSEstimatorsWehavediscussedtheexpectedvalueandvariancesoftheOLSestimators,buttoperformstatisticalinference,wewishtoknowthesamplingdistribution.ThesamplingdistributionsoftheOLSestimatorsdependontheunderlyingdistributionoftheerrors. 抽樣在實(shí)證使用中的1936起:社會(huì)可以通過選取部分有代表性的樣本完成。從發(fā)源,政治、商業(yè);之后1824-19361895,挪威國(guó) ,AndersNiscolai1936:GeorgeGallopLiteraryDigest240萬(wàn)vs.GonewiththeWind AssumptionMLR.6假定MLR.6(正態(tài)Sofar,weknowthatgiventheGauss-assumptions,OLSisGsaAnadditionalassumptionneededforclassicalhypothesis為了進(jìn)行經(jīng)典假設(shè)檢驗(yàn),需要增加一個(gè)AssumptionMLR.6(Normality):Assumethatuiswithzeromeanandvariance2:u~Normal(0,2)假定MLR.6(正態(tài)):假設(shè)u與x1,x2,…,xk獨(dú)立,且u服 TheNormalDistribution(TheGaussianDistribution) CLMWhatdoweassumewhennormalityoftheerrortermassumptionisinvoked?Onecanconsideruasthesumofmanydifferentunobservedfactorsaffectingy,hencecaninvoketheCLTtoconcludethatuhasanapproximatenormalItassumesthatallunobservedfactorsaffectyinaseparate,additivefashion.Strong.Toberelaxedwhenlargesampleis CLM經(jīng)典線性模型Classicallinearmodel(CLM)assumptions:AssumptionsMLR.1–MLR.6.假定MLR.1-MLR.6被稱為經(jīng)典線性模SummarizethepopulationassumptionsofCLMasy|x~Normal(0+1x1+…+kxk,Minimumvarianceunbiasedestimator:UnderCLM,OLSisnotonlyBLUE,butalsoMVUE–theOLSestimatorgivesthesmallestvarianceamongallunbiasedestimators.OLSBEO估計(jì)量具有 Theorem4.1NormalSamplingUndertheCLMassumptions,conditionalonthesamplevaluesβj~Normalβj,Varj,whereVarj
SST(1-R2) jjsd~Normaljjsd~Normal
j?在CLM假設(shè)下,條件于解釋變量的樣本值有?j~
,
jj
-
sd
~Normalj?服從正態(tài)分布,因?yàn)樗钦`差的線性組j BriefProofofTheorem證明提E(?Var(??isnormallydistributed,Theorem4.1isprovedafterstandardization.Weshownthatthefollowingrelationholds
i
(β+β
+...+β
+u
1
where?ijistheresidualfromregressingxjontherestofE(?Var(?? 經(jīng)過標(biāo)準(zhǔn)化,定理4.1得證。我們已經(jīng)證明一下關(guān)系成
ij
(β+β
+...+β
+u
1
ij BriefProofofTheorem證明提,2?+? ,2r?ijxm=0,m=1,...,j-1,j+1,...,kweget?
=βj+
ij?2
+? r?ijxm=0,m=1,...,j-1,j+,,,?
=βj+
?
BriefProofofTheorem證明提
?ij?2
?
