




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
NBERWORKINGPAPERSERIESMPROVINGHOUSEHOLDDEBTMANAGEMENTWITHROBOADVICEaChakrenCroxsonancescoDAcuntoathanReuterAlbertoGRossiJonathanM.ShawWorkingPaper30616http//papers/w30616NATIONALBUREAUOFECONOMICRESEARCHCambridgeMA8November2022IdaChakandKarenCroxsonareattheFinancialConductAuthorityoftheUnitedKingdom(FCA).FrancescoD’AcuntoandAlbertoRossiareatGeorgetownUniversity.JonathanReuterisatBostonCollegeandNationalBureauofEconomicResearch.JonathanShawisattheFCAandInstituteforFiscalStudies.OurexperimentaldesignwaspreregisteredintheAEARCTregistry(AEARCTR-0006447)andimplementedbytheFCA.WethanktheFCAforfundingthisresearch.WethankChrisBurkeandMauraFeddersenforhelpdesigningandimplementingtheexperiment.TheviewsexpressedinthispaperarethoseoftheauthorsandshouldnotbeattributedtotheFinancialConduitAuthority.TheviewsexpressedhereinarethoseoftheauthorsanddonotnecessarilyreflecttheviewsoftheNationalBureauofEconomicResearch.NBERworkingpapersarecirculatedfordiscussionandcommentpurposes.Theyhavenotbeenpeer-reviewedorbeensubjecttothereviewbytheNBERBoardofDirectorsthataccompaniesofficialNBERpublications.?2022byIdaChak,KarenCroxson,FrancescoD’Acunto,JonathanReuter,AlbertoG.Rossi,andJonathanM.Shaw.Allrightsreserved.Shortsectionsoftext,nottoexceedtwoparagraphs,maybequotedwithoutexplicitpermissionprovidedthatfullcredit,including?notice,isgiventothesource.ArandomizedcontrolledtrialsregistryentryisArandomizedcontrolledtrialsregistryentryisavailableathttps///trials/6447/IdaChak,KarenCroxson,FrancescoD’Acunto,JonathanReuter,AlbertoG.Rossi,andJonathanM.ShawNBERWorkingPaperNo.30616November2022JELNoD,D91,G51,G53STRACTPoordebt-managementskillslowerfinancialsecurityandwealthaccumulation.Becauseoptimalsolutionstocreditrepaymentproblemsdependonneitherriskpreferencesnorbeliefs,loanrepaymentisaprimeapplicationforrobo-advising.Vulnerablehouseholds,though,tendtodistrustnewtechnologiesandoverridesuggestionsthatdonotalignwithingrainedheuristics,suchasmatchingtheminimumpaymentonacreditcardbalance.Loweradoptionratesbythesegroupsmightincreaseratherthanreducewealthinequalities.Toassessthesetrade-offs,wedesignandimplementanRCTinwhichrobo-adviceforborrowerrepaymentdecisionsisofferedtoasetofrepresentativeUKconsumers.Theavailabilityoffreerobo-advicesignificantlyimprovesaverageloanrepaymentchoices.Whentheirwillingnesstopayiselicited,manysubjectsreportvalueslargerthanthemonetarybenefitsofthetool,perhapsduetolowercognitiveandpsychologicalcostsdecision-makersfacewhenmakingassistedchoices.Non-adoptersandoverridersreportlowertrustinalgorithmsattheendoftheexperiment.Wefindnoevidenceoflearningfromrobo-advice,whichbarelyimprovessubsequentunassistedchoices,evenwhenpairedwithexplicittips.Infact,robo-adviceusagecrowdsoutlearning-by-doing,whichishighestforthosewhomakeallchoicesunassisted.aChakaChaknancialConductAuthorityndeavourSquareLondonE201JNUnitedKingdomIda-chak@renCroxsonnancialConductAuthorityndeavourSquareLondonE201JNUnitedKingdomkaren.croxson@.uklSchoolofManagementstonCollegeBFultonHallChestnutHill,MA02467andNBERreuterj@AlbertoGRossiDonoughSchoolofBusinessrgetownUniversityWashingtonDC0057ancescoDAcuntoMcDonoughSchoolofBusinessGeorgetownUniversityWashington,DC20057francesco.dacunto@AdataappendixMcDonoughSchoolofBusinessGeorgetownUniversityWashington,DC20057francesco.dacunto@Adataappendixisavailableat/data-appendix/w30616nitedKingdomndInstituteForFiscalStudiesJonathanShawfcaorguk1Theoriginsandconsequencesofgrowingwealthinequalityareamongthemostdebatedissuesintoday’ssociety(Keister(2000);Zucman(2019)).Alargeliteraturelinksthelackofwealthaccumulationbylow-incomehouseholds(Campbell,Ramadorai,andRanish(2019))tolowsavingratesand?nancialreturnsdueto?nancialilliteracyandcostlyaccesstoadvice(LusardiandMitchell(2014),ChalmersandReuter(2020)).Di?erencesinwealthaccumulationalsodependonhowmuchdebthouseholdsaccumulateandhow(in)e?cientlytheymanageit,whichisespeciallyrelevantforvulnerablehouseholds,whotendtodisplaylow?nancialliteracy(Lusardi,Schneider,andTufano(2011);Drexler,Fischer,andSchoar(2014))andmisunderstandtheimplicationsofannualpercentagerates(APRs),minimumpayments,andlatefees(Agarwal,Chomsisengphet,andLiu(2010);AgarwalandMazumder(2013)).Heuristicsandbiasesinloanrepaymentcanleadtodebtspiralsandfurtherreducewealth(Agarwaletal.(2008);Argyle,Nadauld,andPalmer(2020);Gathergoodetal.(2019);LusardiandTufano(2015);Ponce,Seira,andZamarripa(2017)).Althoughweunderstandmanyoftheseheuristicsandbiases(Zinman(2015);AgarwalandZhang(2015);StangoandZinman(2021)),thequestionofhowtoe?ectivelyande?cientlyminimizetheirimpactremainsopen.Forinstance,whilemanycountrieshaveimposeddisclosurerequirementsonlenders,itisunclearthatborrowerswithlowlevelsof?nancialliteracyareabletoprocessthetechnicalinformationembeddedindisclosures(Adamsetal.(2021);BertrandandMorse(2011);Navarro-Martinezetal.(2011)).2Financialliteracyprogramscanimproveoutcomes(Buetal.(2020)),buttheabilitytoscalethemupislimitedbythe?nancialandcognitivecostsfacedbythosewhodeliverclassesandthosewhoattendthem.Inthispaper,weimplementarandomizedcontroltrial(RCT)intheUnitedKingdomtoassessthetake-upande?ectivenessofanalternativemeanstoimprovehouseholds’loanrepaymentchoices:robo-advice(D’Acunto,Prabhala,andRossi(2019);D’AcuntoandRossi(2021b)).3Inprinciple,loanrepaymentisanaturalsettingforrobo-advicebecause,unlikeassetallocationdecisions,theoptimalchoicedependsonneitherriskpreferencesnorbeliefsaboutexpectedreturnsandcorrelations.Moreover,incontrasttohumanadviceanddebtcounseling,2Agarwaletal.(2015)showthatregulationcanimproveloanrepaymentbylimitingcreditcardfees.3ThetrialwaspreregisteredintheAEARCTregistry(AEARCTR-0006447)andimplementedbytheFinancialConductAuthority(FCA)oftheUnitedKingdom.2robo-advisingisaneasy-to-scaletechnologythatcanbedeliveredcheaplythroughpersonaldevices,makingitaviableresourceforlow-incomeandvulnerablehouseholds(D’AcuntoandRossi(2022,2021a)).Atthesametime,algorithmicaversion,whichisespeciallycommonamongtheleastsophisticatedconsumers(NiszczotaandKasz′as(2