版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
專項03折疊存在性及最值大全(填空壓軸)1.如圖,在菱形SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,點SKIPIF1<0為邊SKIPIF1<0的中點,SKIPIF1<0為射線SKIPIF1<0上一動點,連接SKIPIF1<0,把SKIPIF1<0沿SKIPIF1<0折疊,得到SKIPIF1<0,當SKIPIF1<0與菱形的邊垂直時,線段SKIPIF1<0的長為______.【答案】SKIPIF1<0或SKIPIF1<0【分析】存在兩種情況①當點F在線段AB上時,由題意得出AE的長,在SKIPIF1<0中可求出AG的長,由SKIPIF1<0根據(jù)折疊的性質,可知SKIPIF1<0在SKIPIF1<0中,可求出GF的長,即可得出AF的長.②當點F在線段AB延長線上時,由SKIPIF1<0得出SKIPIF1<0由SKIPIF1<0SKIPIF1<0中,求出SKIPIF1<0由SKIPIF1<0SKIPIF1<0得出SKIPIF1<0即可得出結果.【詳解】解:如圖1所示:當點F在線段AB上時,過點E作SKIPIF1<0于G,∵四邊形SKIPIF1<0是菱形,SKIPIF1<0SKIPIF1<0∵點E是AD的中點,SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0如圖2所示:當點F在線段AB延長線上時,過點E作SKIPIF1<0SKIPIF1<0交AD于點H,∵四邊形SKIPIF1<0是菱形,SKIPIF1<0SKIPIF1<0∵點E是AD的中點,SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0又SKIPIF1<0SKIPIF1<0SKIPIF1<0故答案為:SKIPIF1<0或SKIPIF1<0【我思故我在】本題主要考查了菱形的性質,折疊的性質,銳角三角函數(shù)的知識,區(qū)分點F的位置在線段AB上和在線段AB的延長線上是解本題的關鍵.2.如圖,菱形SKIPIF1<0的邊長SKIPIF1<0,M是SKIPIF1<0邊上一點,SKIPIF1<0,N是SKIPIF1<0邊上一動點,將梯形SKIPIF1<0沿直線SKIPIF1<0折疊,C對應點SKIPIF1<0.當SKIPIF1<0的長度最小時,SKIPIF1<0的長為__________.【答案】14【分析】作SKIPIF1<0于H,如圖,根據(jù)菱形的性質可求得SKIPIF1<0,SKIPIF1<0,在SKIPIF1<0中,利用勾股定理計算出SKIPIF1<0,再根據(jù)兩點間線段最短得到當點SKIPIF1<0在SKIPIF1<0上時,SKIPIF1<0的值最小,然后證明SKIPIF1<0即可.【詳解】解:作SKIPIF1<0于H,如圖,∵菱形SKIPIF1<0的邊SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,∵梯形SKIPIF1<0沿直線SKIPIF1<0折疊,C對應點SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴當點SKIPIF1<0在SKIPIF1<0上時,SKIPIF1<0的值最小,由折疊的性質得SKIPIF1<0,而SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.故答案為:14.【我思故我在】本題考查了菱形的性質,折疊的性質,勾股定理等知識,解決本題的關鍵是確定點SKIPIF1<0在SKIPIF1<0上時,SKIPIF1<0的值最?。?.如圖,在四邊形紙片ABCD中,ADSKIPIF1<0BC,AB=10,∠B=60°,將紙片折疊,使點B落在AD邊上的點G處,折痕為EF,若∠BFE=45°,則BF的長為______.【答案】SKIPIF1<0【分析】由折疊的性質知SKIPIF1<0,SKIPIF1<0,再由∠BFE=45°得到SKIPIF1<0,過點A作SKIPIF1<0于點H,在SKIPIF1<0中求出SKIPIF1<0的長度,再證明四邊形SKIPIF1<0是矩形,從而得出SKIPIF1<0,即可解決問題.【詳解】解:如圖,過點A作SKIPIF1<0于點H,由折疊的性質知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0四邊形SKIPIF1<0是矩形,SKIPIF1<0,SKIPIF1<0,故答案為:SKIPIF1<0.