學(xué)士六層框架辦公樓設(shè)計施工圖實習(xí)報告外文翻譯-dwg_第1頁
學(xué)士六層框架辦公樓設(shè)計施工圖實習(xí)報告外文翻譯-dwg_第2頁
學(xué)士六層框架辦公樓設(shè)計施工圖實習(xí)報告外文翻譯-dwg_第3頁
學(xué)士六層框架辦公樓設(shè)計施工圖實習(xí)報告外文翻譯-dwg_第4頁
學(xué)士六層框架辦公樓設(shè)計施工圖實習(xí)報告外文翻譯-dwg_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

ExperimentalInvestigationofBricksUnderUniaxialTensileTestingBSTRACTSofteningisagradualdecreaseofmechanicalresistanceresultingfromacontinuousincreaseofdeformationimposedonamaterialspecimenorstructure.Itisasalientfeatureofquasi-brittlematerialslikeclaybrick,mortar,ceramics,stoneorconcretewhichfailduetoaprocessofprogressiveInternalcrackgrowth.Suchmechanicalbehaviouriscommonlyattributedtotheheterogeneityofthematerial,duetothepresenceofdifferentphasesandmaterialdefects,suchasflawsandvoids.Fortensilefailurethisphenomenonhasbeenwellidentifiedforconcretebutveryfewresultsexistsforclaybrick..Inthepresentpaper,theresultsofanextensivesetoftestscarriedoutatUniversityofMinhoandincludingthreedifferenttypesofbackunderniaxialtensionwillbepresented.Bothtensilestrengthandfractureenergyarequantified,withrecommendationsfortheadoptionofpracticalvalues.INTRODUCTIONThetensilebehaviourofconcreteandotherquasi-brittlematerialsthathaveadisorderedInternalstructure,suchasbrick.canbewelldescribedbythecohesivecrackmodelproposedinitiallybyHILLERBORG[1].Thismodelhasbeenwidelyusedasthefundamentalmodelthatdescribesthenon-linearfracturemechanicsofquasi-brittlematerials,e.g.[2,3].Accordingtothismodelandduetocrackinglocalization,whichisacharacteristicoffractureprocessInquasi-brittlematerials,thetensilebehaviourIscharacterizedbytwoconstitutivelawsassociatedwithdifferentzonesofthematerialduringtheloadingprocess.seeFigure1.Theelastic-plasticstress-strainrelationshipofFigurelaisvaliduntilthepeakloadisreached.ItisnotedthatbeforethepeakInelasticbehaviouroccursduetomicro-crackingandtheenergydissipatedinthisprocessisusuallyneglectedforthecalculationofthefractureenergy.Thestress-crackopeningdisplacementrelationshipofFigurelbdescribesthestrainsofteningbehaviourinthefractureprocesszoneafterthepeak.Thecohesivestress-openingdisplacementdiagramIscharacterizedbythegradualdecreaseofstressfromftmaximumvalue,tozero,correspondingtotheIncreaseofthedistancebetweenthetwoedgesofthecrackfromzerotothecriticalopening,u,ThesofteningdiagramassumesafundamentalroleInthedescriptionofthefractureprocessandIscharacterizedbythetensilestrength,fr,andthefractureenergy,Gr,whichIsgivenbytheareaunderthesofteningdiagram,seeFigure1b.Thecriticalcrackopening,ue,canbereplacedbytheductilityindexd,[4]givenastheratioGrlfr,whichrepresentsthefractureenergynormalizedbythetensilestrength.Thisparameterallowsthecharacterizationofthebrittlenessofthematerialandisdirectlyrelatedtotheshapeofthedescendingportionofthestress-deformationdiagram.Thereareseveralexperimentalmethodsthathavebeenusedtomeasurethefractureproperties(tensilestrength,fractureenergyandductilityIndex)thatallowthedefinitionoftheconstitutivelawsofthematerial,namelydirecttensiletests,indirecttensiletestssuchasthethree-pointloadtest,andtheBraziliansplittingtest.Althoughtensilefailureresultsfromaloadcombinationandamultiplicity,offactors.meaningthatdirecttensionisnottheonlycauseoftensilecracking,adirecttensiletestseemstobethemoslappropriatetesttocharacterizethebasicfailuremechanism(modeI)ofquasi-brittlematerials.ThistestIsdefinedasthereferencemethodtofollow(5jbeingadoptedinthisworkfarthecharacterizationofthetensilebehaviourofbricks.Differentissuesrelatedtothespecimensandthetestprocedureshavebeendiscussedinthepast,namelythetestingequipment,thecontrolmethod,thelocationoftheLinearVariableDisplacementTransducers(LVDTs),thealignmentofthespecimenand,especially,theattachmentofthespecimenstothesteelplatens.TherelevanceofthelatterIsaddressedInFigure2[6].ThebehaviourinFigure2a(rotatingplatensorhinges)Isjustifiedbytherotationofthespecimenduringtheloadingoperation,wherethecrackproceedsfromonesideofthespecimentotheotherside.InthecaseofFigure2busingfixed(non-rotating)platens,abendingmomentisintroducedandmultiplecrackswillappear.Thisresultsinaslightlylargertensilestrengthandahighervalueofenergydissipated(fractureenergy).Finally,ItisnotedthatalthoughthetensilestrengthandfractureenergyareconsideredIntrinsicpropertiesofthematerial,itIswellknownthatfracturepropertiesaresizeandscaledependent[6,7].Tensilefractureparametersofmasonryconstituents,namelyunitsandthemortar-unitinterface,arekeyparametersforadvancednumericalmodellingofmasonryandforadeeperunderstandingofthebehaviourofmasonrystructures.inmepresentpaper,anexperimentalprogrammeusingthreetypesofclaybrickIsdiscussedwiththeobjectiveofincreasingthedataavailableintheliterature.TESTSET-UPANDSPECIMENSTensiletestswereperformedwithsolidbricksproducedbyValedaGandara,Portugal(S),hollowbricksproducedbyJ.MonteiroeFilhos,Portugal(HP),andhollowbricksproducedbySuceram,Spain(HS).Allbricksareextrudedandtheyweretestedinverticalorthickness(V)andinhorizontalorlength(H)directionresultinginsixserieswiththefollowingnotation:SV,SH;HPV,HPH;HSV,HSH.Table1givesthedimensionsofthebricksandthefreewaterabsorption.Thenetcompressivestrengthofthebricks,alongtheextrusiondirectionwas78N/mm282N/mm2and58N/mm2,respectivelyforS.HPandHS.Hereitisnotedthatthesevaluesaremerelyindicative,asthefirsttwovalueswerefromindependenttestsbydifferentresearchersandinsufficientInformationaboutthetestingproceduresisavailable,see(8,9].Thethirdvalueofcompressivestrengthwasprovidedbythemanufacturer.Itisnotedthat:(a)bricksHPareextrudedwiththeholesparalleltothelargerdimensionandbricksHSareextrudedwiththeholesparalleltothesmallerdimension;(b)bricksHPandHShavesmallgroovesintheuppersurface(sideoppositetothefacingside)inordertoincreaseadhesionbetweentheunitandthebackingmortar,seeFlgure3.TestingequipmentandappliedmeasuringdevicesThetestswereperformedinthelaboratoryoftheCivilEngineeringDepartmentofUniversityofMinho,usingaCS7400-Sshearingtestingmachine.Thismachinehastwoindependenthydraulicactuators,positionedinverticalandhorizontaldirections.Ithasaloadcellconnectedtotheverticalactuatorwithamaximumcapacityof25kN,beingparticularlysuitedtosmallspecimens(maximumsizeof90x150x150mm).Theadoptionofaconstantcrosssectionforthespecimensleadstouncertaintyaboutthelocationofthemicro-cracks.Thisrepresentstheusualsupplementarydifficultyforthecontrolmethodofthistypeoftest.SincethecontrolsystemallowsonlyoneLinearVariableDisplacementTransducer(LVDT)asdisplacementcontrol,itwasdecidedtointroduce,bymeansadiamondsawingmachine,twolateralnotcheswithadepthof8mmandathicknessof3mmatmidheightofthespecimeninordertolocalizethefracturesurface.Withthenotches,thestressanddeformationdistributionisnolongeruniform,withstressandstraingradientsoccurringverylocalizednearthenotchtips.Sincethree-dimensionalnpn-uniformcrackopeningcanoccurontensiletests[10],thetensiletestcontrolusingtheaverageofthedeformationsregisteredonthefourcornersofthespecimenisthemostappropriateprocedure,seeFigure4.However,theavailableequipmentcanonlycontrolonedisplacementtransducer(LVDT),locatedatanotchedside.Thetransducershaveameasurebaseof1mmwithalinearityof0.17%ofthefullstroke.Adeformationrateof0.5um/swasusedinthetests.Theforceappliedwasmeasuredonaloadcellof25kNmaximumloadbearingcapacity,withanaccuracyof0.03%.Afterpreparationofthespecimens'ends,glueadhesionconditionswereenhancedbymakingaseriesofsuperficialslotswithasaw.Then,thespecimenswerecarefullyfixedtothesteelplatensusinganepoxyresin(DEVCOM)insuchawaythattheplatenswerekeptperfectlyparallel.Here,ItIsnotedthatthesteelplatensarefixed(non-rotating),meaningthatloadeccentricityIsnotspecimens.Theonlysourceofanissueforpnsmadceccentricityisparallelismbetweenthesteelplatenswhichwethelackof,uldinduceabendingmomentInthespecimenintheclampingoperation.SpecimendimensionsTakingintoconsiderationthebrickdimensionsandthetestset-up,40x40x70mmSbrickspecimenswereextractedasshownInFigure5.HPandHSbricksarehollowand,therefore,thespecimensextractedfromthebricksmustberepresentativeofthebrickshell,achannelorUspecimens,andthebrickweb1specimens,seeFigure6.Here,itisnotedthattheusageofchannelspecimensinquestionablebecausealoadeccentricityisintroducedbythefactthetopandbottomflangesarefullygluedtothesteelspecimens.Nevertheless,becausetheendplatensarefullyfixed,theeccentricityisverylow.alinearelasticFEMcalculationIndicatesthatthenormalizedloadeccentricity(measuredbyeccentricity/webwidth)isonly0.03.RESULTSFromtheforce-elongationrelationshipobtainedinthetensiletests,thefollowingparameterswereevaluated:tensilestrength,fractureenergy,andresidualstressatultimatescanreading.ThenotchesreducetheYoung'smodulusofthebrick(Eb)byabout20%-40%[11].AsthemeasureofEbisquestionable,itisnotshownhere.Figure7illustratestheprocedureadoptedforevaluatingthefractureenergy,G,.Inthecohesivecrackmodeladdressedabove,thecrackopeninguisequaltothetotalelongation,subtractedfromtheelasticdeformation(u,,=vxlmaes/E0)andtheirreversibledeformationu;,,,whichaccountsforinelasticeffectsduringmaterialunloading,inthevicinityofthemacro-crack.Here,/meansisthedistancebetweenthemeasuringpointsoftheLVDT.Themaximumforcerecordedbytheloadcellwasdividedbytheeffectiveareaofeachspecimen(notchedcross-section),inordertodeterminethetensilestrength.Thefractureenergyisidentifiedwiththeworkthatiscarriedouttocompletetheseparationofthetwofacesofthemacro-crack,perunitofarea.Itisnotpossibletodeterminetheexactcrackopeningforwhichthestressvaluetransferredbecomeszero,duetolongtailexhibitedbythesofteningbranchofthestress-openingcrack.Forthecalculationofthefractureenergy,thevalueofthefractureenergyIsusuallycalculatedastheresultofthesumoftwoquantities,onequantitybeingmeasuredandtheotherquantityestimated.ThemeasuredvalueoffractureenergyGf,meansisdirectlycomputedastheareaunderthestress-crackopeningdiagramuptoanominalvalueofthepeakstrength(ortheultimatevalue).TheestimatedvalueGi,&iscalculatedastheareaunderthelinearcurveobtainedbylinear[12]ornon-linear[11]adjustmentoftheoriginaldiagrambelowthecut-off.Here,takingintoaccounttheforce-elongationdiagramsandtheinternalfrictionofthetestingequipment,thefractureenergywassimplyevaluateduptoadeflectionof60pmoruptoadeflectioncorrespondingtoaforceof200N(ifthedeflectionislessthan60pm).Forthetestsabortedbeforetheselimitconditions,theenergydissipatedwasnotevaluated.SspecimensThestress-elongationrelationshipsforspecimensSVFigure8.ForspecimensSV(intheextrusiondirection),theaveragevaluesWere3.48N/mm2(42%)forthetensilestrengthand0.0575N/mm(39%)forthefractureenergy.Theductilityindex,againgivenbytheratioGf/ft,was0.0165mm.ThevaluesinsidebracketsIndicatethevaluesofthecoefficients(CV)forthesixteensuccessfultests.ForspecimensSH(perpendiclartotheextrusiondirection),theaveragevalueswere2.96N/mm(63%)forthetensilestrengthand0.0508N/mm(41%)forthefractureenergy.Thevaluesinsidebracketsindicatethevaluesofthecoefficientsofvariationforthefourteensuccessfultests.Theductilityindexwas0.0172mm..Thetensilestrengthintheextrusiondirectionwas4.5%ofthecompressivestrength.Thetensilestrengthintheextrusiondirectionwas18%higherandthefractureenergyis15%higherthanthevaluesobtainedintheperpendiculardirection,duetothealignmentofthemicrostructure.Theductilitywassimilarinbothdirections.Therefore,bricktypeSexhibitedonlymoderateanisotropy.Alltheresultsexhibitveryalargescatter,thoughthescatterwashigherinthedirectionperpendiculartotheextrusiondirection.Thereasonforthisseemstobeflaws,micro-cracksandinclusionsintheburntclay.Itiswellknownthatthefractureprocessisathree-dimensionalprocess[10]andFigure9aillustratesthetypicalsuperficialcrackingpatternsofbrickspecimens.ItisclearthatbothstraightandpronouncedS-shapedcracksappear,meaningthatalargescattermustbefound.Inallcases,thecrackingsurfacewastortuous,goingaroundtheaggregateandconcentratingintheinterfacesbetweentheaggregateandthematrix.Finally,theresultsofthefractureenergyvs.thetensilestrengthwereplottedinFigure10,whereitcanbeseenthattherewasaweakcorrelationbetweenfractureenergyandtensilestrength,althoughacleartrendforfractureenergytoincreasewithanincreaseoftensilestrengthwasfound.CUNGLUSIONThepresentpaperaimstodiscussthetensilebehaviourofbricksandprovidedataforadvancednumericalsimulations.Forthispurpose,threedifferentproducerswereselectedincludingsolidandhollowbricksfromPortugalandSpain.Directtensiletestsonaservo-controlledmachinewerecarriedoutinordertoobtainthetensilestrength,thefractureenergyandtheshapeofthestress-elongationdiagram.Allbricksweretestedintwoorthogonaldirections,namelyalongandnormaltothedirectionofextrusion.Forthehollowbricks,twodifferenttypesofspecimenwereextractedsothattheshellandthewebcouldbecharacterized.Duetothepresenceofvoidsandinternalfiringcracks,thecompletestress-elongationdiagramcouldnotbeobtainedinseveralofthespecimens.Theresultsindicatealargescatterforthetensilestrengthandfractureenergy.Thefolldwingconclusionswithrespecttothetensilestrengtharepossible:(a)brickspossessanisotropywithhigherstrengthinthedirectionparalleltoextrusion;(b)inhollowbricks,thetensilestrengthoftheshellishigherthanthatoftheweb.Moreover,theaverageresultsinthebrickspecimensarefairlyconstanttakingintoconsiderationthatthreedifferentbrickmanufacturerswereinvolved.Therefore,forpracticalpurposesthefollowingrecommendationsseempossible:(a)thetensilestrengthofbrickisaround5%ofthecompressivestrength(withvaluesfoundaround4N/mm2inthedirectionparalleltoextrusionand3N/mm2inthedirectionperpendiculartoextrusion);(b)theductilityindexisaround0.018mm(meaningthatthefractureenergyfoundisaround0.08and0.06N/mm,respectivelyparallelandperpendiculartotheextrusiondirection).Thevaluesfoundapplysolelyforsolidbricksandmustbereducedforhollowbricks,accordingtothevolumeofholes.ACKNOWLEDGMENTSThepresentworkwaspartiallysupportedbyprojectGROW-1999-70420"Industrialisedsolutionsforconstructionofreinforcedbrickmasonryshellroofs"fundedbyEuropeanCommission.