020)),mightlimitdemandforrobo-advicetoolsamongthedemographicgroupsthatwouldmostbene?tthemost,therebypotentiallyincreasingwealthinequalitiesratherthanreducingthem.InourRCT,subjectsallocatefundsacrossloansinninereal-lifeloanrepaymentscenarios.Eachscenarioincludesloansthatvarywithrespecttointerestrates,balances,andlevelsofdi?culty.Theexperimentincludesthreephases,eachconsistingofthreerandomlychosenscenarios.Inthepre-interventionphase,weassessthemistakessubjectsmakewhenmanagingmultipleloansindependently.Thisphasecon?rmsearlierevidencethatloanrepaymentmistakesarecommonandhavesizableeconomicconsequencesondebtors’(experimental)wealth:theaveragepercentageofsavingsforgonerelativetotheoptimalchoicesis21.9%,whichtranslatesinto29basispointsofinterestandfeespermonthandcompoundsto3.55%higherpaymentperyear.FortheaverageUSfamilywith$6,270increditcarddebtaroundthetimeofourRCT,4thesemistakeswouldresultinanoverpaymentof$222.42peryear.Themagnitudesincreaseto37basispointspermonthand$249.37whenwefocusonthehardversionsoftheproblems.Consistentwithintuitionandearlierresearch(Lusardi(2012)),higher?nancialliteracy,numeracy,andpatiencereducetheextentofmistakes.Intheinterventionphase,weintroducerobo-adviceforloanrepayment.Subjectsworkonthreenewallocationscenariosafterbeingrandomlyassignedtooneof?veexperimentalarms:acontrolgroupforwhomthetaskisidenticaltothepre-interventionphase;groupsforwhomrobo-adviceisavailableforfreewithorwithoutexplicittipsaboutthe?nancialprinciplesbehindoptimalstrategies(“robo-advicewitheducation”);andgroupsforwhomitcanbeobtainedforafeewithorwithouteducation.Inallfourtreatmentarms,subjectsaretoldthemaximuminterestandfeesthattheycouldsavebyusingtherobo-advisor.Inthetreatmentswithpaidrobo-advice,weelicitsubjects’willingnesstopay(WTP)fortherobo-advicetoolinanincentive-compatible4Source:FederalReserveSurveyofConsumerFinances(Link)3way.5Thepost-interventionphasemirrorsthepre-interventionphase,inwhichsubjectssolvethreeloanmanagementproblemswithoutaccesstorobo-advice.Subjectsreceivenofeedbackaboutoptimalsolutionsaftertheirchoices,whichareusedtodeterminetheirincentivepayments.The?veexperimentalarmsallowustodeterminewhether(andbyhowmuch)exposuretorobo-adviceimprovesloanrepayment,aswellasaseriesofrelatedquestions:(i)whichformsofrobo-adviceareinthegreatestdemand;(ii)howmuchsubjectsarewillingtopaytoobtainrobo-advice;and(iii)whichsubjectsoverridetherobo-advisor’srecommendations.Thepost-interventionphaserevealswhetherexposuretooptimalallocationsbytherobo-advisor,withorwithouteducation,helpsborrowerslearntheoptimalrulesforloanrepaymentor,instead,whetherrobo-adviceneedstobecontinuallyprovidedtoimproverepaymentdecisions.We?ndthatsubjectsexposedtofreerobo-adviceimprovetheirrepaymentstrategiessigni?cantlyrelativetothecontrolgroup.Becauseloanrepaymentproblemshaveunambiguousex-antesolutions,anysubjectwhoimplementstherecommendedrepaymentstrategywillminimizeinterestandlatefees.Asaresult,theTreatmentontheTreated(TOT)e?ect—thee?ectofrobo-advisingonthesubjectswhoseekit—islarge.Theaveragepre-interventionlosses(21.9%)declineby19.6percentagepoints.Forgonesavingsdonotcompletelydropto0%because5.7%oftreatedsubjectschoosetooverridetherobo-advisordespiteactivelyseekingit.Inthecross-section,theTOTe?ectsareheterogeneousanddisproportionallybene?tsubjectswithlow?nancialliteracyandnumeracy,suggestingthatrobo-advisingcanleveltheplaying?eldinhouseholddebtmanagement.Next,weassesstheIntentiontoTreat(ITT)e?ect—thedi?erencebetweentheloanrepaymentperformanceofsubjectsexposedtorobo-advisingandthecontrolgroup,irrespectiveofwhetherthetoolisused.TheITTe?ectaccountsforthepossibilitythatborrowerswhoareo?eredrobo-advicemightdecidetonotuseit,perhapsbecausetheydonottrustalgorithms.Despiteremainingeconomicallyandstatisticallysigni?cant,theITTestimateis-14.6percentagepoints—about25%lessthantheTOTestimates.Relatedly,subjectsdeclinefreerobo-adviceinabout25%oftheproblemsforwhichtheyareo?eredit.5AswedescribeinSection1.1.,thefeewasdrawnrandomlyfromauniformdistributionaftersubjectsprovidedtheirWTPtoelicitWTPinanincentive-compatiblefashion.Thismethoddi?ersfromelicitingthedemandforrobo-advisingafterannouncingapre-determinedfeeandimpliesthatmanyrobo-advisingseekersdidnotreceiverobo-advisinginthepaidtreatmentarms.4Consumerswillbene?tlessfrompaidrobo-advicebecausethebest-caseoutcomeswitchesfromnosavingsforgonetothepositivefeepaid.Adoptingrobo-advisingisthusonlybene?cialinconsumption-utilitytermsifthefeethatconsumerspayislowerthanthesavingstheywouldhaveforgoneabsentthetool.Interestingly,we?ndthatsubjects’WTPis,onaverage,higherthanthemonetarybene?tstheyobtainfromit,whichmayre?ectsubjects’pessimisticassessmentoftheirperformancewhenunassistedorawillingnesstopaytomoretoavoidthecognitiveandpsychologicalcostsofmakingchoicesontheirown.Fromapolicyperspective,itwouldbeoptimalifdemandforrobo-adviceweregreatestamongtheless?nanciallyandnumericallyskilled,whomakecostliermistakesinthepre-interventionphase.And,indeed,demandforrobo-adviceisinverselyrelatedto?nancialandnumericalliteracy.Everythingelseequal,itisalsoinverselyrelatedtocon?denceinone’sskillsandpositivelyrelatedtotrustinrobo-advice.6FinanciallyliteratesubjectshavealowerWTP,whilemenandmoretrustfulsubjectsarewillingtopaymore.(Low)trustinalgorithmsisstronglycorrelatedwithoverridingrobo-advice,whichisneveroptimalinoursetting,andthedesiretointeractwithahumanadvisor.Finally,weaskwhetherrobo-advicehelpssubjectstolearnaboutoptimalloanrepaymentor,instead,limitslearning-by-doingbyreducingtheirexperiencesolvingloanmanagementproblems.Whilewe?ndbetterpost-interventionperformanceacrossallofthetreatmentarms,thelargestdi?erenceisforthecontrolgroup,whohadtoworkthroughmoreproblemswithoutassistancebeforereachingthepost-interventionphase.Wedetectneitherlearningbyimitationnorfromtheeducationaltipsbundledwithrobo-advice.1ExperimentalDesignandProcedureInthissection,wedescribethedesignoftheexperimentaltasksandtheexperimentalprocedure,includingtherecruitmentofsubjects,theircharacteristics,andthesequenceofactionsintheiment6Weelicitedtrustaftertheexperimenttoavoidprimingsubjectsbeforeassessingrobo-demand.Beingexposedtorobo-advisingduringtheexperimentmighta?ecttrust.Wecannotsayifsubjects’pre-determinedtrustincreasestheirWTPorifhigherWTPandhencemorelikelyexposureduringtheRCTincreasesreportedtrust.51.1.ExperimentalDesignToimplementourexperimentaldesign,wecreated27loanrepaymentproblems,whichwereportamongtheexperimentalmaterialsintheOnlineAppendix.Ineachproblem,subjectsreceivedanamountofmoneydenotedinpoundsthattheywereaskedtoallocatefullyacrossmultipleloanstominimizethesummonthlyinterestpaymentsor,inproblemsthatincludeminimumpaymentamounts,tominimizethesumofmonthlyinterestpaymentsandlatefees.We?rstdesignednineproblemsthatdi?eredbasedonthenumberofloans,themixtureofAPRs,andloanbalances,whichwelabelAtoI.7Wethendesignedthreealternativeversionsofeachproblem:easy,medium,andhighdi?culty.TheeasyversionfocusesonloanamountsandAPRs;themediumandharddi?cultyversionsintroduceminimumpayments,whichtriggerlatefeeswhenleftunpaid.Themostdi?cultversionmimicsreal-worldscenariosbyintroducingadditionalinformationnotneededtocalculateoptimalrepaymentamounts.WereportthethreeversionsofasampleprobleminFigureA.1intheOnlineAppendix.Theexperimentconsistedofthreeorderedphases,executedsequentiallywithinthesamesession.Wesummarizethephasesandthesequenceofsubjects’actionsinFigure1.Overthecourseoftheexperiment,loanrepaymentproblemsAthroughIarepresentedtoeachsubjectinrandomorder.Withineachofthethreephases,subjectsarerandomlypresentedwithoneeasyproblem,onemediumproblem,andonehardproblem.Inthepre-interventionphase,eachsubjectsolvedthreeproblemswithoutanyexternalinputsorinformationbeyondthatrequiredtodescribetheproblem.Subjectsdidnotreceiveanyfeedbackonwhetherorhowtheinterestandlatefeesassociatedwiththeirrepaymentstrategydi?eredfromtheoptimalrepaymentstrategy.Theexperimentalconditionswereadministeredintheinterventionphase.Subjectswererandomlyassignedtooneof?veexperimentalarms:(i)acontrolgroupforwhomthetaskwasidenticaltothepre-interventionphase(group1);(ii)agroupinwhichrobo-advicewasavailableforfree(group2);(iii)agroupinwhichrobo-advicewasavailableforfreeandincludedan7IntheUK,theAPRisane?ectiveannualinterestrate.AccordingtotheFCA:“ifyouborrowed£100andtheloanAPRis56%,afterayear,youwouldpayback£156intotal.”Therefore,tocalculatethemonthlyinterestpaymentforagivenloan,weneedtocalculatermonthly=(1+APR)(1/12)?1.6explanationoftherobo-advisor’sproposedallocation(“robo-advicewitheducation”;group3);(iv)agroupinwhichrobo-advicecouldbeobtainedforafee(group4);and,(v)agroupinwhichrobo-advisingwitheducationcouldbeobtainedforafee(group5).Inallfourtreatmentarms,subjectsaretoldthemaximuminterestandfeesthattheycouldsavebyusingtherobo-advisor(i.e.,themaximumpossibleinterestandfeesminustheminimumpossibleinterestandfees).Theinterventionphaseintroducedthreefeaturesabsentinthepre-interventionphase:accesstorobo-advice,educationaboutthestrategiesproposedbytherobo-advisor,andelicitationofsubjects’willingnesstopayfortherobo-advisingtool.Robo-adviceconsistedofanautomatedproposalforallocatingtheamountsubjectshadattheirdisposalacrossthemultipleloansintheproblem.Therobo-advisorallocationcoincidedwiththeoptimalallocation,whichminimizedtheinterestandfeesthatsubjectshadtopayontheirportfolioofloansoverthenextmonth.Notethatthisallocationcanbecomputedwithoutriskanduncertainty.Forexample,intheeasyversionoftrialE,thesubjecthas1,000poundstoallocatebetweenthreeloans:a1,040.55balancewithanAPRof22.5%,a466.74balancewithanAPRof45.9%,anda879.04balancewithanAPRof49.5%.Intheabsenceofminimumpayments,therobo-advisorwouldallocate879.04totheloancharging49.5%,thusextinguishingtheloansubjecttothehigherAPR,andtheremaining120.96totheloancharging45.9%.Thisallocationresultsinthebest-casemonthlyinterestpaymentof28.81pounds.(AllocatingeverythingtotheloanwithanAPRof22.5%wouldhaveresultedintheworst-casemonthlyinterestpaymentof45.57pounds.)Subjectswhochosetoreceivefreerobo-advice(withintreatmentgroups2and3)andsubjectswhochosetoreceivepaidrobo-adviceandwhosewillingnesstopay(WTP)exceededthecostofthetool(withintreatmentgroups4and5)foundthesuggestedbest-caseallocationautomatically?lledinontheirproblemscreen.Subjectsweretoldthattherobo-advisor’sallocationswereoptimal,butthattheywerefreetoacceptormodifythisallocationbeforemovingtothenextscreen.Educationconsistedofbriefexplanationsofthestrategiesproposedbytherobo-advisor.WereportexamplesoftheexplanationsamongtheexperimentalmaterialsintheOnlineAppendix.Forinstance,intheeasyversionofproblemEdescribedabove,subjectswereexposedtotheeducationstepsreportedinFigureA.2.Subjectswhoacceptedfreerobo-advisingtreatment7witheducation(group3)andsubjectswhotookrobo-advisingwitheducationforafeeandwhosewillingnesstopayexceededthecostofthetool(group5)wereshowntheeducationaltextbeforetheallocationproposedbytherobo-advisingtoolappearedontheirscreen.Inthetreatmentswithpaidrobo-advice,weelicitedWTPinanincentive-compatiblefashion.Ratherthanbeingaskedwhethertheywerewillingtopayapre-speci?edfee,subjectswhosoughtpaidrobo-advicewereaskedtostatetheirWTPforaccesstotherobo-advicetool,usingasliderthatrangedfrom0poundstothemaximumpossiblesavingsininterestandfeesfortheirloanrepaymentproblem.Subjectsweretold:“Youshouldrespondtruthfully—afteryousayhowmuchyouarewillingtopay,theactualpriceoftheassistantispickedrandomly.Ifwhatyousaidyou’rewillingtopayishigherthantherandomprice,you’llbuytheautomatedassistanceatthatprice.Ifwhatyousaidyou’rewillingtopayislowerthantherandomprice,youwon’tbuytheautomatedassistanceandwillpaynothing.”Subjectswerenottoldhowtherandompricewouldbechosen.Foreachsubject-problempair,wedrewthepricerandomlyfromtheuniformdistributionrangingfromzerotothemaximumpossiblesavingsininterestandfees.Ifthesubjects’reportedwillingnesstopaywashigherthanthisprice,subjectsobtainedtherobo-advisingtool.Otherwise,theydidnot.Ourpricesettingmechanismisclearlynotcomparabletothewaypriceswouldbesetin?eldapplications,whichwouldbeapre-setfeecommontoanyinteresteduser.Ouraim,though,istoelicitWTPinanincentivedfashionratherthanassessinghowmanyconsumerswouldacceptrobo-adviceinthe?eldbasedondi?erentpotentialprices.Yet,knowingthetruthfulWTPofeachsubjectinformsusonwhowouldtakerobo-adviceforeachpotentialpricethatwasattachedtothisserviceinthe?eld.Overall,only36.6%ofthesubjectswhosoughtpaidrobo-adviceactuallyreceivedit.ThisisbecausetheaverageWTP(scaledbythemaximumpossiblesavings)was34.7%whiletheaveragerandomprice(scaledbythemaximumpotentialCrucially,subjectscouldseetheproblembeforereportingtheirwillingnesstopayfortherobo-advisingtool,whichisarealisticfeaturesince,inthe?eld,borrowerscanseekadvicebasedontheperceiveddi?cultyofmanagingtheirloanportfolio.Moreover,becausesubjectsshouldhavechosentheirwillingnesstopaybasedontheexpecteddi?erencebetweenthesavingsthey8couldhavemadeontheirownandthemaximumsavingstheycouldhavemadewhenusingtherobo-advisingtool(whichtheproblemtoldthemexplicitly),observingtheloanrepaymentproblemandassessingitscomplexitywasimportantforthesubjectstomakeaninformedinferenceabouttheirwillingnesstopay.Thepost-interventionphasefollowedthesamedesignasthepre-interventionphase.Subjectshadtosolvethreeproblemsofdi?erentdi?cultylevelswithoutaccesstorobo-advice.Beforetheendofthesurvey,subjectsansweredafewquestionsinadebrie?ngsurvey,whichwediscussinmoredetaillater.1.2.ExperimentalProcedureandSubjectPoolWepre-registeredtheexperimentaldesignandprocedure,includingdetailsaboutsubjectrecruitmentandtargetsamplesizes,intheAEARCTRegistry(trialID:AEARCTR-0006447).8SubjectrecruitmentaimedtoobtainaUKnationallyrepresentativesampleofadultsaged18andabove.9Thetargetsamplesizewas4,500subjects;basedontheFCA’sbudgetandtimelineforcompletingtheexperimentphase,thedeliveredsamplesizewas3,423.Recruitmentwasrunbyathird-partyproviderthatengagedinquotacontrolonseveraldemographiccharacteristicstomaintainthesample’srepresentativeness.TheexperimentaldatawerecollectedinSummer2020intheformofasurveyadministeredthroughtheonlineplatformQualtrics.Inadditiontorecordingsubjects’choicesinthesurveytasks,therecruiterprovideduswiththedemographiccharacteristicsthatwecontrolforintheanalysis.Therandomizedassignmentofsubjectsacrossexperimentalarmsshouldensurethatobservableandunobservablecharacteristicsareuncorrelatedwiththeassignmentrule.Afteraccessingandsigningtheconsentform,subjectsreadtheinstructionsdescribingthetaskofsolvingaloanrepaymentproblem.Theinstructionsspeci?edthatthemainscopeoftheresearchwastounderstandhowpeoplemanagetheirloans.Theinstructionsbrie?y
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 刨冰店加盟合同范本
- 出境旅游協(xié)議合同范本
- 出售養(yǎng)殖大院合同范本
- 加盟商家合同范本
- 共享專機(jī)采購合同范本
- 關(guān)于工程維護(hù)合同范本
- 綜合整治土地平整施工方案
- 劇本殺儲(chǔ)值卡合同范本
- 買賣叉車合同范本
- 分紅合同范本
- 口腔護(hù)理技術(shù)
- 西師版四年級(jí)下冊(cè)100道口算題大全(全冊(cè)齊全)
- TFCC損傷的診斷及治療
- 《西藏度亡經(jīng)》及中陰解脫竅決(收藏)
- 2022年醫(yī)學(xué)專題-健康危險(xiǎn)因素干預(yù)
- 平岡中學(xué)教師任職條件
- 小老鼠找朋友 演示文稿
- 2023年青島職業(yè)技術(shù)學(xué)院高職單招(英語)試題庫含答案解析
- 2023年蘇州衛(wèi)生職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析
- GB/T 37864-2019生物樣本庫質(zhì)量和能力通用要求
- 中國國防:新中國國防建設(shè)成就【2】
評(píng)論
0/150
提交評(píng)論