統(tǒng)計(jì)學(xué) 費(fèi)宇 石磊課件第5章方差分析_第1頁(yè)
統(tǒng)計(jì)學(xué) 費(fèi)宇 石磊課件第5章方差分析_第2頁(yè)
統(tǒng)計(jì)學(xué) 費(fèi)宇 石磊課件第5章方差分析_第3頁(yè)
統(tǒng)計(jì)學(xué) 費(fèi)宇 石磊課件第5章方差分析_第4頁(yè)
統(tǒng)計(jì)學(xué) 費(fèi)宇 石磊課件第5章方差分析_第5頁(yè)
已閱讀5頁(yè),還剩66頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

第五章方差分析2/11/20231《統(tǒng)計(jì)學(xué)》第5章方差分析

方差分析是統(tǒng)計(jì)檢驗(yàn)的一種。由英國(guó)著名統(tǒng)計(jì)學(xué)家:R.A.FISHER推導(dǎo)出來的,也叫F檢驗(yàn)。用于分析試驗(yàn)數(shù)據(jù)中各個(gè)因素對(duì)試驗(yàn)指標(biāo)值影響顯著程度的一種統(tǒng)計(jì)方法。2/11/20232《統(tǒng)計(jì)學(xué)》第5章方差分析主要內(nèi)容1.1方差分析的思想及基本概念1.2單因素方差分析1.3雙因素方差分析2/11/20233《統(tǒng)計(jì)學(xué)》第5章方差分析5.1方差分析的思想及基本概念

方差分析(analysisofvariance,簡(jiǎn)記為ANOVA)的主要思想是將影響指標(biāo)值的一個(gè)或幾個(gè)因素取不同的水平,然后建立相應(yīng)的方差分析模型,由此給出檢驗(yàn)因素的不同水平對(duì)指標(biāo)值是否有顯著影響的統(tǒng)計(jì)分析過程。2/11/20234《統(tǒng)計(jì)學(xué)》第5章方差分析方差分析的基本概念

因變量(dependentvariable)

:也稱為響應(yīng)變量(responsevariable)或指標(biāo)值,它是指在我們?cè)谘芯繂栴}中最感興趣的測(cè)量指標(biāo)。

因素(factor):也稱為自變量,是指那些可能對(duì)指標(biāo)值產(chǎn)生影響的變量。

水平(level):因素的不同取值也稱為“處理”(treatment)。2/11/20235《統(tǒng)計(jì)學(xué)》第5章方差分析5.2單因素方差分析5.2.1單因素方差分析的數(shù)據(jù)結(jié)構(gòu)

在單因素方差分析中,記因素為,其有個(gè)水平,指標(biāo)值在因素的第水平上等重復(fù)的取個(gè)數(shù)值,

第個(gè)重復(fù)觀測(cè)值為,

,則數(shù)據(jù)結(jié)構(gòu)可寫為:2/11/20236《統(tǒng)計(jì)學(xué)》第5章方差分析表5.1單因素方差分析數(shù)據(jù)2/11/20237《統(tǒng)計(jì)學(xué)》第5章方差分析5.2.2單因素方差分析的統(tǒng)計(jì)模型

在表5.1中,假設(shè)不同水平上觀測(cè)數(shù)據(jù)相互獨(dú)立,同一水平中,n個(gè)重復(fù)觀測(cè)數(shù)據(jù)也相互獨(dú)立,具有常數(shù)方差。描述方差分析的統(tǒng)計(jì)模型為:其中,表示因素表示隨機(jī)誤差。且

第表示觀測(cè)指標(biāo)值的總平均,水平上的主效應(yīng),滿足約束條件。

(5.1),2/11/20238《統(tǒng)計(jì)學(xué)》第5章方差分析利用最小二乘估計(jì)理論,可以得到模型(5.1)參數(shù)的估計(jì)如下:其中為數(shù)據(jù)的總平均,為數(shù)據(jù)表中的行平均。2/11/20239《統(tǒng)計(jì)學(xué)》第5章方差分析5.2.3單因素方差分析檢驗(yàn)過程和方差分析表因素對(duì)試驗(yàn)結(jié)果的影響,可以表述為

(5.2)對(duì)如下假設(shè)問題的檢驗(yàn),該假設(shè)的檢驗(yàn)可以通過平方和分解得到。2/11/202310《統(tǒng)計(jì)學(xué)》第5章方差分析總平方和的分解組間平方和總平方和組內(nèi)平方和2/11/202311《統(tǒng)計(jì)學(xué)》第5章方差分析