【我思故我在】本題考查折疊的性質、解直角三角形、矩形的判定與性質,根據(jù)已知角度和折疊的性質得出SKIPIF1<0是解題的關鍵.4.如圖,在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,點SKIPIF1<0在邊SKIPIF1<0上,并且SKIPIF1<0,點SKIPIF1<0為邊SKIPIF1<0上的動點,將SKIPIF1<0沿直線SKIPIF1<0翻折,點SKIPIF1<0落在點SKIPIF1<0處,則點SKIPIF1<0到邊SKIPIF1<0距離的最小值是________.【答案】1.2【分析】過點F作FG⊥AB,垂足為G,過點P作PD⊥AB,垂足為D,根據(jù)垂線段最短,得當PD與FG重合時PD最小,利用相似求解即可.【詳解】∵SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∴AB=10,∵SKIPIF1<0,將SKIPIF1<0沿直線SKIPIF1<0翻折,點SKIPIF1<0落在點SKIPIF1<0處,∴CF=PF=2,AF=AC-CF=6-2=4,過點F作FG⊥AB,垂足為G,過點P作PD⊥AB,垂足為D,根據(jù)垂線段最短,得當PD與FG重合時PD最小,∵∠A=∠A,∠AGF=∠ACB,∴△AGF∽△ACB,∴SKIPIF1<0,∴SKIPIF1<0,∴FG=3.2,∴PD=FG-PF=3.2-2=1.2,故答案為:1.2.【我思故我在】本題考查了勾股定理,折疊的性質,三角形相似,垂線段最短,準確找到最短位置,并利用相似求解是解題的關鍵.5.如圖,在矩形SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,點SKIPIF1<0是線段SKIPIF1<0上的一點(不與點SKIPIF1<0,SKIPIF1<0重合),將△SKIPIF1<0沿SKIPIF1<0折疊,使得點SKIPIF1<0落在SKIPIF1<0處,當△SKIPIF1<0為等腰三角形時,SKIPIF1<0的長為___________.【答案】SKIPIF1<0或SKIPIF1<0【分析】根據(jù)題意分SKIPIF1<0,SKIPIF1<0,SKIPIF1<0三種情況討論,構造直角三角形,利用勾股定理解決問題.【詳解】解:∵四邊形SKIPIF1<0是矩形∴SKIPIF1<0,SKIPIF1<0∵將△SKIPIF1<0沿SKIPIF1<0折疊,使得點SKIPIF1<0落在SKIPIF1<0處,∴SKIPIF1<0SKIPIF1<0,SKIPIF1<0,設SKIPIF1<0SKIPIF1<0,則SKIPIF1<0①當SKIPIF1<0時,如圖過點SKIPIF1<0作SKIPIF1<0,則四邊形SKIPIF1<0為矩形SKIPIF1<0SKIPIF1<0,SKIPIF1<0在SKIPIF1<0中SKIPIF1<0SKIPIF1<0在SKIPIF1<0中SKIPIF1<0即SKIPIF1<0解得SKIPIF1<0SKIPIF1<0②當SKIPIF1<0時,如圖,設SKIPIF1<0交于點SKIPIF1<0,設SKIPIF1<0SKIPIF1<0SKIPIF1<0垂直平分SKIPIF1<0SKIPIF1<0SKIPIF1<0在SKIPIF1<0中SKIPIF1<0即SKIPIF1<0在SKIPIF1<0中,SKIPIF1<0即SKIPIF1<0聯(lián)立SKIPIF1<0,解得SKIPIF1<0SKIPIF1<0③當SKIPIF1<0時,如圖,又SKIPIF1<0SKIPIF1<0垂直平分SKIPIF1<0SKIPIF1<0SKIPIF1<0垂直平分SKIPIF1<0此時SKIPIF1<0重合,不符合題意綜上所述,SKIPIF1<0或SKIPIF1<0故答案為:SKIPIF1<0或SKIPIF1<0【我思故我在】本題考查了矩形的性質,勾股定理,等腰三角形的性質與判定,垂直平分線的性質,分類討論是解題的關鍵.6.如圖,在矩形SKIPIF1<0中,SKIPIF1<0,對角線SKIPIF1<0,點SKIPIF1<0,SKIPIF1<0分別是線段SKIPIF1<0,SKIPIF1<0上的點,將SKIPIF1<0沿直線SKIPIF1<0折疊,點SKIPIF1<0,SKIPIF1<0分別落在點SKIPIF1<0,SKIPIF1<0處.