ij
ij?j
Theorem4.1NormalSampling定理4.1正態(tài)樣本分Theorem4.1canbeextended.Anylinearcombinationsof?0,?1,...,?kisalsonormallydistributed,andany1subsetof?0,?,...,?1hasajointnormal可以擴(kuò)展定理4.1?0,?1,...,?k的任意線性組合服從正態(tài)分布?0?1,...,?k任意子集服從聯(lián)合正態(tài)分布。Wewillusethesefactsinhypothesis利用這些事實(shí)來進(jìn)行假設(shè) TestingHypothesesaboutaSingleConsiderapopulationy01x1...kxkwhichsatisfiestheCLMWenowstudyhowtotesthypothesesabouta考慮總體中滿足CLM假定的模y01x1...kxk我們現(xiàn)在研究如何對(duì)一個(gè)特定的j進(jìn)行假設(shè)檢 Background背景知識(shí)回Thehypothesistobetestedisthenull被檢驗(yàn)的假設(shè)稱為零Hypothesistestingentailsusigdatatocomparethenullhypothesiswithasecondhypothesis,i.e.,the假設(shè)檢驗(yàn)利用數(shù)據(jù)將零假設(shè)和另一個(gè)假設(shè)替代假設(shè) Background背景知識(shí)回Thealternativehypothesisspecifieswhatistrueifthenullhypothesisisnot.替代假設(shè)給出在零假設(shè)不成立時(shí),什么才是正確Goal:usetheevidenceinarandomlyselectedsampleofdatatodecidewhethertorejectthenullhypothesis. Background背景知識(shí)Twokindsofmistakesarepossibleinhypothesis在假設(shè)檢驗(yàn)中存在兩種可能的錯(cuò)TypeIerror:rejectthenullhypothesiswhenitinfacttrue.第一類錯(cuò)誤:當(dāng)零假設(shè)為真 零假設(shè)(棄真TypeIIerror:failtorejectthenullwhenitisactuallyfalse.第二類錯(cuò)誤:當(dāng)零假設(shè)為假時(shí)未 Background背景知識(shí)回HypothesistestingrulesareconstructedtomaketheprobabilityofcommittingtypeIerrorfairlysmall.非常小。TypeIerror.一個(gè)檢驗(yàn)的顯著性水平是發(fā)生第一類錯(cuò)Commonlyspecifiedsignificancelevels:0.1,0.05,0.01.Ifitequals0.05,itmeanstheresearcheriswillingtofalselyrejectthenullat5%ofthetime.通常設(shè)定的顯性為:01,5,1。果為5意味著研究者愿在%的檢中錯(cuò)地 零設(shè)。 Background背景知識(shí)回Thecriticalvalueofateststatisticisthevalueofthestatisticforwhichthetestjustrejectthenullhypothesisatthegivensignificancelevel.檢驗(yàn)統(tǒng)計(jì)量的臨界值是使得零的統(tǒng)計(jì)量的Thesetofvaluesoftheteststatisticforwhichthetestrejectsthenullistherejectionregion,andthevaluesoftheteststatisticforwhichitdoesnotrejectthenullistheacceptanceregion.假設(shè)檢驗(yàn)中,使得零假設(shè) 的檢驗(yàn)統(tǒng)計(jì)量的取值范圍稱域,使得零假設(shè)不能 的檢驗(yàn)統(tǒng)計(jì)量的取值范圍成 BackgroundTheprobabilitythatatestactuallyincorrectlyrejectsthenullhypothesiswhenthenullistrueisthesizeofthetest. Theprobabilitythatatestcorrectlyrejectsthenullwhenthealternativeistrueisthepowerofthetest. Background背景知識(shí)Ateststatistic(T)issomefunctionoftherandomsample.Whenwecomputethestatisticforaparticularsample,weobtainan oftheteststatistic(t). Theorem4.2tDistributionfortheStandardized定理4.2:標(biāo)準(zhǔn)化估計(jì)量的t分
jsej
?jjjj
? Thet Knowingthesamplingdistributionforthestandardizedestimatorallowsustocarryouthypothesistests知道標(biāo)準(zhǔn)化估計(jì)量的樣本分布后,便可以進(jìn)行Startwithanullhypothesis,e.g.,H0:由零假設(shè)出H0:Ifwedonotrejectthenull,thenwedonotrejectthathasnopartialeffectony,aftercontrollingforother ThetTestjToperformourtestwefirstneedtoform"the"tstatisticfor?j?? ?
sejWewillthenuseourtstatisticalongwitharejectionruledeterminewhethertoacceptthenullhypothesis,為了進(jìn)行檢驗(yàn),我們首先要構(gòu)造j
的t? ?