總平方和:

所有測(cè)量值之間總的變異程度,計(jì)算公式自由度2/11/202312《統(tǒng)計(jì)學(xué)》第5章方差分析

組間平方和:各組均數(shù)與總均數(shù)的差值的平方和,計(jì)算公式為自由度2/11/202313《統(tǒng)計(jì)學(xué)》第5章方差分析

組內(nèi)平方和:用各組內(nèi)各測(cè)量值Yij與其所在組的均數(shù)差值的平方和來表示,反映隨機(jī)誤差的影響。計(jì)算公式為自由度2/11/202314《統(tǒng)計(jì)學(xué)》第5章方差分析三種“平方和”之間的關(guān)系平方和分解:2/11/202315《統(tǒng)計(jì)學(xué)》第5章方差分析

由于上述幾種平方和的數(shù)值受到樣本量和水平數(shù)的影響,一種更為科學(xué)的方法是將各部分平方和除以相應(yīng)自由度,其比值稱為均方和,簡(jiǎn)稱均方(meansquare,MS),即上式中分母的數(shù)值為對(duì)應(yīng)平方和的自由度。2/11/202316《統(tǒng)計(jì)學(xué)》第5章方差分析

,則拒絕零假設(shè),即認(rèn)為因素對(duì)指標(biāo)值(或試驗(yàn)結(jié)果)有顯著影響,否則認(rèn)統(tǒng)計(jì)量的數(shù)值大于對(duì)給定置信水平,沒有顯著影響。為因素為了檢驗(yàn),定義F統(tǒng)計(jì)量2/11/202317《統(tǒng)計(jì)學(xué)》第5章方差分析α接受域

拒絕域2/11/202318《統(tǒng)計(jì)學(xué)》第5章方差分析將上述主要結(jié)果總結(jié)成一個(gè)表格,稱為方差分析表,可以直觀反映方差分析的計(jì)算及檢驗(yàn)過程。表5.2單因素方差分析表2/11/202319《統(tǒng)計(jì)學(xué)》第5章方差分析

【例5.1】(方差分析,數(shù)據(jù)文件example5.0)在0.05的置信水平下,研究例5.0表的試驗(yàn)中咖啡因用量是否對(duì)人體神經(jīng)功能有顯著影響,并說明在那些水平上他們有顯著差異?2/11/202320《統(tǒng)計(jì)學(xué)》第5章方差分析

解:用SPSS打開數(shù)據(jù)文件,選擇AnalyzeComparemeansOne-wayANOVA,將因變量選入到Dependentlist中,將因素A選入到Factor中,點(diǎn)擊進(jìn)入Option對(duì)話框,

在Statistics下選擇Homogeneityofvariancetest,最后點(diǎn)擊ContinueOk,輸出表5.3和表5.4兩個(gè)表格。

2/11/202321《統(tǒng)計(jì)學(xué)》第5章方差分析表5.3咖啡因用量實(shí)驗(yàn)的方差一致性檢驗(yàn)表5.4咖啡因用量實(shí)驗(yàn)的方差分析表輸出結(jié)果2/11/202322《統(tǒng)計(jì)學(xué)》第5章方差分析

表5.3給出了對(duì)樣本方差齊性的檢驗(yàn),檢驗(yàn)的p-值(即表中的Sig.)為0.749大于置信水平0.05,因此不能拒絕方差齊性的假設(shè),即認(rèn)為各水平樣本方式是常數(shù),滿足我們的假設(shè)。表5.4給出了單因素方差分析表,說明咖啡因服用量對(duì)人體神經(jīng)功能有顯著影響。

2/11/202323《統(tǒng)計(jì)學(xué)》第5章方差分析5.2.4多重比較

1、多個(gè)總體的差異性檢驗(yàn)

事實(shí)上表5.1中不同水平的觀測(cè)可以看成是來自不同總體的觀測(cè)數(shù)據(jù)。假設(shè)第個(gè)總體有個(gè)樣本(對(duì)應(yīng)于表5.1中的第個(gè)水平的次重復(fù)觀測(cè)),

他們?yōu)閬碜缘趥€(gè)總體的獨(dú)立樣本。2/11/202324《統(tǒng)計(jì)學(xué)》第5章方差分析多個(gè)總體是否存在差異的假設(shè)問題可以表述為:

,而該檢驗(yàn)當(dāng)統(tǒng)計(jì)量的數(shù)值大于

一節(jié)的方差分析法,與(5.2)中的假設(shè)是等價(jià)的。

因此,利用上其臨界值

時(shí),我們認(rèn)為

個(gè)總體存在顯著差異。2/11/202325《統(tǒng)計(jì)學(xué)》第5章方差分析2、多重比較不拒絕H0,表示拒絕總體均值相等的證據(jù)不足

————>分析終止。拒絕H0,接受H1,表示總體均值不全相等哪兩兩均數(shù)之間相等?哪兩兩均數(shù)之間不等?

————>需要進(jìn)一步作多重比較。2/11/202326《統(tǒng)計(jì)學(xué)》第5章方差分析一種使用比較多的是所有成對(duì)假設(shè),形成如下的假設(shè)問題:注意到與是等價(jià)的。因此

該假設(shè)中共有個(gè)不同的成對(duì)比較。

(5.7)

2/11/202327《統(tǒng)計(jì)學(xué)》第5章方差分析多重比較的特點(diǎn)是它同時(shí)對(duì)多個(gè)成對(duì)假設(shè)進(jìn)行比較。多種比較的思想有兩種,一是尋找每一個(gè)成對(duì)假設(shè)的檢驗(yàn)統(tǒng)計(jì)量,給出檢驗(yàn)臨界值,通過比較界定顯著程度;二是使用同時(shí)置信區(qū)間(simultaneousconfidenceinterval)的概念。

多重比較有許多種方法,使用比較多的包括Fisher的LSD方法,Turkey方法,Bonferroni方法等。我們下面通過實(shí)例來說明在SPSS下如何進(jìn)行多重比較。2/11/202328《統(tǒng)計(jì)學(xué)》第5章方差分析

【例5.2】(多重比較,數(shù)據(jù)文example5.0)在0.05的置信水平下,例5.0的試驗(yàn)中咖啡因用量在那些水平上有顯著差異?2/11/202329《統(tǒng)計(jì)學(xué)》第5章方差分析

解:用SPSS打開數(shù)據(jù)文件,選擇Analyze表5.5的結(jié)果。

選入到Dependentlist中,將因素A選入到Factor中,點(diǎn)擊進(jìn)入PostHoc…,進(jìn)入后在EqualVarianceAssumed(假設(shè)方差齊性)下選定Turkey,LSD和Bonferroni選項(xiàng),點(diǎn)擊ContinueOk,可以得到ComparemeansOne-wayANOVA,將因變量2/11/202330《統(tǒng)計(jì)學(xué)》第5章方差分析表5.5咖啡因用量實(shí)驗(yàn)的多重比輸出結(jié)果2/11/202331《統(tǒng)計(jì)學(xué)》第5章方差分析

這里我們選用三種方法,輸出結(jié)果給出了基于這三種方法下的多重比較結(jié)果,包括研究統(tǒng)計(jì)量及其p-值和95%的同時(shí)置信區(qū)間。三種方法的結(jié)果是一致的。從檢驗(yàn)統(tǒng)計(jì)量的p-值可以看出咖啡因劑量在0mg水平與200mg水平上有顯著差異(p-值<0.05),但在0mg水平與100mg水平和100mg水平與200mg水平之間沒有顯著差異。從同時(shí)置信區(qū)間也可以發(fā)現(xiàn),成對(duì)比較差異顯著時(shí),其對(duì)應(yīng)的同時(shí)置信區(qū)間不包含0。此外0mg-200mg與200mg-0mg的比較的檢驗(yàn)結(jié)果是一致的,但其同時(shí)置信區(qū)間的上下限要互換。2/11/202332《統(tǒng)計(jì)學(xué)》第5章方差分析5.3

雙因素方差分析5.3.1雙因素方差分析的數(shù)據(jù)結(jié)構(gòu)

