導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用教案_第1頁(yè)
導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用教案_第2頁(yè)
導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用教案_第3頁(yè)
導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用教案_第4頁(yè)
導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用教案_第5頁(yè)
已閱讀5頁(yè),還剩17頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

--函數(shù)與導(dǎo)數(shù)第12課導(dǎo)用書~32頁(yè),即導(dǎo)

理解,能利用導(dǎo)數(shù)研究函數(shù)掌握法.會(huì).(選編)函xx32-33x+的單調(diào)28為__(dá)_______(dá)_.:(-1析:2303-11)(x1)x+1)<0-1,11可--

--(選修3)f(x)=ax在x=1處取34ae,0,為f′(x)=e

(選修22P習(xí)題8)數(shù)y=x+sin,x∈[0,234為________.]:由y0所y=xnx在[π]上是[0)數(shù)=-x_______.

+lnx2,+∞)上是-f′(x-x+\f0在[2∞)上恒成立x2[2+∞(選修2例)用長(zhǎng)0c為35,90°成_______cm時(shí),容大:1xcm,即xcm,該(90-2x8-2x32+1080x),0<x<--

12,12(x2

---46x+32(x-1)(x36)0<x<V′>當(dāng)10<2時(shí),V′<0所(0,]上[10,12)上是減函數(shù),故當(dāng)x時(shí),V最大.函(b,函果f′(x)>0=f(x)數(shù);果f′(x)<0,那么函數(shù)y=f(x)函()

(x)x=a處的函數(shù)f(a)比它在點(diǎn)要小,數(shù)(x)在點(diǎn)x=b處的值f(b)比它在點(diǎn)x=b要,值極小(求程f)=0,當(dāng)f′(x)時(shí),0如附側(cè)單調(diào)遞增側(cè)單調(diào)遞減,那f(x)是極大00值在附近左側(cè)單調(diào)遞減側(cè)單調(diào)遞增那么f(x)是0函--

--(1)

I內(nèi)x使得對(duì)任意0

x∈If(x)≤f(x),f(x)f00域I內(nèi)得對(duì)的x∈I,總f(x)x)稱f(x000

)數(shù)值(2)y=f(x)在[a,b]上的最大值與最小值求數(shù)y=f(x)在(的極值.將數(shù)y=f(x)的各f)f(b)比中值最大的一,值最小的一個(gè)是最小是:

錯(cuò)

錯(cuò)!

錯(cuò)!錯(cuò)誤導(dǎo)例已知函數(shù)

-1.(1)時(shí)求f(x)的單調(diào)區(qū)間;(2)若f(x)集R上單()是a,使f(x)在-出a圍由.:(a=3(x3

-3fx

32-,解1x1,--

--f(x為(1,+∞,求f(x)的單為1).f′(x

.f集R上單f′(x)≥恒成立即3x

≥02

)min3x2的0∴a≤0(3)假數(shù)使f(x)在1)上f′(x)≤在(-1,即a≥3x2

又3x[0,,∴a≥存在實(shí)數(shù)a使f(x)1)減且錯(cuò)!(1)已知函數(shù)f(x錯(cuò)誤!xmlnx1m時(shí),(x)的單調(diào)性(2)x)=-誤!錯(cuò)!誤!+blnx在(1,+∞數(shù),求實(shí)數(shù)b的取值范圍.:錯(cuò)!,f′(x)x誤!+(m-)錯(cuò)!=錯(cuò)!<m≤0時(shí),′(x)>0,得0<x<-mx>1′(x)<0,得-m<x<函數(shù)f誤誤!,單是誤!;≤-1,同,函數(shù)f(x)的單調(diào)遞增區(qū)間是錯(cuò)誤!和--

--錯(cuò)!是錯(cuò)誤(2)由f(x)=-誤!錯(cuò)!誤!+blnx,得()=-(x-2)f(b,x),知f′(x)≤即誤!誤!0錯(cuò)誤!上恒成≤錯(cuò)誤!錯(cuò)誤,當(dāng)∈錯(cuò)誤!時(shí)錯(cuò)!∈誤!,∴b導(dǎo)數(shù)例2設(shè)數(shù)f(x=

ex∈R)1)若b=-2求數(shù)f(x)值(2)若x=1f(x)的一點(diǎn)用a表示,函數(shù)x)=2+14)e+4[12得f()g(|<1成12∵+x,

f′(x)=(2+ax+(x

)exxx+a=2f(x)=(2+2x-2)efx2+ex,′(x)=得(x2+4x)ex=0,e∴得x=-或x=0,f′()

(,-4)+

-4

(-,)-

(0,+∞+--

--

f(x)

當(dāng)x=-4時(shí)數(shù)f(x)取極大值,f(x)極大值

e(2)由(知f′(x)=[x2+(2+a)x+(a+b)]e

x=1f(x)的一個(gè)極值點(diǎn)f(1)=0,+(2+a)+()]=得3-2a由①知f′(x)=e

x[x

2

+(2+)x+(-=e

x-a)]時(shí)f(x間1)上的單調(diào)遞減(14)上單調(diào)增,函間,為f((a+2)e.f(0)=b=-3-,f(44

>0,x[4]上的值域是[f(1)],[-(a+2)e,(2a+

4

].

