版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
§07.直線和圓的方程知識(shí)要點(diǎn)
一、直線方程.
1.直線的傾斜角:一條直線向上的方向與x軸正方向所成的最小正角叫做這條直線的傾斜
角,其中直線與x軸平行或重合時(shí),其傾斜角為0,故直線傾斜角的范圍是
0180(0).
注:①當(dāng)90或xx時(shí),直線l垂直于x軸,它的斜率不存在.
21
②每一條直線都存在惟一的傾斜角,除與x軸垂直的直線不存在斜率外,其余每一條直線都
有惟一的斜率,并且當(dāng)直線的斜率一定期,其傾斜角也相應(yīng)擬定.
2.直線方程的幾種形式:點(diǎn)斜式、截距式、兩點(diǎn)式、斜切式.
特別地,當(dāng)直線通過(guò)兩點(diǎn)(a,0),(0,b),即直線在x軸,y軸上的截距分別為a,b(a0,b0)時(shí),
xy
直線方程是:1.
ab
22
注:若yx2是一直線的方程,則這條直線的方程是yx2,但若
33
2
yx2(x0)則不是這條線.
3
附:直線系:對(duì)于直線的斜截式方程ykxb,當(dāng)k,b均為擬定的數(shù)值時(shí),它表達(dá)一條擬定
的直線,假如k,b變化時(shí),相應(yīng)的直線也會(huì)變化.①當(dāng)b為定植,k變化時(shí),它們表達(dá)過(guò)定點(diǎn)
(0,b)的直線束.②當(dāng)k為定值,b變化時(shí),它們表達(dá)一組平行直線.
3.⑴兩條直線平行:
l∥lkk兩條直線平行的條件是:①l和l是兩條不重合的直線.②在l和l的斜率
12121212
都存在的前提下得到的.因此,應(yīng)特別注意,抽掉或忽視其中任一個(gè)“前提”都會(huì)導(dǎo)致結(jié)論的
錯(cuò)誤.
(一般的結(jié)論是:對(duì)于兩條直線l,l,它們?cè)趛軸上的縱截距是b,b,則l∥lkk,
12121212
且bb或l,l的斜率均不存在,即ABBA是平行的必要不充足條件,且CC)
1212121212
推論:假如兩條直線l,l的傾斜角為,則l∥l.
12121212
⑵兩條直線垂直:
兩條直線垂直的條件:①設(shè)兩條直線l和l的斜率分別為k和k,則有l(wèi)lkk1這
12121212
里的前提是l,l的斜率都存在.②llk0,且l的斜率不存在或k0,且l的斜率不
12121221
存在.(即ABAB0是垂直的充要條件)
1221
4.直線的交角:
⑴直線l到l的角(方向角);直線l到l的角,是指直線l繞交點(diǎn)依逆時(shí)針?lè)较蛐D(zhuǎn)到
12121
kk
與l重合時(shí)所轉(zhuǎn)動(dòng)的角,它的范圍是(0,),當(dāng)90時(shí)tan21.
21kk
12
⑵兩條相交直線l與l的夾角:兩條相交直線l與l的夾角,是指由l與l相交所成的四
121212
個(gè)角中最小的正角,又稱為l和l所成的角,它的取值范圍是0,,當(dāng)90,則有
122
kk
tan21.
1kk
12
l:AxByC0
5.過(guò)兩直線1111的交點(diǎn)的直線系方程AxByC(AxByC)0(
l:AxByC0111222
2222
為參數(shù),AxByC0不涉及在內(nèi))
222
6.點(diǎn)到直線的距離:
⑴點(diǎn)到直線的距離公式:設(shè)點(diǎn)P(x,y),直線l:AxByC0,P到l的距離為d,則有
00
AxByC
d00.
A2B2
注:
1.兩點(diǎn)P(x,y)、P(x,y)的距離公式:|PP|(xx)2(yy)2.
