版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2023年河南省濮陽市普通高校對口單招數(shù)學自考測試卷(含答案)學校:________班級:________姓名:________考號:________
一、單選題(20題)1.橢圓離心率是()A.
B.
C.5/6
D.6/5
2.下列函數(shù)為偶函數(shù)的是A.
B.
C.
D.
3.下列函數(shù)中,在區(qū)間(0,)上是減函數(shù)的是()A.y=sinxB.y=cosxC.y=xD.y=lgx
4.頂點坐標為(-2,-3),焦點為F(-4,3)的拋物線方程是()A.(y-3)2=-4(x+2)
B.(y+3)2=4(x+2)
C.(y-3)2=-8(x+2)
D.(y+3)2=-8(x+2)
5.設(shè)a>b,c>d則()A.ac>bdB.a+c>b+cC.a+d>b+cD.ad>be
6.A.負數(shù)B.正數(shù)C.非負數(shù)D.非正數(shù)
7.已知平面向量a=(1,3),b(-1,1),則ab=A.(0,4)B.(-1,3)C.0D.2
8.直線3x+4y=b與圓x2+y2-2x-2y+1=0相切,則b的值是()A.-2或12B.2或-12C.-2或-12D.2或12
9.{已知集合A={-1,0,1},B={x|-1≤x<1}則A∩B=()A.{0}B.{-1,0}C.{0,1}D.{-1,0,1}
10.隨著互聯(lián)網(wǎng)的普及,網(wǎng)上購物已經(jīng)逐漸成為消費時尚,為了解消費者對網(wǎng)上購物的滿意情況,某公司隨機對4500名網(wǎng)上購物消費者進行了調(diào)查(每名消費者限選一種情況回答),統(tǒng)計結(jié)果如表:根據(jù)表中數(shù)據(jù),估計在網(wǎng)上購物的消費者群體中對網(wǎng)上購物“比較滿意”或“滿意”的概率是()A.7/15B.2/5C.11/15D.13/15
11.A.1B.8C.27
12.某高職院校為提高辦學質(zhì)量,建設(shè)同時具備理論教學和實踐教學能力的“雙師型”教師隊伍,現(xiàn)決定從3名男教師和3名女教師中任選2人一同到某企業(yè)實訓(xùn),則選中的2人都是男教師的概率為()A.
B.
C.
D.
13.橢圓的中心在原點,焦距為4,一條準線為x=-4,則該橢圓的方程為()A.x2/16+y2/12=1
B.x2/12+y2/8=1
C.x2/8+y2/4=1
D.x2/12+y2/4=1
14.若函數(shù)f(x)=x2+mx+1有兩個不同的零點,則實數(shù)m的取值范圍是()A.(-1,1)B.(-2,2)C.(-∞,-2)∪(2,+∞)D.(-∞,-l)∪(l,+∞)
15.已知點A(1,-1),B(-1,1),則向量為()A.(1,-1)B.(-1,1)C.(0,0)D.(-2,2)
16.已知等差數(shù)列中,前15項的和為50,則a8等于()A.6
B.
C.12
D.
17.已知的值()A.
B.
C.
D.
18.函數(shù)y=3sin+4cos的周期是()A.2πB.3πC.5πD.6π
19.A.B.C.
20.己知集合A={x|x>0},B={x|-2<x<1},則A∪B等于()A.{x|0<x<1}B.{x|x>0}C.{x|-2<x<1}D.{x|x>-2}
二、填空題(10題)21.在△ABC中,若acosA=bcosB,則△ABC是
三角形。
22.
23.正方體ABCD-A1B1C1D1中AC與AC1所成角的正弦值為
。
24.的值是
。
25.
26.
27.已知_____.
28.在△ABC中,AB=,A=75°,B=45°,則AC=__________.
29.若log2x=1,則x=_____.
30.一個口袋中裝有大小相同、質(zhì)地均勻的兩個紅球和兩個白球,從中任意取出兩個,則這兩個球顏色相同的概率是______.
三、計算題(5題)31.在等差數(shù)列{an}中,前n項和為Sn
,且S4
=-62,S6=-75,求等差數(shù)列{an}的通項公式an.
32.解不等式4<|1-3x|<7
33.有四個數(shù),前三個數(shù)成等差數(shù)列,公差為10,后三個數(shù)成等比數(shù)列,公比為3,求這四個數(shù).
34.從含有2件次品的7件產(chǎn)品中,任取2件產(chǎn)品,求以下事件的概率.(1)恰有2件次品的概率P1;(2)恰有1件次品的概率P2
.