單軸拉伸試驗下磚的實驗研究摘要轉(zhuǎn)化是來自在一個材料樣本和結(jié)構(gòu)逐步減少機械阻力的過程,這是粘土磚、砂漿、石材等準(zhǔn)脆性材料具體到一個漸進(jìn)過程的顯著特點。其破壞的原因是內(nèi)部裂紋的增長。由于缺陷和空洞的存在,這些特性通常材料的異質(zhì)性。在混凝土中,拉伸破壞現(xiàn)象已得到確定,但是這種破壞很少存在粘土磚中。在目前的論文中,米尼奧大學(xué)進(jìn)行了一系列拉伸試驗,改試驗還包括三個不同類型磚的單軸拉伸。這三種試驗保過抗拉強度、斷裂能量的量化和實用價值采納的建議。引言混凝土和其它準(zhǔn)脆性材料懶神行為有一個無序的內(nèi)部結(jié)構(gòu)材料,如磚。改象可以很好地描述最初有希勒勒提出的去裂紋模型,改模型已經(jīng)作為最基本的模型用于解釋準(zhǔn)脆性材料的非線性斷裂。依據(jù)這個模型,準(zhǔn)脆性材料的一個特點就是開裂的位置不同,這是拉伸材料在不同部位的拉伸特點,見圖1。直到達(dá)到高峰負(fù)荷,彈塑性應(yīng)力應(yīng)變關(guān)系圖是有效的。據(jù)悉,非彈性行為的高峰值發(fā)生是由于微裂過程中消耗的能量通常被忽略。應(yīng)力開裂張拉位移關(guān)系圖1b介紹了在斷裂過程區(qū)的應(yīng)變后峰轉(zhuǎn)化行為。凝聚力應(yīng)力張開位移座高峰壓力逐漸減少直到為零,與其相對應(yīng)的裂紋的兩個邊之間距離增加從零到關(guān)鍵的開裂點。軟化圖在描述假設(shè)的基礎(chǔ)性作用斷裂過程抗拉強度特點的斷裂能量,即由該地區(qū)給予的軟化圖,簡圖16.關(guān)鍵性裂紋張拉可以代替延性指數(shù)D;其代表了能源正常化的抗性強度。此參數(shù)允許脆性材料的表征和和降部分的形狀直接關(guān)系到應(yīng)力變形圖。已經(jīng)有幾個用于測量斷裂性能的實驗方法對材料直接拉伸實驗和間接拉伸實驗本構(gòu)關(guān)系,這意味著直接拉伸不是破壞的唯一原因。直接拉伸實驗似乎是最適合的測試表征準(zhǔn)脆性材料的實效機理。這個測試定義為可參考的方法。樣本組織和測試程序已經(jīng)在過去發(fā)表過,即測試設(shè)備,控制方法,線性可變位移傳感器的安放位置。后者在圖2中心理問題的相關(guān)性,在圖2的案例中,用固定壓板,彎矩和多個裂縫會出現(xiàn)。這樣的結(jié)果產(chǎn)生于一個稍大的抗拉強度和更高的能量值消散。最后,其指出雖然抗拉強度和斷裂在屬性材料內(nèi)考慮,但是,眾所周知,砌體成分?jǐn)嗔岩蕾囉诖笮『鸵?guī)模,即單位砂漿設(shè)備接口一個實驗程序使用三種類型磚在文獻(xiàn)中體現(xiàn)目標(biāo)數(shù)據(jù)的增加。拉伸斷裂參數(shù)的磚石成分,即單位和砂漿設(shè)備接口,是關(guān)鍵參數(shù)先進(jìn)的磚石結(jié)構(gòu)的數(shù)值模擬并為磚石結(jié)構(gòu)的特性有更深入的了解。我在本論文中,實驗程序使用三種類型的粘土磚討論,文獻(xiàn)提供的目標(biāo)數(shù)據(jù)的增加的。測試設(shè)置的標(biāo)本由河谷達(dá)拉進(jìn)行的實心磚的拉伸實驗,左右的磚都是擠壓的,他們測試是直的,厚的,水平的和長度方向六大系列。表1給出了磚的尺寸和自由水吸收。磚的凈抗壓強度在沿擠出方向分別是78N/mm2,82N/mm2和5882N/mm2。在這里需指出:這些指標(biāo)僅僅是指標(biāo)性的,正如前兩個值是從相互獨立的不同研究者和不充足信息的實驗程序得到的,第三個抗拉強度值是制造商提供的。值得注意的是:HP磚平行較大的尺寸,HP和HS磚在表面上有小槽以增加附著力之間的單位和支持結(jié)構(gòu)。圖1一般的凝聚力模型:(a)彈性應(yīng)力應(yīng)變圖;(b)應(yīng)力裂紋張開位移圖圖2邊界條件的影響:(a)針截邊界;(b)夾緊邊界:(c)軟化形狀的影響圖3為測試選擇的磚:(a)磚瓦;(b)惠普磚;(c)恒生轉(zhuǎn)表1磚標(biāo)本系列:尺寸和吸收檢測設(shè)備和應(yīng)用測量設(shè)備在米尼奧大學(xué)土木工程系實驗室進(jìn)行的實驗,使用了CS7400-S剪測試機器,這個機器有兩個獨立的液壓執(zhí)行機構(gòu),垂直位置和水平位置。其

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論