111222122121
特例:點(diǎn)P(x,y)到原點(diǎn)O的距離:|OP|x2y2
2.定比分點(diǎn)坐標(biāo)分式。若點(diǎn)P(x,y)分有向線段PP所成的比為即PPPP,其中
1212
xxyy
P(x,y),P(x,y).則x12,y12
11122211
特例,中點(diǎn)坐標(biāo)公式;重要結(jié)論,三角形重心坐標(biāo)公式。
3.直線的傾斜角(0°≤<180°)、斜率:ktan
yy
4.過(guò)兩點(diǎn)P(x,y),P(x,y)的直線的斜率公式:k21.(xx)
111222xx12
21
當(dāng)xx,yy(即直線和x軸垂直)時(shí),直線的傾斜角=90,沒(méi)有斜率
1212
⑵兩條平行線間的距離公式:設(shè)兩條平行直線l:AxByC0,l:AxByC0(CC),
112212
CC
它們之間的距離為d,則有d12.
A2B2
注;直線系方程
1.與直線:Ax+By+C=0平行的直線系方程是:Ax+By+m=0.(m?R,C≠m).
2.與直線:Ax+By+C=0垂直的直線系方程是:Bx-Ay+m=0.(m?R)
過(guò)定點(diǎn)()的直線系方程是:不全為
3.x1,y1A(x-x1)+B(y-y1)=0(A,B0)
過(guò)直線、交點(diǎn)的直線系方程:()λ()λ?R)注:
4.l1l2A1x+B1y+C1+A2x+B2y+C2=0(
該直線系不含
l2.
7.關(guān)于點(diǎn)對(duì)稱和關(guān)于某直線對(duì)稱:
⑴關(guān)于點(diǎn)對(duì)稱的兩條直線一定是平行直線,且這個(gè)點(diǎn)到兩直線的距離相等.
⑵關(guān)于某直線對(duì)稱的兩條直線性質(zhì):若兩條直線平行,則對(duì)稱直線也平行,且兩直線到對(duì)稱
直線距離相等.
若兩條直線不平行,則對(duì)稱直線必過(guò)兩條直線的交點(diǎn),且對(duì)稱直線為兩直線夾角的角平分線.
⑶點(diǎn)關(guān)于某一條直線對(duì)稱,用中點(diǎn)表達(dá)兩對(duì)稱點(diǎn),則中點(diǎn)在對(duì)稱直線上(方程①),過(guò)兩對(duì)
稱點(diǎn)的直線方程與對(duì)稱直線方程垂直(方程②)①②可解得所求對(duì)稱點(diǎn).
注:①曲線、直線關(guān)于一直線(yxb)對(duì)稱的解法:y換x,x換y.例:曲線f(x,y)=0
關(guān)于直線y=x–2對(duì)稱曲線方程是f(y+2,x–2)=0.
②曲線C:f(x,y)=0關(guān)于點(diǎn)(a,b)的對(duì)稱曲線方程是f(a–x,2b–y)=0.
二、圓的方程.
1.⑴曲線與方程:在直角坐標(biāo)系中,假如某曲線C上的與一個(gè)二元方程f(x,y)0的實(shí)數(shù)
建立了如下關(guān)系:
①曲線上的點(diǎn)的坐標(biāo)都是這個(gè)方程的解.
②以這個(gè)方程的解為坐標(biāo)的點(diǎn)都是曲線上的點(diǎn).
那么這個(gè)方程叫做曲線方程;這條曲線叫做方程的曲線(圖形).
⑵曲線和方程的關(guān)系,實(shí)質(zhì)上是曲線上任一點(diǎn)M(x,y)其坐標(biāo)與方程f(x,y)0的一種關(guān)系,
曲線上任一點(diǎn)(x,y)是方程f(x,y)0的解;反過(guò)來(lái),滿足方程f(x,y)0的解所相應(yīng)的點(diǎn)是
曲線上的點(diǎn).
注:假如曲線的方程是,那么點(diǎn)線上的充要條件是
Cf(x,y)=0P0(x0,y)Cf(x0,y0)=0
2.圓的標(biāo)準(zhǔn)方程:以點(diǎn)C(a,b)為圓心,r為半徑的圓的標(biāo)準(zhǔn)方程是(xa)2(yb)2r2.
特例:圓心在坐標(biāo)原點(diǎn),半徑為r的圓的方程是:x2y2r2.
注:特殊圓的方程:①與x軸相切的圓方程(xa)2(yb)2b2[rb,圓心(a,b)或(a,b)]
②與y軸相切的圓方程(xa)2(yb)2a2[ra,圓心(a,b)或(a,b)]
③與x軸y軸都相切的圓方程(xa)2(ya)2a2[ra,圓心(a,a)]
3.圓的一般方程:x2y2DxEyF0.