當點SKIPIF1<0落在折線SKIPIF1<0上,且SKIPIF1<0時,SKIPIF1<0的長為______.【答案】2或SKIPIF1<0【分析】分兩種情況討論,由折疊的性質和勾股定理可求解.【詳解】解:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,當點SKIPIF1<0落在SKIPIF1<0上時,SKIPIF1<0將SKIPIF1<0沿直線SKIPIF1<0折疊,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0;當點SKIPIF1<0落在SKIPIF1<0上時,如圖2,連接SKIPIF1<0,過點SKIPIF1<0作SKIPIF1<0于SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0將SKIPIF1<0沿直線SKIPIF1<0折疊,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,綜上所述:SKIPIF1<0的長為2或SKIPIF1<0.【我思故我在】本題考查了矩形的性質,折疊的性質,勾股定理等知識,利用勾股定理列出方程是解題的關鍵.7.在數(shù)學探究活動中,小美將矩形ABCD紙片先對折,展開后折痕是EF,點M為BC邊上一動點,連接AM,過點M作SKIPIF1<0交CD于點N.將SKIPIF1<0沿MN翻折,點C恰好落在線段EF上,已知矩形ABCD中SKIPIF1<0,SKIPIF1<0,那么BM的長為_______.【答案】4或SKIPIF1<0【分析】設BM=x,則CM=BC-BM=6-x,根據(jù)三角函數(shù)可得tan∠CMN=tan∠BAM=SKIPIF1<0,tan∠CMN=SKIPIF1<0,F(xiàn)N=CF-CN=SKIPIF1<0,由折疊可知∶C"N=CN=SKIPIF1<0,tanSKIPIF1<0=tan∠CMN=SKIPIF1<0,由tanSKIPIF1<0=SKIPIF1<0,可求SKIPIF1<0,在Rt△SKIPIF1<0中,由勾股定理,SKIPIF1<0,代入相關數(shù)據(jù)求解即可.【詳解】解:矩形ABCD中,AB=DC=4,BC=6,∠B=∠BCD=90°∴∠BAM+∠AMB=90°,∵MN⊥AM,∴∠AMN=90°,∴∠CMN+∠AMB=90°,∴∠CMN=∠BAM,∵小美將矩形ABCD紙片先對折,展開后折痕是EF,∴CF=SKIPIF1<0DC=2,設BM=x,則CM=BC-BM=6-x,在Rt△ABM中,tan∠BAMSKIPIF1<0∴tan∠CMN=tan∠BAM=SKIPIF1<0在Rt△CMN中,∴tan∠CMN=SKIPIF1<0CN=SKIPIF1<0∴FN=CF-CN=2-SKIPIF1<0由折疊可知∶C"N=CN=SKIPIF1<0連接SKIPIF1<0,如圖∶由折疊知∶MN垂直平分SKIPIF1<0,∴SKIPIF1<0+∠CMN=90°,而SKIPIF1<0=90°,∴SKIPIF1<0=∠CMN,∴tanSKIPIF1<0=tan∠CMN=SKIPIF1<0在Rt△CFC'中,tanSKIPIF1<0=SKIPIF1<0∴SKIPIF1<0在Rt△SKIPIF1<0中,由勾股定理,得SKIPIF1<0,即SKIPIF1<0∴SKIPIF1<0整理,得SKIPIF1<0,解得SKIPIF1<0∴BM的長為4或SKIPIF1<0故答案為:4或SKIPIF1<0.【我思故我在】本題考查了矩形的性質,折疊的性質,解直角三角形,勾股定理,解一元二次方程等知識,運用三角函數(shù)將邊長表示出來,借助勾股定理建立方程是解題的關鍵.8.如圖,矩形ABCD中,AB=4,AD=6,點E為AD中點,點P為線段AB上一個動點,連接EP,將△APE沿PE折疊得到△FPE,連接CE,DF,當線段DF被CE垂直平分時,AF則線的長為_______.【分析】連接AF交PE于O,連接DF,先由矩形的性質可得BC=AD=6、CD=AB=4,再由折疊的性質和垂直平分線的性質可得AF=2OA,AE=ED=EF=3;設AP=x,則PF=AP=x,BP=4-x,PC=PF+FC=x+4,運用勾股定理可求得x,然后再運用勾股定理求得PE的長,再運用等面積法求得AO的長,最后根據(jù)AF=2AO解答即可.