sej ThetTestThet measureshowmanyjdeviatioj ?isawayfromjt統(tǒng)計(jì)量t?度量了估?相對(duì)0偏離了標(biāo)準(zhǔn)差。 jItssignisthesame j它的符號(hào)與?jNoticewearetestinghypothesesaboutthepopulationparameters,nottestinghypothesesabouttheestimatesfromaparticularsample. tTest:One-Sided Besidesournull,H0,weneedanalternativehypothesis,H1,andasignificancelevelH1maybeone-sided,ortwo-H1:bj>0andH1:bj<0areone-H1bj0是雙邊替代 Ifwewanttohaveonlya5%probabilityofrejectingH0ifitisreallytrue,thenwesayoursignificancelevelis5% One-SidedAlternatives單邊替代假 Havingpickedasignificancelevel,,welookupthe(1–)thpercentileinatdistributionwithn–k–1degreeoffreedomandcallthisc,thecriticalvalue.取定顯著性水平后,找到自由度為n–k–1的 One-SidedAlternativesBecausetdistributionisIfH0:bj=0versusH1:bj>werejectH0iftbj>c,failtorejectH0iftbjIfH0:bj=0versusH1:bjwerejectH0iftbj<-c,failstorejectH0iftbj≥- One-SidedAlternatives單邊替代假yi=0+1xi1+…+kxik+H0:j= H1:j>Failto Thetdistributionversusnormalt分布與正態(tài)Noticethatasthedegreeoffreedominthetdistributiongetslarge,thetdistributionapproachesthestandardnormal Example:StudentPerformanceandSchool例子:學(xué)生表現(xiàn)與學(xué)校Question:DoeslargerclasssizeresultsinpoorerstudentUse408highschoolsinMichiganforyear1993,performthefollowingregression:應(yīng) ^math10=2.274 p+0.048staff– math10:percentageofstudentspassingtheMEAPstandardized10mathp:averageannualteacher’sstaff:#ofstaffper1000enroll:student Example:StudentPerformanceandSchool例子:學(xué)生表H0:βenroll=0versusH1Computethett=-0.0002/0.00022=-Sincen-k-1=404,weusethestandardnormalcriticalvalue.Atthe5%level,thecriticalvalueis–1.65.由于--144Because-0.91>–1.65,wefailtorejectthe由于-0.91>-1.65,我們不 零假 Example:StudentPerformanceandSchool例子:學(xué)生表現(xiàn)與學(xué)校規(guī)Whetherbetter-paidteachersleadstobetterstudentperformance?WecantestH0 p=0versusH1 Thecalculatedtstatisticequals4.6.Since4.6>2.326,thereforerejectingtheH0at1%level.算得t統(tǒng)計(jì)量為4.6。因?yàn)?.6>2.326,在1%顯著性水平 TheTwo-sidedH1:j0isatwo-sidedalternative.Underthisalternative,wehavenotspecifiedthesignofthepartialeffectofxjony.規(guī)定xj對(duì)y影響的符號(hào)。Foratwo-sidedtest,wesetthecriticalvaluebasedc.cisthe97.5thpercentileinthetdistributionwithn-k-1degreesoffreedomif 零假設(shè)。當(dāng)時(shí),c是n-k-1 自由度的t分布的97.5分位數(shù) Two-Sided雙邊替代yi=0+1Xi1+…+kXik+H0:j= H1:j≠failto-
0
c ExampleStudentPerformanceandSchoolSize例:Whetherthenumberofteachershasimpactsonstudentperformance?教師數(shù)目會(huì)對(duì)學(xué)生表現(xiàn)產(chǎn)生影響^math10=2.274 p+0.048staff– Canformhypothesesof:H0:staff=0,H1:≠構(gòu)造如下檢驗(yàn):H0staff0H1staffThecalculatedtratiois1.2The5%criticalvalueofstandardnormalis1.96.Since1.2<1.96,wefailtorejectthenull。算得t值為。準(zhǔn)正分布著性平下臨為我們能 零假。 SummaryforH0:j= Unlessotherwisestated,thealternativeisassumedtobe除非特 ,我們總認(rèn)為替代假設(shè)是雙邊 Ifwerejectthenull,wetypicallysay“xjisstatisticallysignificantatthe%level”如 了零假設(shè),我們通常說“xj在%水平下顯著 Ifwefailtorejectthenull,wetypicallysay“xjisstatisticallyinsignificantatthe%level” TestingotherAmoregeneralformofthetstatisticrecognizesthatwemaywanttotestsomethinglikeH0:j=aj如果我們想對(duì)形如H0:j=aj的假設(shè)進(jìn)行檢驗(yàn),需要Inthiscase,theappropriatetstatistic此時(shí),恰當(dāng)?shù)膖統(tǒng)計(jì)量jjt