DED2E24F
當(dāng)D2E24F0時(shí),方程表達(dá)一個(gè)圓,其中圓心C,,半徑r.
222
DE
當(dāng)D2E24F0時(shí),方程表達(dá)一個(gè)點(diǎn),.
22
當(dāng)D2E24F0時(shí),方程無(wú)圖形(稱虛圓).
xarcos
注:①圓的參數(shù)方程:(為參數(shù)).
ybrsin
②方程Ax2BxyCy2DxEyF0表達(dá)圓的充要條件是:B0且AC0且
D2E24AF0.
③圓的直徑或方程:已知A(x,y)B(x,y)(xx)(xx)(yy)(yy)0(用向量可征).
11221212
4.點(diǎn)和圓的位置關(guān)系:給定點(diǎn)M(x,y)及圓C:(xa)2(yb)2r2.
00
①M(fèi)在圓C內(nèi)(xa)2(yb)2r2
00
②M在圓C上(xa)2(yb)2r2
00
③M在圓C外(xa)2(yb)2r2
00
5.直線和圓的位置關(guān)系:
設(shè)圓圓C:(xa)2(yb)2r2(r0);直線l:AxByC0(A2B20);
AaBbC
圓心C(a,b)到直線l的距離d.
A2B2
①dr時(shí),l與C相切;
x2y2DxEyF0
附:若兩圓相切,則111相減為公切線方程.
x2y2DxEyF0
222
②dr時(shí),l與C相交;
C:x2y2DxEyF0
附:公共弦方程:設(shè)1111
C:x2y2DxEyF0
2222
有兩個(gè)交點(diǎn),則其公共弦方程為(DD)x(EE)y(FF)0.
121212
③dr時(shí),l與C相離.
x2y2DxEyF0
附:若兩圓相離,則111相減為圓心OO的連線的中與線方程.
x2y2DxEyF012
222
(xa)2(yb)2r2
由代數(shù)特性判斷:方程組用代入法,得關(guān)于x(或y)的一元二次方
AxBxC0
程,其判別式為,則:
0l與C相切;
0l與C相交;
0l與C相離.
注:若兩圓為同心圓則x2y2DxEyF0,x2y2DxEyF0相減,不表達(dá)直
111222
線.
6.圓的切線方程:圓x2y2r2的斜率為k的切線方程是ykx1k2r過(guò)圓
x2y2DxEyF0
xxyy
上一點(diǎn)P(x,y)的切線方程為:xxyyD0E0F0.
000022
①一般方程若點(diǎn)(x,y)在圓上,則(x–a)(x–a)+(y–b)(y–b)=R2.特別地,過(guò)圓x2y2r2上
0000A
一點(diǎn)P(x,y)的切線方程為xxyyr2.
0000
BC
D(a,b)
yyk(xx)
1010
②若點(diǎn)(x,y)不在圓上,圓心為(a,b)則byk(ax),聯(lián)立求出k切線方程.
0011
R
R21
7.求切點(diǎn)弦方程:方法是構(gòu)造圖,則切點(diǎn)弦方程即轉(zhuǎn)化為公共弦方程.如圖:ABCD四類共
圓.已知O的方程x2y2DxEyF0…①又以ABCD為圓為方程為
(xx)(xa)(yy)(xb)k2…②
AA
(xa)2(yb)2
R2AA…③,所以BC的方程即③代②,①②相切即為所求.
4
三、曲線和方程
1.曲線與方程:在直角坐標(biāo)系中,假如曲線C和方程f(x,y)=0的實(shí)數(shù)解建立了如下的關(guān)系:
1)曲線C上的點(diǎn)的坐標(biāo)都是方程f(x,y)=0的解(純粹性);
2)方程f(x,y)=0的解為坐標(biāo)的點(diǎn)都在曲線C上(完備性)。則稱方程f(x,y)=0為曲線C的
方程,曲線C叫做方程f(x,y)=0的曲線。
2.求曲線方程的方法:.
1)直接法:建系設(shè)點(diǎn),列式表標(biāo),簡(jiǎn)化檢查;2)參數(shù)法;3)定義法,4)待定系
數(shù)法.
-圓錐曲線方程
考試內(nèi)容:
橢圓及其標(biāo)準(zhǔn)方程.橢圓的簡(jiǎn)樸幾何性質(zhì).橢圓的參數(shù)方程.
雙曲線及其標(biāo)準(zhǔn)方程.雙曲線的簡(jiǎn)樸幾何性質(zhì).
拋物線及其標(biāo)準(zhǔn)方程.拋物線的簡(jiǎn)樸幾何性質(zhì).
考試規(guī)定:
(1)掌握橢圓的定義、標(biāo)準(zhǔn)方程和橢圓的簡(jiǎn)樸幾何性質(zhì),了解橢圓的參數(shù)方程.
(2)掌握雙曲線的定義、標(biāo)準(zhǔn)方程和雙曲線的簡(jiǎn)樸幾何性質(zhì).
(3)掌握拋物線的定義、標(biāo)準(zhǔn)方程和拋物線的簡(jiǎn)樸幾何性質(zhì).
(4)了解圓錐曲線的初步應(yīng)用.
§08.圓錐曲線方程知識(shí)要點(diǎn)
一、橢圓方程.
1.橢圓方程的第一定義:
PFPF2aFF方程為橢圓,
1212
PFPF2aFF無(wú)軌跡,
1212
PFPF2aFF以F,F為端點(diǎn)的線段
121212
⑴①橢圓的標(biāo)準(zhǔn)方程:
中心在原點(diǎn),焦點(diǎn)在軸上:x2y2中心在原點(diǎn),焦點(diǎn)在軸上:
i.x1(ab0).ii.y
a2b2
y2x2.
1(ab0)
a2b2
x2y2
②一般方程:Ax2By21(A0,B0).③橢圓的標(biāo)準(zhǔn)參數(shù)方程:1的參數(shù)方程為
a2b2
xacos
(一象限應(yīng)是屬于0).
ybsin2
⑵①頂點(diǎn):(a,0)(0,b)或(0,a)(b,0).②軸:對(duì)稱軸:x軸,y軸;長(zhǎng)軸長(zhǎng)2a,短軸長(zhǎng)2b.③
a2
焦點(diǎn):(c,0)(c,0)或(0,c)(0,c).④焦距:FF2c,ca2b2.⑤準(zhǔn)線:x或
12c
a2c
y.⑥離心率:e(0e1).⑦焦點(diǎn)半徑:
ca
x2y2
i.設(shè)P(x,y)為橢圓1(ab0)上的一點(diǎn),F(xiàn),F為左、右焦點(diǎn),則PFaex,PFaex
00a2b2121020
由橢圓方程的第二定義可以推出.
x2y2
ii.設(shè)P(x,y)為橢圓1(ab0)上的一點(diǎn),F(xiàn),F為上、下焦點(diǎn),則PFaey,PFaey
00b2a2121020
由橢圓方程的第二定義可以推出.
a2a2
由橢圓第二定義可知:pFe(x)aex(x0),pFe(x)exa(x0)歸結(jié)起來(lái)為
10c002c000
“左加右減”.
注意:橢圓參數(shù)方程的推導(dǎo):得N(acos,bsin)方程的軌跡為橢圓.
2b2b2b2
⑧通徑:垂直于x軸且過(guò)焦點(diǎn)的弦叫做通經(jīng).坐標(biāo):d(c,)和(c,)
a2aa
x2y2c
⑶共離心率的橢圓系的方程:橢圓1(ab0)的離心率是e(ca2b2),方
a2b2a
x2y2c
程t(t是大于0的參數(shù),ab0)的離心率也是e我們稱此方程為共離心率的
a2b2a
橢圓系方程.
x2y2
⑸若P是橢圓:1上的點(diǎn).F,F為焦點(diǎn),若FPF,則PFF的面積為
a2b2121212
b2tan(用余弦定理與PFPF2a可得).若是雙曲線,則面積為b2cot.
2122
二、雙曲線方程.▲y
(bcos,bsin)
(acos,asin)
1.雙曲線的第一定義:Nx
PFPF2aFF方程為雙曲線
1212
N的軌跡是橢圓
PFPF2aFF無(wú)軌跡
1212
PFPF2aFF以F,F的一個(gè)端點(diǎn)的一條射線
121212
x2y2y2x2
⑴①雙曲線標(biāo)準(zhǔn)方程:1(a,b0),1(a,b0).一般方程:
a2b2a2b2
Ax2Cy21(AC0).