假設(shè)除了5.2節(jié)介紹的因素之外,還有一可能對(duì)指標(biāo)產(chǎn)生影響。假設(shè)因素有個(gè)水平,這樣因素就有組合。假設(shè)在每一個(gè)水平組合上進(jìn)行相等重復(fù)數(shù)的觀測(cè),稱之為等重復(fù)試驗(yàn),本節(jié)主要研究等重復(fù)試驗(yàn)數(shù)據(jù)的雙因素方差分析。雙因素方差分析模型的數(shù)據(jù)結(jié)構(gòu)如下:個(gè)因素和個(gè)水平2/11/202333《統(tǒng)計(jì)學(xué)》第5章方差分析表5.6雙因素方差分析數(shù)據(jù)2/11/202334《統(tǒng)計(jì)學(xué)》第5章方差分析其中表示在因素的第個(gè)水平和因素的第個(gè)水平上進(jìn)行的第次重復(fù)觀測(cè)結(jié)果。5.3.2有可加效應(yīng)的雙因素方差分析1.模型結(jié)構(gòu)假設(shè)不同水平上觀測(cè)數(shù)據(jù)相互獨(dú)立,同一水平中,n個(gè)重復(fù)觀測(cè)數(shù)據(jù)也相互獨(dú)立,具有

2/11/202335《統(tǒng)計(jì)學(xué)》第5章方差分析常數(shù)方差

效應(yīng)的情況,此時(shí)雙因素方差分析模型表述為:。先考慮可加效應(yīng)模型,即沒有交互

(5.8)其中,表示觀

測(cè)指標(biāo)值的總平均,

表示因素第水平上的主效應(yīng),

表示因素第水平上的主效應(yīng),

表示隨機(jī)誤差。

且,。2/11/202336《統(tǒng)計(jì)學(xué)》第5章方差分析利用最小二乘估計(jì)理論,可以得到模型(5.8)中參數(shù)的估計(jì)如下:其中2/11/202337《統(tǒng)計(jì)學(xué)》第5章方差分析2.方差分解

對(duì)雙因素方差模型,將涉及兩個(gè)因素主效應(yīng)的檢驗(yàn)。因素的顯著性假設(shè)為:

而對(duì)因素,顯著性假設(shè)為2/11/202338《統(tǒng)計(jì)學(xué)》第5章方差分析仿單因素方差分析的方法,考察總平方和可分解為:2/11/202339《統(tǒng)計(jì)學(xué)》第5章方差分析稱為因素A的離差平方和,反映因素A對(duì)試驗(yàn)指標(biāo)的影響。稱為因素B的離差平方和,反映因素B對(duì)試驗(yàn)指標(biāo)的影響。2/11/202340《統(tǒng)計(jì)學(xué)》第5章方差分析消除自由度的影響后,定義均方和如下:上式中分母的數(shù)值為對(duì)應(yīng)平方和的自由度。自由度數(shù)值也滿足分解等式。稱為誤差平方和,反映試驗(yàn)誤差對(duì)試驗(yàn)指標(biāo)的影響。2/11/202341《統(tǒng)計(jì)學(xué)》第5章方差分析為了給出假設(shè)問題和的檢驗(yàn)過程,

定義如下兩個(gè)統(tǒng)計(jì)量:

(5.12)

(5.13)

2/11/202342《統(tǒng)計(jì)學(xué)》第5章方差分析可以證明,當(dāng)成立時(shí),

當(dāng)成立時(shí),

2/11/202343《統(tǒng)計(jì)學(xué)》第5章方差分析時(shí),當(dāng)對(duì)給定的檢驗(yàn)水平,拒絕,即認(rèn)為因素A對(duì)指標(biāo)值有顯著影響。時(shí),當(dāng)拒絕,即認(rèn)為因素B對(duì)指標(biāo)值有顯著影響。F右側(cè)檢驗(yàn)2/11/202344《統(tǒng)計(jì)學(xué)》第5章方差分析

【例5.5】(兩因素可加效應(yīng)模型,數(shù)據(jù)文件example5.5)有四種品牌(brand)的飲料在四個(gè)地區(qū)(district)銷售,在每一個(gè)地區(qū)對(duì)每一種品牌的飲料銷售量觀測(cè)兩次(上半年一次,下半年一次)得到數(shù)據(jù)如表5.7所示。在0.05的置信水平下,問品牌及地區(qū)對(duì)飲料的銷售量是否有顯著影響?