se
0forthestandard當(dāng)進(jìn)行標(biāo)準(zhǔn)檢驗(yàn)時(shí)aj Example:CampusCrimeand例子:校 與錄Question:Will1%increaseinenrollmentincreasecampuscrimebymorethan1%?問題:錄取量提高1%是否會(huì)導(dǎo)致校 增加超過Supposetotalnumberofcrimesisdetermined假 總數(shù)由下式?jīng)Qcrime=exp()·enroll1·Onecan可以估log(crime)=+ Example:CampusCrimeand例子:校 與錄AndtestH0:1=1v.sH1:1>UsingdatafromtheFBI’suniformCrimereports(97observations),theestimatedequationis利用 報(bào)告(97個(gè)觀察值)的數(shù)據(jù),估計(jì)得到方log(crime)=-6.63+ Thecorrecttratio=(1.27-1)/0.11=2.45.The1%one-sidedcriticalvalueforatdistributionwith95degreesoffreedomis2.37,Since2.37<2.45,rejectthenull.t值=(1.27-1)/0.11=2.45。對(duì)于95自由度的t分布,1%顯著水平下單邊檢驗(yàn)的臨界值為2.37。因?yàn)?.37<2.45,零假 Computingp-valuesfort計(jì)算t檢驗(yàn)的pThestepsinclassicalhypothesis經(jīng)典假設(shè)檢驗(yàn)的Statethenullandthealternative表述零假設(shè)和替代DecideasignificancelevelandfindthecriticalCalculatethetstatisticbasedonthesampletComparethetstatisticwiththecriticalvaluetodecidewhethertorejectthenull比較t值與臨界值,決定是 零假設(shè) Computingp-valuesfort計(jì)算t檢驗(yàn)的pSupposeat40degreesoffreedom,acalculatedtratiois2
溫馨提示
- 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度智能教室建設(shè)教學(xué)器材采購(gòu)合同范本
- 2025年度文化旅游工程項(xiàng)目入股合同范本
- 2025年度建筑工程居間合同法律適用范本
- 鄂爾多斯2024年內(nèi)蒙古鄂爾多斯市東勝區(qū)衛(wèi)生健康系統(tǒng)事業(yè)單位招聘11人筆試歷年參考題庫(kù)附帶答案詳解
- 遼源2025年吉林遼源市事業(yè)單位碩博人才專項(xiàng)招聘228人筆試歷年參考題庫(kù)附帶答案詳解
- 綿陽(yáng)四川綿陽(yáng)平武縣鄉(xiāng)鎮(zhèn)事業(yè)單位從“大學(xué)生志愿服務(wù)西部”項(xiàng)目人員中招聘3人筆試歷年參考題庫(kù)附帶答案詳解
- 綿陽(yáng)四川綿陽(yáng)鹽亭縣招聘社區(qū)工作者25人筆試歷年參考題庫(kù)附帶答案詳解
- 綿陽(yáng)2025上半年四川綿陽(yáng)江油市考調(diào)教師10人筆試歷年參考題庫(kù)附帶答案詳解
- 濰坊山東濰坊壽光市營(yíng)里中心衛(wèi)生院招聘9人筆試歷年參考題庫(kù)附帶答案詳解
- ???025年海南??谑旋埲A區(qū)面向本科及以上學(xué)歷應(yīng)屆生招聘教師120人筆試歷年參考題庫(kù)附帶答案詳解
- 【課件】九年級(jí)化學(xué)下冊(cè)(人教版2024)-【新教材解讀】義務(wù)教育教材內(nèi)容解讀課件
- GA/T 761-2024停車庫(kù)(場(chǎng))安全管理系統(tǒng)技術(shù)要求
- 2025年部編教材的網(wǎng)絡(luò)培訓(xùn)心得體會(huì)
- 2025屆貴州省六盤水市第二中學(xué)高三適應(yīng)性調(diào)研考試數(shù)學(xué)試題含解析
- 浙江省五校鎮(zhèn)海中學(xué)2025屆高考考前模擬數(shù)學(xué)試題含解析
- 《化工安全技術(shù)》教學(xué)設(shè)計(jì)(教學(xué)教案)
- 2024小學(xué)語(yǔ)文新教材培訓(xùn):一年級(jí)語(yǔ)文教材的修訂思路和主要變化
- 2024-2025學(xué)年度高三年級(jí)11月聯(lián)考試題及答案
- 北師大版小學(xué)二年級(jí)數(shù)學(xué)上冊(cè)期末試卷共9套-完整版
- 大學(xué)生創(chuàng)新創(chuàng)業(yè)基礎(chǔ)(創(chuàng)新創(chuàng)業(yè)課程)完整全套教學(xué)課件
- 數(shù) 學(xué)2024-2025學(xué)年人教版七年級(jí)數(shù)學(xué)上冊(cè)有理數(shù)混合運(yùn)算100題
評(píng)論
0/150
提交評(píng)論