⑵①i.焦點(diǎn)在x軸上:
a2xy
頂點(diǎn):(a,0),(a,0)焦點(diǎn):(c,0),(c,0)準(zhǔn)線方程x漸近線方程:0或
cab
x2y2
0
a2b2
a2
ii.焦點(diǎn)在y軸上:頂點(diǎn):(0,a),(0,a).焦點(diǎn):(0,c),(0,c).準(zhǔn)線方程:y.漸近線
c
yxy2x2xasecxbtan
方程:0或0,參數(shù)方程:或.
aba2b2ybtanyasec
c2a2
②軸x,y為對(duì)稱軸,實(shí)軸長(zhǎng)為2a,虛軸長(zhǎng)為2b,焦距2c.③離心率e.④準(zhǔn)線距
ac
2b2c
(兩準(zhǔn)線的距離);通徑.⑤參數(shù)關(guān)系c2a2b2,e.⑥焦點(diǎn)半徑公式:對(duì)于雙曲
aa
x2y2
線方程1(F,F分別為雙曲線的左、右焦點(diǎn)或分別為雙曲線的上下焦點(diǎn))
a2b212
“長(zhǎng)加短減”原則:
MFexaMFexa
10構(gòu)成滿足MFMF2a10(與橢圓焦半徑不同,橢圓焦半
MFexa12MFexa
2020
徑要帶符號(hào)計(jì)算,而雙曲線不帶符號(hào))▲▲
yy
F
MFeyaM'M
10M
MFeyaxx
20FF
MFeyaM'
10
F
MFeya
20
⑶等軸雙曲線:雙曲線x2y2a2稱為等軸雙曲線,其漸近線方程為yx,離心率e2.
⑷共軛雙曲線:以已知雙曲線的虛軸為實(shí)軸,實(shí)軸為虛軸的雙曲線,叫做已知雙曲線的共軛
x2y2x2y2x2y2
雙曲線.與互為共軛雙曲線,它們具有共同的漸近線:0.
a2b2a2b2a2b2
x2y2x2y2
⑸共漸近線的雙曲線系方程:(0)的漸近線方程為0假如雙曲線的
a2b2a2b2
▲
xyx2y2y
漸近線為0時(shí),它的雙曲線方程可設(shè)為(0).
43
aba2b22
11
例如:若雙曲線一條漸近線為yx且過(guò)p(3,),求雙曲線的方程?1
2253x
F
1F2
x21x2y2
解:令雙曲線的方程為:y2(0),代入(3,)得1.
42823
⑹直線與雙曲線的位置關(guān)系:
區(qū)域①:無(wú)切線,2條與漸近線平行的直線,合計(jì)2條;
區(qū)域②:即定點(diǎn)在雙曲線上,1條切線,2條與漸近線平行的直線,合計(jì)3條;
區(qū)域③:2條切線,2條與漸近線平行的直線,合計(jì)4條;
區(qū)域④:即定點(diǎn)在漸近線上且非原點(diǎn),1條切線,1條與漸近線平行的直線,合計(jì)2條;
區(qū)域⑤:即過(guò)原點(diǎn),無(wú)切線,無(wú)與漸近線平行的直線.
小結(jié):過(guò)定點(diǎn)作直線與雙曲線有且僅有一個(gè)交點(diǎn),可以作出的直線數(shù)目也許有0、2、3、4
條.
(2)若直線與雙曲線一支有交點(diǎn),交點(diǎn)為二個(gè)時(shí),求擬定直線的斜率可用代入“”法與漸
近線求交和兩根之和與兩根之積同號(hào).
x2y2
⑺若P在雙曲線1,則常用結(jié)論1:P到焦點(diǎn)的距離為m=n,則P到兩準(zhǔn)線的距
a2b2
離比為m︰n.
PF
1
dm
簡(jiǎn)證:1e=.
dPFn
22
e
常用結(jié)論2:從雙曲線一個(gè)焦點(diǎn)到另一條漸近線的距離等于b.
三、拋物線方程.
3.設(shè)p0,拋物線的標(biāo)準(zhǔn)方程、類型及其幾何性質(zhì):
y22pxy22pxx22pyx22py
圖形
▲▲y
y▲y▲y
xxx
x
OOO
O
焦點(diǎn)pppp
F(,0)F(,0)F(0,)F(0,)
2222
準(zhǔn)線pppp
xxyy
2222
范圍x0,yRx0,yRxR,y0xR,y0
對(duì)稱軸x軸y軸
頂點(diǎn)(0,0)
離心率e1
焦點(diǎn)pppp
PFxPFxPFyPFy
21212121
4acb2b
注:①ay2bycx頂點(diǎn)().