2/11/202345《統(tǒng)計(jì)學(xué)》第5章方差分析表5.7飲料品牌及銷售數(shù)據(jù)2/11/202346《統(tǒng)計(jì)學(xué)》第5章方差分析解:用SPSS打開數(shù)據(jù)文件,選擇AnalysisGeneralizedlinearmodel

Univariate,

將因變量選入到Dependentvariable中,

將brand和district兩個(gè)因素選入到Fixedfactor中,

點(diǎn)擊Model,然后選擇Custom(這樣是模型中不包括交互效應(yīng)),在Buildterm中選擇Maineffects,

再把brand和district

出如表5.8的結(jié)果。

選入Model,

選擇Includeinterceptinmodel

,以確定模型中包含常數(shù)項(xiàng),最后點(diǎn)擊ContinueOk

,輸

2/11/202347《統(tǒng)計(jì)學(xué)》第5章方差分析表5.8

飲料品牌及銷售數(shù)據(jù)的方差分析表2/11/202348《統(tǒng)計(jì)學(xué)》第5章方差分析

在表5.8中,輸出結(jié)果沒有交互效應(yīng)參數(shù)。從p-值(Sig.)可以看出,在0.05的置信水平下,brand的主效應(yīng)顯著,但district的主效應(yīng)不顯著。因此說明如果僅考慮可加模型,品牌對(duì)銷售量有顯著影響,但對(duì)地區(qū)沒有顯著影響。

2/11/202349《統(tǒng)計(jì)學(xué)》第5章方差分析5.3.3有交互效應(yīng)的雙因素方差分析

當(dāng)考慮有交互效應(yīng)時(shí),雙因素方差分析模型表述為:(5.14)上式中參數(shù)表示交互效應(yīng),

它滿足約束條件

,1、模型結(jié)構(gòu)2/11/202350《統(tǒng)計(jì)學(xué)》第5章方差分析其他參數(shù)的假設(shè)與模型(5.8)相同。利用最小二乘估計(jì)理論,可以得到模型(5.14)中參數(shù)的估計(jì)如下:其中。2/11/202351《統(tǒng)計(jì)學(xué)》第5章方差分析2.方差分解對(duì)具有交互效應(yīng)的雙因素方差模型中效應(yīng)參數(shù)的檢驗(yàn),除5.3.2節(jié)中的和之外,與因素的交互效應(yīng)顯著性假設(shè)表述為:還涉及交互效應(yīng)的假設(shè)檢驗(yàn)。因素2/11/202352《統(tǒng)計(jì)學(xué)》第5章方差分析仿單因素方差分析的方法,考察總離差平方和可分解為:

SSA稱為因素A的離差平方和,反映因素A對(duì)試驗(yàn)指標(biāo)的影響。SSB稱為因素B的離差平方和,反映因素B對(duì)試驗(yàn)指標(biāo)的影響。SSAB稱為交互作用的離差平方和,反映交互作用A與B對(duì)試驗(yàn)指標(biāo)的影響。SSE稱為誤差平方和,反映試驗(yàn)誤差對(duì)試驗(yàn)指標(biāo)的影響。2/11/202353《統(tǒng)計(jì)學(xué)》第5章方差分析其中2/11/202354《統(tǒng)計(jì)學(xué)》第5章方差分析類似的,均方和定義為:上式中分母的數(shù)值為對(duì)應(yīng)平方和的自由度,自由度數(shù)值也滿足分解等式。2/11/202355《統(tǒng)計(jì)學(xué)》第5章方差分析3.檢驗(yàn)過程

對(duì)具有交互效應(yīng)的雙因素方差分析問題,對(duì)參數(shù)的檢驗(yàn)分為兩個(gè)步驟:第一步:首先檢驗(yàn)交互效應(yīng),定義檢驗(yàn)統(tǒng)計(jì)量:2/11/202356《統(tǒng)計(jì)學(xué)》第5章方差分析對(duì)給定的檢驗(yàn)水平,即認(rèn)為交互效應(yīng)顯著。時(shí),拒絕當(dāng)可以證明,當(dāng)成立時(shí),

。2/11/202357《統(tǒng)計(jì)學(xué)》第5章方差分析第二步:如果在第一步中交互效應(yīng)顯著,定義檢驗(yàn)和的兩個(gè)統(tǒng)計(jì)量分別為用類似的方法檢驗(yàn)因素與因素的主效應(yīng)是否顯著。2/11/202358《統(tǒng)計(jì)學(xué)》第5章方差分析如果第一步中交互效應(yīng)不顯著,則因素與因素的主效應(yīng)的檢驗(yàn)采用5.3.1節(jié)中可加效效應(yīng)模型的方法檢驗(yàn)主效應(yīng)。2/11/202359《統(tǒng)計(jì)學(xué)》第5章方差分析