【詳解】解:連接AF交PE于O,連接DF,∵矩形ABCD,∴BC=AD=6,CD=AB=4,∵線段DF被CE垂直平分時,∴CF=CD=4,ED=EF,∵將△APE沿PE折疊得到△FPE,∴PE是線段AF的垂直平分線,∴AE=EF,AF=2OA,∴AE=ED=EF,∵AD=AE+ED=6,∴AE=ED=EF=3,設AP=x,則PF=AP=x,BP=4-x,PC=PF+FC=x+4,∵PC2=BP2+BC2,即(x+4)2=(4-x)2+62∴x=SKIPIF1<0,∵PE=SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0,解得:AO=SKIPIF1<0,∴AF=2AO=SKIPIF1<0.故答案為SKIPIF1<0.【我思故我在】本題主要考查了矩形的性質、折疊的性質、線段垂直平分線的性質、勾股定理等知識點,靈活應用相關知識成為解答本題的關鍵.9.如圖,在矩形ABCD中,AB=2,AD=1,E是AB上一個動點,F(xiàn)是AD上一個動點(點F不與點D重合),連接EF,把△AEF沿EF折疊,使點A的對應點A′總落在DC邊上.若△A′EC是以A′E為腰的等腰三角形,則A′D的長為______.【答案】SKIPIF1<0或SKIPIF1<0【分析】分兩種情形分別畫出圖形,利用勾股定理構建方程求解即可.【詳解】解:如圖1中,當EA′=CE時,過點E作EH⊥CD于H.∵四邊形ABCD是矩形,∴AD=BC=1,∠B=90°,設AE=EA′=EC=x,則BE=2﹣x,在Rt△EBC中,則有x2=12+(2﹣x)2,解得x=SKIPIF1<0,∴EB=2﹣x=SKIPIF1<0,∵∠B=∠BCH=∠CHE=90°,∴四邊形CBEH是矩形,∴CH=BE=SKIPIF1<0,∵EC=EA′,EH⊥CA′,∴HA′=CH=SKIPIF1<0,∴DA′=CD﹣CA′=2﹣SKIPIF1<0=SKIPIF1<0.如圖2中,當A′E=A′C時,設AE=EA′=CA′=y(tǒng).則CH=EB=2﹣y,A′H=CA′﹣CH=y(tǒng)﹣(2﹣y)=2y﹣2,在Rt△A′EH中,則有y2=12+(2y﹣2)2,解得y=SKIPIF1<0或1(舍棄),∴CA′=SKIPIF1<0,∴DA′=2﹣SKIPIF1<0=SKIPIF1<0,∴DA′為SKIPIF1<0或SKIPIF1<0,故答案為SKIPIF1<0或SKIPIF1<0.【我思故我在】本題考查翻折變換,矩形的性質,等腰三角形的判定和性質,解直角三角形等知識,解題的關鍵是學會用分類討論的思想思考問題,屬于中考??碱}型.10.如圖,長方形SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,點E為射線SKIPIF1<0上一動點(不與D重合),將SKIPIF1<0沿AE折疊得到SKIPIF1<0,連接SKIPIF1<0,若SKIPIF1<0為直角三角形,則SKIPIF1<0________【分析】分兩種情況討論:①當點E在線段CD上時,SKIPIF1<0三點共線,根據(jù)SKIPIF1<0可求得SKIPIF1<0,再由勾股定理可得SKIPIF1<0,進而可計算SKIPIF1<0,在SKIPIF1<0中,由勾股定理計算SKIPIF1<0的值;②當點E在射線CD上時,設SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,由勾股定理可解得SKIPIF1<0,進而可計算SKIPIF1<0,在SKIPIF1<0中,由勾股定理計算SKIPIF1<0的值即可.【詳解】解:根據(jù)題意,四邊形ABCD為長方形,SKIPIF1<0,SKIPIF1<0,將SKIPIF1<0沿AE折疊得到SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,①如圖1,當點E在線段CD上時,∵SKIPIF1<0,∴SKIPIF1<0三點共線,∵SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0;∴在SKIPIF1<0中,SKIPIF1<0;②如圖2,當點E在射線CD上時,∵SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,設SKIPIF1<0,則SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,∴SKIPIF1<0,∴在SKIPIF1<0中,SKIPIF1<0.綜上所述,AE的值為SKIPIF1<0或SKIPIF1<0.故答案為:SKIPIF1<0或SKIPIF1<0.