35.求焦點x軸上,實半軸長為4,且離心率為3/2的雙曲線方程.
四、簡答題(10題)36.如圖:在長方體從中,E,F(xiàn)分別為和AB和中點。(1)求證:AF//平面。(2)求與底面ABCD所成角的正切值。
37.三個數(shù)a,b,c成等差數(shù)列,公差為3,又a,b+1,c+6成等比數(shù)列,求a,b,c。
38.點A是BCD所在平面外的一點,且AB=AC,BAC=BCD=90°,BDC=60°,平面ABC丄平面BCD。(1)求證平面ABD丄平面ACD;(2)求二面角A-BD-C的正切值。
39.求過點P(2,3)且被兩條直線:3x+4y-7=0,:3x+4y+8=0所截得的線段長為的直線方程。
40.已知的值
41.在等差數(shù)列中,已知a1,a4是方程x2-10x+16=0的兩個根,且a4>a1,求S8的值
42.化簡
43.數(shù)列的前n項和Sn,且求(1)a2,a3,a4的值及數(shù)列的通項公式(2)a2+a4+a6++a2n的值
44.計算
45.已知函數(shù):,求x的取值范圍。
五、證明題(10題)46.己知sin(θ+α)=sin(θ+β),求證:
47.△ABC的三邊分別為a,b,c,為且,求證∠C=
48.己知x∈(1,10),A=lg2x,B=lgx2,證明:A<B.
49.己知正方體ABCD-A1B1C1D1,證明:直線AC1與直線A1D1所成角的余弦值為.
50.己知
a
=(-1,2),b
=(-2,1),證明:cos〈a,b〉=4/5.
51.
52.如圖所示,四棱錐中P-ABCD,底面ABCD為矩形,點E為PB的中點.求證:PD//平面ACE.
53.長、寬、高分別為3,4,5的長方體,沿相鄰面對角線截取一個三棱錐(如圖).求證:剩下幾何體的體積為三棱錐體積的5倍.
54.己知直線l:x+y+4=0且圓心為(1,-1)的圓C與直線l相切。證明:圓C的標準方程為(x-1)2
+(y+1)2
=8.
55.若x∈(0,1),求證:log3X3<log3X<X3.
六、綜合題(2題)56.
57.己知點A(0,2),5(-2,-2).(1)求過A,B兩點的直線l的方程;(2)己知點A在橢圓C:上,且(1)中的直線l過橢圓C的左焦點。求橢圓C的標準方程.
參考答案
1.A
2.A
3.B,故在(0,π/2)是減函數(shù)。
4.C四個選項中,只有C的頂點坐標為(-2,3),焦點為(-4,3)。
5.B不等式的性質(zhì)。由不等式性質(zhì)得B正確.
6.C
7.D
8.D圓的切線方程的性質(zhì).圓方程可化為C(x-l)2+(y-1)2=1,∴該圓是以(1,1)為圓心,以1為半徑的圓,∵直線3x+4y=
9.B集合的運算.A中的元素-1,0在B中,1不在B中,所以A∩B={-1,0}.
10.C古典概型的概率公式.由題意,n=4500-200-2100-1000=1200.所以對網(wǎng)上購物“比較滿意”或“滿意”的人數(shù)為1200+2100=3300,由古典概型概率公式可得對網(wǎng)上購物“比較滿意”或“滿意”的概率為3300/4500=11/15.
11.C
12.C
13.C橢圓的標準方程.橢圓的焦距為4,所以2c=4,c=2因為準線為x=-4,所以橢圓的焦點在x軸上,且-a2/c=-4,所以a2=4c=8,b2=a2-c2=8-4=4,所以橢圓的方程為x2/8+y2/4+=1
14.C一元二次方程的根的判別以及一元二次不等式的解法.由題意知,一元二次方程x2+mx+1=0有兩個不等實根,可得△>0,即m2-4>0,解得m>2或m<-2.故選C
15.D平面向量的線性運算.AB=(-1-1,1-(-1)=(-2,2).
16.A
17.A
18.Dy=3sin(x/3)+4cos(x/3)=5[3/5sin(x/3)+4/5cos(x/3)]=5sin(x/3+α),所以最小正周期為6π。
19.A
20.D
21.等腰或者直角三角形,
22.4.5
23.
,由于CC1=1,AC1=,所以角AC1C的正弦值為。
24.
,
25.1
26.π/2
27.-1,
28.2.解三角形的正弦定理.C=180°-75°-45°=60°,由正弦定理得=AB/sinC=AC/sinB解得AC=2.