兩因素方差分析的檢驗(yàn)過程可以通過雙因素方差分析表反映出來:表5.9

雙因素方差分析表2/11/202360《統(tǒng)計(jì)學(xué)》第5章方差分析

【例5.6】(兩因素交互效應(yīng)模型,數(shù)據(jù)文件example5.5)在例5.5的例子中,問品牌和地區(qū)是否存在交互效應(yīng)?2/11/202361《統(tǒng)計(jì)學(xué)》第5章方差分析解:用SPSS打開數(shù)據(jù)文件,選擇AnalysisGeneralizedlinearmodel

Univariate,

將因變量選入到Dependentvariable中,

將brand和district兩個(gè)因素選入到Fixedfactor中,

點(diǎn)擊Model,然后選擇Fullfactorial(或選擇Custom,在Buildterm中選擇Maineffects,

再把brand和district

選入Model,再在

Buildterm

中選擇Interaction,把brand和district選入Model,出現(xiàn)brand*district項(xiàng)),選擇Includeinterceptinmodel,模型中包含常數(shù)項(xiàng),最后點(diǎn)擊ContinueOk

,輸出如表5.10的結(jié)果。

2/11/202362《統(tǒng)計(jì)學(xué)》第5章方差分析表5.10

飲料品牌、地區(qū)及銷售數(shù)據(jù)的方差分析表

2/11/202363《統(tǒng)計(jì)學(xué)》第5章方差分析

從表5.10中看出,此時(shí)有交互效應(yīng)項(xiàng)出現(xiàn),其p-值明顯小于0.05,因此交互效應(yīng)顯著。與例5.5比較看出,在考慮了交互效應(yīng)之后,brand和district均顯著(無交互效應(yīng)時(shí),district不顯著),因此我們可以得出結(jié)論:品牌和地區(qū)對(duì)飲料銷售量有顯著影響,同時(shí)不同品牌在不同地區(qū)的銷售量有顯著差異(即交互效應(yīng)顯著)。2/11/202364《統(tǒng)計(jì)學(xué)》第5章方差分析本章主要介紹方差分析的主要原理和方法,包括但因素方差分析和雙因素方法分析。雙因素方差分析分別介紹了可效應(yīng)模型和交互效應(yīng)模型的原理和方法。在每一種情況,介紹了方差分析的數(shù)據(jù)結(jié)構(gòu)、統(tǒng)計(jì)模型、檢驗(yàn)統(tǒng)計(jì)量和方差分析表。同時(shí)通過實(shí)例和SPSS軟件的使用,使讀者能將理論和應(yīng)用有機(jī)的結(jié)合起來。本章的主要概念包括主效應(yīng)、交互效應(yīng)、因素、指標(biāo)值、假設(shè)、F統(tǒng)計(jì)量、多重比較、方差分析表等。重點(diǎn)是F統(tǒng)計(jì)量的檢驗(yàn)原理,方差分析表的含義及如何使用SPSS軟件進(jìn)行方差分析的計(jì)算和解釋。本章小結(jié)2/11/202365《統(tǒng)計(jì)學(xué)》第5章方差分析(1)本章我們僅考慮單因素和雙因素的方差分析模型,多因素也可類似處理。但當(dāng)因素較多時(shí),所有可能的水平組合大幅增大,這樣將會(huì)增加試驗(yàn)的成本。一種通過試驗(yàn)設(shè)計(jì)方法,用較少量的數(shù)據(jù)(部分試驗(yàn),即不是在每一個(gè)水平組合上都做試驗(yàn))獲得所需要的效應(yīng)估計(jì)及檢驗(yàn)結(jié)果的方法稱為析因試驗(yàn),它是試驗(yàn)設(shè)計(jì)(designofexperiment)的一個(gè)重要內(nèi)容,它將涉及區(qū)組設(shè)計(jì)、正交設(shè)計(jì)等內(nèi)容。有興趣的讀者可參看這方面的著作。進(jìn)一步的閱讀

2/11/202366《統(tǒng)計(jì)學(xué)》第5章方差分析(2)本章考慮的方差分析僅給出了等重復(fù)試驗(yàn)數(shù)據(jù)的方差分析內(nèi)容,在許多觀測(cè)數(shù)據(jù)中,獲得的數(shù)據(jù)的重復(fù)個(gè)數(shù)不一定相等(即不同),這樣的數(shù)據(jù)稱之為不等重

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論