【我思故我在】本題主要考查了折疊的性質以及勾股定理等知識,運用分類討論的思想分析問題是解題關鍵.11.如圖,已知SKIPIF1<0中,SKIPIF1<0,點SKIPIF1<0、SKIPIF1<0分別在線段SKIPIF1<0、SKIPIF1<0上,將SKIPIF1<0沿直線SKIPIF1<0折疊,使點SKIPIF1<0的對應點SKIPIF1<0恰好落在線段SKIPIF1<0上,當SKIPIF1<0為直角三角形時,折痕SKIPIF1<0的長為___________.【答案】SKIPIF1<0或SKIPIF1<0【分析】由SKIPIF1<0為直角三角形,分兩種情況進行討論:SKIPIF1<0分別依據(jù)含SKIPIF1<0角的直角三角形的性質以及等腰直角三角形的性質,即可得到折痕SKIPIF1<0的長.【詳解】解:分兩種情況:SKIPIF1<0如圖,當SKIPIF1<0時,SKIPIF1<0是直角三角形,SKIPIF1<0在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,由折疊可得,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0;SKIPIF1<0如圖,當SKIPIF1<0時,SKIPIF1<0是直角三角形,由題可得,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,過SKIPIF1<0作SKIPIF1<0于SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,由折疊可得,SKIPIF1<0,SKIPIF1<0是等腰直角三角形,SKIPIF1<0,SKIPIF1<0.故答案為:SKIPIF1<0或SKIPIF1<0.【我思故我在】本題考查了翻折變換SKIPIF1<0折疊問題,勾股定理,含SKIPIF1<0角的直角三角形的性質,等腰直角三角形的性質,正確的作出圖形是解題的關鍵.折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應邊和對應角相等.12.如圖,在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,點SKIPIF1<0、SKIPIF1<0分別是邊SKIPIF1<0、SKIPIF1<0上的點,且SKIPIF1<0,將SKIPIF1<0沿SKIPIF1<0對折,若點SKIPIF1<0恰好落到了SKIPIF1<0的外部,則折痕SKIPIF1<0的長度范圍是______.【答案】SKIPIF1<0【分析】把SKIPIF1<0沿SKIPIF1<0對折,當點SKIPIF1<0恰好落在SKIPIF1<0的SKIPIF1<0點處,SKIPIF1<0與SKIPIF1<0相交于SKIPIF1<0點,根據(jù)折疊的性質得到SKIPIF1<0,SKIPIF1<0,證明SKIPIF1<0,同理可得SKIPIF1<0,于是可得SKIPIF1<0的長,然后根據(jù)勾股定理計算SKIPIF1<0的長,由正切的定義可得SKIPIF1<0和SKIPIF1<0的長,計算SKIPIF1<0的長,再計算當SKIPIF1<0與SKIPIF1<0重合時SKIPIF1<0的長,從而得結論.【詳解】解:把SKIPIF1<0沿SKIPIF1<0對折,當點SKIPIF1<0恰好落在SKIPIF1<0的SKIPIF1<0點處,SKIPIF1<0與SKIPIF1<0相交于SKIPIF1<0點,如圖1,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,而SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,同理可得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,SKIPIF1<0;如圖2,當SKIPIF1<0與SKIPIF1<0重合時,SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0折痕SKIPIF1<0的長度范圍是:SKIPIF1<0.故答案為:SKIPIF1<0.【我思故我在】本題考查了折疊的性質:折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應邊和對應角相等.也考查了勾股定理和銳角三角函數(shù).13.