4a2a
2P2P
②y2px(p0)則焦點(diǎn)半徑PFx;x2py(p0)則焦點(diǎn)半徑為PFy.
22
③通徑為2p,這是過(guò)焦點(diǎn)的所有弦中最短的.
x2pt2x2pt
④y22px(或x22py)的參數(shù)方程為(或)(t為參數(shù)).
y2pty2pt2
四、圓錐曲線的統(tǒng)一定義..
4.圓錐曲線的統(tǒng)一定義:平面內(nèi)到定點(diǎn)F和定直線l的距離之比為常數(shù)e的點(diǎn)的軌跡.
當(dāng)0e1時(shí),軌跡為橢圓;
當(dāng)e1時(shí),軌跡為拋物線;
當(dāng)e1時(shí),軌跡為雙曲線;
c
當(dāng)e0時(shí),軌跡為圓(e,當(dāng)c0,ab時(shí)).
a
5.圓錐曲線方程具有對(duì)稱性.例如:橢圓的標(biāo)準(zhǔn)方程對(duì)原點(diǎn)的一條直線與雙曲線的交點(diǎn)是關(guān)
于原點(diǎn)對(duì)稱的.
由于具有對(duì)稱性,所以欲證AB=CD,即證AD與BC的中點(diǎn)重合即可.
注:橢圓、雙曲線、拋物線的標(biāo)準(zhǔn)方程與幾何性質(zhì)
橢圓雙曲線拋物線
定義.到兩定點(diǎn)的距離.到兩定點(diǎn)的距
1F1,F21F1,F2
之和為定值離之差的絕對(duì)值為定值
2a(2a>|F1F2|)
的點(diǎn)的軌跡的點(diǎn)的
2a(0<2a<|F1F2|)
軌跡
2.與定點(diǎn)和直線的距離2.與定點(diǎn)和直線的距離與定點(diǎn)和直線的距離相等
之比為定值e的點(diǎn)的軌之比為定值e的點(diǎn)的軌的點(diǎn)的軌跡.
跡.(0<e
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 山東省棗莊市滕州市2024-2025學(xué)年七年級(jí)上學(xué)期1月期末考試道德與法治試卷(含答案)
- 江蘇省宿遷市2024-2025學(xué)年高三1月第一次調(diào)研測(cè)試化學(xué)試題(含答案)
- 09年1月中英合作財(cái)務(wù)管理真題及答案
- 福建省南平市劍津中學(xué)2020-2021學(xué)年高三語(yǔ)文模擬試題含解析
- 2025年度保密協(xié)議模板:涉密數(shù)據(jù)存儲(chǔ)服務(wù)合同3篇
- 2024網(wǎng)絡(luò)游戲內(nèi)容安全與防沉迷系統(tǒng)咨詢合同
- 2024版單位汽車租賃合同范本
- 2024軟件著作權(quán)登記與反侵權(quán)調(diào)查專業(yè)服務(wù)合同3篇
- 2025年度農(nóng)產(chǎn)品加工合作合同3篇
- 2024訂車協(xié)議范本
- 工程材料(構(gòu)配件)設(shè)備清單及自檢結(jié)果表
- 滬教版 三年級(jí)數(shù)學(xué)上冊(cè) 圖形與幾何習(xí)題2
- 大使涂料(安徽)有限公司年產(chǎn)6萬(wàn)噸科技型工業(yè)涂料、水性環(huán)保涂料生產(chǎn)項(xiàng)目環(huán)境影響報(bào)告書(shū)
- 利樂(lè)包和康美包的比較
- 法院執(zhí)行庭長(zhǎng)供職報(bào)告1400字
- 推動(dòng)架機(jī)械加工工序卡片
- 重慶市綦江區(qū)篆塘鎮(zhèn)白坪村建筑用砂巖礦采礦權(quán)評(píng)估報(bào)告
- 甘肅社火100首歌詞
- 行政查房情況記錄表
- GB/T 2315-2000電力金具標(biāo)稱破壞載荷系列及連接型式尺寸
- 腹主動(dòng)脈瘤的護(hù)理查房
評(píng)論
0/150
提交評(píng)論