+14)e

間[04]上是增函數(shù),且它在區(qū)[04]是[(+14)e(2+14)e8],(a(2a+13)

2-2a1)e4

a-1)

0存、0,4]使得f(ξ)-gξ須11

-(3

(a1)2

e

(a-1)

f(1,e

4

)1-錯(cuò)!<+錯(cuò)誤!錯(cuò)!數(shù)f(xx

+bx

2

-xR)在=-處取得--

--(1)數(shù)f(x式(

間[2,x,都12有f(xf(xc數(shù)c12(1)

′(x)=3ax+2b3.,得誤!即誤!解誤!以f(x)=x-2)f′(x)=即3x

2

-3=0x=±1.2,-x

(1)1

12)f′(x)

+

+

f(x)

-

為f(-1)=2f(1)=-當(dāng)x∈[-22]時(shí)x)(x)=-2.min

2,max[-2,2]上任意兩個(gè)自變量的值x,f(x)11f)|f(x2

f=4≥4.a(chǎn)x以c4.導(dǎo)例

圖所示cm,起使、B、D四--

--,E、F在AB上是被切去的等腰直角三點(diǎn)設(shè)cm.()某(m2

大x應(yīng)取何(2)3)最,試(12

4x2

40x

2

(0<x<30),所以=15cm時(shí)側(cè)(2)V=(誤!x)2錯(cuò)誤2x錯(cuò)!30-x,V=錯(cuò)!-x)=0得x,當(dāng)0<x<20時(shí),V;當(dāng)2x<30時(shí)V遞20時(shí)V最大,,包裝盒的高與底面邊長(zhǎng)的比值為錯(cuò)誤!錯(cuò)!錯(cuò)!此.經(jīng)預(yù)2,相鄰兩個(gè)橋墩之間的距離均為x(x萬(wàn)元,假設(shè)所有橋墩都視為素記為y(1)于--

--(2)當(dāng)=1280米使y小:根建誤!個(gè)橋墩誤!段橋面工程.(1)y=256誤!+誤!(1+錯(cuò)!錯(cuò)!+m+256錯(cuò)!2)1=1誤+1536,y′80誤!,令y=0,,當(dāng)0<x<6<0當(dāng)x>64y′>當(dāng)x=,有,此建:需個(gè)橋墩才能使y最?。ū绢}模準(zhǔn)滿14)數(shù)f(x)=l-axaR(1)求函數(shù)f(x)間(2)當(dāng)a>0數(shù)f(x)[1.①知函數(shù)解,實(shí)質(zhì)是求f′()>0,f(x)<0間域;先f(wàn)(x[12]上性再確值;數(shù)a,要對(duì)參數(shù)論:解:1)f′-a(x>0).(1分當(dāng)′(x)=誤!-a≥(是(0∞.)--

aa--aa當(dāng)令f\f(1,x)-a=0,得f(1),當(dāng)0<x<誤!時(shí)f(錯(cuò)!>0,當(dāng)x>錯(cuò)誤f′(x)=錯(cuò)!<以函數(shù)f(x是誤!調(diào)減區(qū)間誤!.(6分(2)當(dāng)≤1,即a≥時(shí)f(x)在區(qū)間[1,2]上是減函數(shù)以f(x是f(2)=ln2-2a.(當(dāng)≥即0<a≤,函fx)在區(qū)間[,2]上數(shù)以f(x)的最小值是f)=-<錯(cuò)誤!即誤!<1數(shù)f(x)在區(qū)間誤!上數(shù)間誤!上又-f(=ln<a<ln2時(shí)最是當(dāng)l≤a<1f(2)=ln2-2a.(當(dāng)時(shí),最小值是-a;當(dāng)ln2ln2-2a(2013新課)數(shù)x使2x(xa)<1則是___:(-1,∞)因?yàn)椋?x-a)<1以--

令x-\f(12x)

xx(x)