如圖,在?ABCD中,點E,F(xiàn)分別在邊AB、AD上,將△AEF沿EF折疊,點A恰好落在BC邊上的點G處.若∠A=45°,AB=6SKIPIF1<0,5BE=AE.則AF長度為_____.【答案】SKIPIF1<0【分析】過點B作BM⊥AD于點M,過點F作FH⊥BC于點H,過點E作EN⊥CB延長線于點N,得矩形BHFM,可得△BEN和△ABM是等腰直角三角形,然后利用勾股定理即可解決問題.【詳解】解:如圖,過點B作BM⊥AD于點M,過點F作FH⊥BC于點H,過點E作EN⊥CB延長線于點N,得矩形BHFM,∴∠MBC=90°,MB=FH,F(xiàn)M=BH,∵AB=6SKIPIF1<0,5BE=AE,∴AE=5SKIPIF1<0,BE=SKIPIF1<0,由折疊的性質可知:GE=AE=5SKIPIF1<0,GF=AF,∵四邊形ABCD是平行四邊形,∴∠ABN=∠A=45°,∴△BEN和△ABM是等腰直角三角形,∴EN=BN=SKIPIF1<0BE=1,AM=BM=SKIPIF1<0AB=6,∴FH=BM=6,在Rt△GEN中,根據(jù)勾股定理,得SKIPIF1<0,∴SKIPIF1<0,解得GN=±7(負值舍去),∴GN=7,設MF=BH=x,則GH=GN-BN-BH=7-1-x=6-x,GF=AF=AM+FM=6+x,在Rt△GFH中,根據(jù)勾股定理,得SKIPIF1<0,∴SKIPIF1<0,解得x=SKIPIF1<0,∴AF=AM+FM=6+SKIPIF1<0=SKIPIF1<0.∴AF長度為SKIPIF1<0.故答案為:SKIPIF1<0.【我思故我在】本題考查了翻折變換,平行四邊形的性質,等腰直角三角形的性質,勾股定理,解決本題的關鍵是掌握翻折的性質.14.如圖,矩形SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0是SKIPIF1<0邊上的一個動點,將SKIPIF1<0沿SKIPIF1<0折疊,得到SKIPIF1<0,則當SKIPIF1<0最小時,折痕SKIPIF1<0長為______.【答案】SKIPIF1<0【分析】根據(jù)三角形的三邊關系得出:當SKIPIF1<0最小時的圖形,利用勾股定理列出方程,求出SKIPIF1<0的長度,進行解答即可.【詳解】連接AC,依題意可知:SKIPIF1<0,如圖,當A、C、F三點共線時,SKIPIF1<0取得最小值,在矩形SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,由折疊可知:SKIPIF1<0,設SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.故答案為:SKIPIF1<0.【我思故我在】本題考查了矩形與折疊,勾股定理,二次根式的運算,掌握勾股定理進行求線段長度是解題的關鍵.15.如圖,在正方形ABCD中,AB=8,E是CD上一點,且DE=2,F(xiàn)是AD上一動點,連接EF,若將△DEF沿EF翻折后,點D落在點SKIPIF1<0處,則點SKIPIF1<0到點B的最短距離為______.【答案】8【分析】連接SKIPIF1<0、SKIPIF1<0,當B、SKIPIF1<0、E三點共線的時候點SKIPIF1<0到B點的距離最短,根據(jù)DE求出CE,再利用勾股定理求出BE,即可求解.【詳解】如圖,連接SKIPIF1<0、SKIPIF1<0,當B、SKIPIF1<0、E三點共線的時候點SKIPIF1<0到B點的距離最短,在正方形ABCD中,AB=8,E是CD上一點,且DE=2,∴CE=CD-DE=8-2=6,BC=AB=8,∴SKIPIF1<0,根據(jù)折疊的性質有SKIPIF1<0,∵B、SKIPIF1<0、E三點共線∴SKIPIF1<0,即點SKIPIF1<0到B點的距離最短為8,故答案為:8.【我思故我在】本題考查了正方形的性質、翻折的性質、勾股定理以及兩點之間線段最短的知識,找到B、SKIPIF1<0、E三點共線的時候點SKIPIF1<0到B點的距離最短是解答本題的關鍵.16.如圖,已知在矩形紙片SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,點E是SKIPIF1<0的中點,點F是SKIPIF1<0邊上的一個動點,將SKIPIF1<0沿SKIPIF1<0所在直線翻折,得到SKIPIF1<0,連接SKIPIF1<0,SKIPIF1<0,則當SKIPIF1<0是以SKIPIF1<0為腰的等腰三角形時,SKIPIF1<0的長是_______________.