29.2.指數(shù)式與對數(shù)式的轉(zhuǎn)化及其計算.指數(shù)式轉(zhuǎn)化為對數(shù)式x=2.
30.1/3古典概型及概率計算公式.兩個紅球的編號為1,2兩個白球的編號為3,4,任取兩個的基本事件有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),兩球顏色相同的事件有(1,2)和(3,4),故兩球顏色相同概率為2/6=1/3
31.解:設(shè)首項為a1、公差為d,依題意:4a1+6d=-62;6a1+15d=-75解得a1=-20,d=3,an=a1+(n-1)d=3n-23
32.
33.
34.
35.解:實半軸長為4∴a=4e=c/a=3/2,∴c=6∴a2=16,b2=c2-a2=20雙曲線方程為
36.
37.由已知得:由上可解得
38.分析:本題考查面面垂直的證明,考查二面角的正切值的求法。(1)推導(dǎo)出CD⊥AB,AB⊥AC,由此能證明平面ABD⊥平面ACD。
(2)取BC中點O,以O(shè)為原點,過O作CD的平行線為x軸,OC為y軸,OA為z軸,建立空間直角坐標系,利用向量法能求出二面角A-BD-C的正切值。解答:證明:(Ⅰ)∵面ABC⊥底面BCD,∠BCD=90°,面ABC∩面BCD=BC,
∴CD⊥平面ABC,∴CD⊥AB,
∵∠BAC=90°,∴AB⊥AC,
∵AC∩CD=C,
∴平面ABD⊥平面ACD。解:(Ⅱ)取BC中點O,∵面ABC⊥底面BCD,∠BAC=90°,AB=AC,
∴AO⊥BC,∴AO⊥平面BDC,
以O(shè)為原點,過O作CD的平行線為x軸,OC為y軸,OA為z軸,建立空間直角坐標系,
39.x-7y+19=0或7x+y-17=0
40.
∴∴則
41.方程的兩個根為2和8,又∴又∵a4=a1+3d,∴d=2∵。
42.1+2cos2a-cos2=1+2cos2a-(cos2a-sin2a)=1+cos2a+sin2a=2
43.
44.
45.
X>4
46.
47.
48.證明:考慮對數(shù)函數(shù)y=lgx的限制知
:當x∈(1,10)時,y∈(0,1)A-B=lg2
x-lgx2
=lgx·lgx-2lgx=lgx(lgx-2)∵lgx∈(0,1)∴l(xiāng)gx-2<0A-B<0∴A<B
49.
50.
51.
52.
∴PD//平面ACE.
53.證明:根據(jù)該幾何體的特征,可知所剩的幾
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 貴州大學《電電子基礎(chǔ)訓(xùn)練》2023-2024學年第一學期期末試卷
- 貴州財經(jīng)大學《人文地理學基本問題》2023-2024學年第一學期期末試卷
- 2025年陜西省建筑安全員考試題庫
- 貴陽信息科技學院《管理學精要》2023-2024學年第一學期期末試卷
- 廣州珠江職業(yè)技術(shù)學院《組合與運籌》2023-2024學年第一學期期末試卷
- 2025海南省建筑安全員B證考試題庫及答案
- 2025福建省安全員考試題庫附答案
- 廣州幼兒師范高等專科學?!陡呒壜犝f》2023-2024學年第一學期期末試卷
- 廣州新華學院《量子力學(Ⅱ)》2023-2024學年第一學期期末試卷
- 廣州衛(wèi)生職業(yè)技術(shù)學院《曲式與作品分析Ⅰ》2023-2024學年第一學期期末試卷
- 2024年中國陶瓷碗盆市場調(diào)查研究報告
- ISO 56001-2024《創(chuàng)新管理體系-要求》專業(yè)解讀與應(yīng)用實踐指導(dǎo)材料之22:“8運行-8.1運行策劃和控制”(雷澤佳編制-2025B0)
- 單位網(wǎng)絡(luò)安全攻防演練
- 神經(jīng)外科基礎(chǔ)護理課件
- 2024中國儲備糧管理集團限公司招聘700人易考易錯模擬試題(共500題)試卷后附參考答案
- 內(nèi)蒙古赤峰市2023-2024學年高一上學期期末考試物理試題(含答案)
- 建筑工程機械設(shè)備安全技術(shù)操作規(guī)程
- 2024年中國心力衰竭診斷和治療指南2024版
- HCCDP 云遷移認證理論題庫
- 臺大公開課--《紅樓夢》筆記剖析
- 底總結(jié)報告2017年初開場計劃策劃模版圖文可隨意編輯修改課件
評論
0/150
提交評論