---xlf(x)在(0,∞,以f(0)=0-1=1,a(-1+∞).(20)若函數(shù)f(x)=x2

\在誤!上數(shù)則是____(dá)___.:f′(x)=2x+a-\f(1,x)≥錯(cuò)!上恒成立,即錯(cuò)!-2x在錯(cuò)誤!上恒成立.令)=誤!-2x,求導(dǎo)可)在錯(cuò)!上3所以a≥2013末)已知函數(shù)f(x(R)間[4,則=________.::(x)=\(1,錯(cuò)!=錯(cuò)!,令)=0,則x=-m,當(dāng)x<-m時(shí)′,單調(diào)遞當(dāng)x>-時(shí)f′(x)>0,f(x)單調(diào)遞增.若-≤即m≥-(x)=f(1)=-1,mi<-m≤,m<-1x)=f(-m)min=ln(-m)+1,令ln(,得-3

-,-1);若-,即,f()\f(m,e),令1誤!=4得3ei意.綜上所述,me.(20)設(shè)函lnx.()()

數(shù)f(x間f(x)有兩個(gè)足的若方程f(x)=x、,求證:′1--

--錯(cuò)!>0(1)解:′(x)x-(a-2)-誤錯(cuò)!=錯(cuò)誤!(x>時(shí),f′(x),函數(shù)f(x)在(0)數(shù)f(x)的單(0,∞a>0時(shí)f0x>誤!x)<00<x<誤!數(shù)f(x)的單調(diào)增區(qū)間錯(cuò),單調(diào)減區(qū)間誤!.(2)解:由1)得,若函數(shù)f(x(x)值f錯(cuò)誤-

aln誤0.-4>0.h(a)=4ln-4()上為,0,=4ln誤!-1=ln錯(cuò)誤(23h(a)=0.00a>a,h(當(dāng)0<a<ah(a)<0.0a=3時(shí),f3)=3(2-ln3),f(1)0,所以,f(x)點(diǎn).數(shù)a的為3.():因?yàn)閤程f(x)=c的兩根(1)1設(shè)0<<xx錯(cuò)誤!-(a-2-alnx=x誤!a-122x-alnx2誤!--2)x-錯(cuò)!(a-2)·11--

11--11=0,2x\o,+誤!-2x=ax+aln-ax-1112alnx22以a=誤!錯(cuò)!,當(dāng)x∈誤!時(shí)(x0,當(dāng)x∈誤!時(shí)f′(x)>f(x+x錯(cuò)!即可12明+x>錯(cuò)!,12x2(x+x)(l-ln錯(cuò)誤!2x錯(cuò)-122x,22x-2xf(x,x)<2x12

2f(x,x)(t<1).1令g(t2,+1)g\f(1,-錯(cuò)誤=\f((t-

t+2

).為t>以g′(t)≥t=,(t)=0以(+∞又g(1當(dāng)∈(1),總成.所以原題得證.如果于x程ax+錯(cuò)誤!=3(,)解數(shù)a的為_____(dá)__.:a≤0a=2--

--ax+錯(cuò)誤3,a=誤!-誤!令t=f(t)=t∈().f(t)的圖象f(2當(dāng)x1)時(shí)遞增mxx∈(1,+∞,f(t)遞減,所≤0或

數(shù)f(x)=lnx-\(+f(x)(0,數(shù)則的是____(dá)___.:a≤2)=錯(cuò)!≥在(,+∞立易得≤y2

=x和y=

x

M、N,則當(dāng)段MN時(shí)的為_:\(

M(a2a2-ln

,a),N(Ml=|a

ln|由l′=2-誤!=誤!=誤!,令l′>0得l=a在錯(cuò)誤增令l′<0l=

2在錯(cuò)!上單調(diào)遞減以=錯(cuò)!時(shí),段MN的長(zhǎng)值.已知函數(shù)fx)(ax2+x)x,中是數(shù)R.(1)<時(shí),解不等f(wàn)x)>0;若f(x[-1,]上是單調(diào)函數(shù)圍;--

--3)當(dāng)時(shí)數(shù)k程f()x+2在[kk]上有解(1)

x>0,式f(x)>0x2+a<x錯(cuò)誤!<0,所)為誤!.2)f′(x)=(+x+(2+x)e[a2+(2a+1)x+1]

x當(dāng)=0時(shí),x)=(x+1)e

xf′(x)≥在[-,=時(shí)取,故當(dāng)時(shí),g(x)ax2

+(2,因

244a0以x)=0根x、x12設(shè)x>x,因f(x)有極大值又有極小值a為-1)·g)12-,所f(x(-1點(diǎn)[11,可x>0>x,因g(x下要使f(x)在11]上因?yàn)椋绫仨殱M誤!即誤!所以-誤!≤a≤0.綜上可知,是錯(cuò)誤()0,為x=x+2,由于ex以

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論