【答案】1或SKIPIF1<0【分析】存在三種情況:當SKIPIF1<0時,連接ED,利用勾股定理可以求得ED的長,可判斷SKIPIF1<0三點共線,根據(jù)勾股定理即可求解;當SKIPIF1<0時,可以證得四邊形SKIPIF1<0是正方形,即可求解;當SKIPIF1<0時,連接EC,F(xiàn)C,證明SKIPIF1<0三點共線,再用勾股定理,即可求解.【詳解】解:①當SKIPIF1<0時,連接ED,如圖,∵點E是SKIPIF1<0的中點,SKIPIF1<0,SKIPIF1<0,四邊形SKIPIF1<0是矩形,∴SKIPIF1<0,由勾股定理可得,SKIPIF1<0,∵將SKIPIF1<0沿SKIPIF1<0所在直線翻折,得到SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0三點共線,∵SKIPIF1<0,∴SKIPIF1<0,設SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,∴SKIPIF1<0,解得SKIPIF1<0,∴SKIPIF1<0;②當SKIPIF1<0時,如圖,∵SKIPIF1<0,∴點SKIPIF1<0在線段CD的垂直平分線上,∴點SKIPIF1<0在線段AB的垂直平分線上,∵點E是SKIPIF1<0的中點,∴SKIPIF1<0是AB的垂直平分線,∴SKIPIF1<0,∵將SKIPIF1<0沿SKIPIF1<0所在直線翻折,得到SKIPIF1<0,∴SKIPIF1<0,∴四邊形SKIPIF1<0是正方形,∴SKIPIF1<0;綜上所述,AF的長為1或SKIPIF1<0.故答案為:1或SKIPIF1<0.【我思故我在】本題考查矩形中的翻折問題,涉及矩形的性質、等腰三角形的性質、正方形的判定和性質、勾股定理,分類討論思想的運用是解題的關鍵.17.如圖,在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為邊SKIPIF1<0的中點,點SKIPIF1<0是SKIPIF1<0邊上的動點,把SKIPIF1<0沿SKIPIF1<0翻折,點SKIPIF1<0落在SKIPIF1<0處,若SKIPIF1<0是直角三角形,則SKIPIF1<0的長為______.【答案】SKIPIF1<0或SKIPIF1<0【分析】在圖SKIPIF1<0中構造正方形SKIPIF1<0,在SKIPIF1<0中即可解決問題,在圖SKIPIF1<0中也要證明四邊形SKIPIF1<0是正方形解決問題.【詳解】解:如圖SKIPIF1<0,當SKIPIF1<0時,作SKIPIF1<0垂足為SKIPIF1<0,作SKIPIF1<0于SKIPIF1<0.SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度文化旅游融合項目投資借款協(xié)議
- 買賣合同第三方保證擔保合同(2024版)
- 二零二五年度旅行社旅游培訓合作合同4篇
- 2025年度女方婚內(nèi)出軌離婚財產(chǎn)分割及贍養(yǎng)費協(xié)議
- 2025年度個人商鋪租賃合同能源消耗監(jiān)測與管理合同4篇
- 2025年度個人與企業(yè)間特殊用途車輛租賃合同3篇
- 二零二五年度農(nóng)民工勞動保護補貼發(fā)放合同標準
- 2024苗木運輸合同范本全面規(guī)范運輸過程中的風險防控3篇
- 二零二五年度加油站LED廣告屏安裝裝修合同3篇
- 二零二五年度農(nóng)業(yè)科技園區(qū)運營管理服務合同-@-1
- 2024年全國體育專業(yè)單獨招生考試數(shù)學試卷試題真題(含答案)
- 北師大版小學三年級上冊數(shù)學第五單元《周長》測試卷(含答案)
- DB45T 1950-2019 對葉百部生產(chǎn)技術規(guī)程
- 2025屆河北省衡水市衡水中學高考仿真模擬英語試卷含解析
- 新修訂《保密法》知識考試題及答案
- 電工基礎知識培訓課程
- 住宅樓安全性檢測鑒定方案
- 廣東省潮州市潮安區(qū)2023-2024學年五年級上學期期末考試數(shù)學試題
- 市政道路及設施零星養(yǎng)護服務技術方案(技術標)
- 選擇性必修一 期末綜合測試(二)(解析版)2021-2022學年人教版(2019)高二數(shù)學選修一
- 《論語》學而篇-第一課件
評論
0/150
提交評論