




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2023年中考數(shù)學模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(共10小題,每小題3分,共30分)1.如圖,將長方形紙片ABCD折疊,使邊DC落在對角線AC上,折痕為CE,且D點落在對角線D′處.若AB=3,AD=4,則ED的長為A. B.3 C.1 D.2.如圖,在?ABCD中,AB=2,BC=1.以點C為圓心,適當長為半徑畫弧,交BC于點P,交CD于點Q,再分別以點P,Q為圓心,大于PQ的長為半徑畫弧,兩弧相交于點N,射線CN交BA的延長線于點E,則AE的長是()A. B.1 C. D.3.如果代數(shù)式有意義,則實數(shù)x的取值范圍是()A.x≥﹣3 B.x≠0 C.x≥﹣3且x≠0 D.x≥34.如圖,在平面直角坐標系中,△ABC與△A1B1C1是以點P為位似中心的位似圖形,且頂點都在格點上,則點P的坐標為()A.(﹣4,﹣3) B.(﹣3,﹣4) C.(﹣3,﹣3) D.(﹣4,﹣4)5.如圖所示,從☉O外一點A引圓的切線AB,切點為B,連接AO并延長交圓于點C,連接BC,已知∠A=26°,則∠ACB的度數(shù)為()A.32° B.30° C.26° D.13°6.-的立方根是()A.-8 B.-4 C.-2 D.不存在7.關于x的不等式組的所有整數(shù)解是()A.0,1 B.﹣1,0,1 C.0,1,2 D.﹣2,0,1,28.如圖,AB∥CD,那么()A.∠BAD與∠B互補 B.∠1=∠2 C.∠BAD與∠D互補 D.∠BCD與∠D互補9.的絕對值是()A.﹣4 B. C.4 D.0.410.汽車剎車后行駛的距離s(單位:m)關于行駛的時間t(單位:s)的函數(shù)解析式是s=20t﹣5t2,汽車剎車后停下來前進的距離是()A.10mB.20mC.30mD.40m二、填空題(本大題共6個小題,每小題3分,共18分)11.已知扇形AOB的半徑OA=4,圓心角為90°,則扇形AOB的面積為_________.12.化簡:________.13.如圖,在菱形紙片中,,,將菱形紙片翻折,使點落在的中點處,折痕為,點,分別在邊,上,則的值為________.14.如圖,在矩形ABCD中,AB=4,AD=3,矩形內(nèi)部有一動點P滿足S△PAB=S矩形ABCD,則點P到A、B兩點的距離之和PA+PB的最小值為______.15.如圖,平行四邊形ABCD中,AB=AC=4,AB⊥AC,O是對角線的交點,若⊙O過A、C兩點,則圖中陰影部分的面積之和為_____.16.已知雙曲線經(jīng)過點(-1,2),那么k的值等于_______.三、解答題(共8題,共72分)17.(8分)如圖,已知在Rt△ABC中,∠ACB=90°,AC>BC,CD是Rt△ABC的高,E是AC的中點,ED的延長線與CB的延長線相交于點F.(1)求證:DF是BF和CF的比例中項;(2)在AB上取一點G,如果AE?AC=AG?AD,求證:EG?CF=ED?DF.18.(8分)隨著中國傳統(tǒng)節(jié)日“端午節(jié)”的臨近,東方紅商場決定開展“歡度端午,回饋顧客”的讓利促銷活動,對部分品牌粽子進行打折銷售,其中甲品牌粽子打八折,乙品牌粽子打七五折,已知打折前,買6盒甲品牌粽子和3盒乙品牌粽子需600元;打折后,買50盒甲品牌粽子和40盒乙品牌粽子需要5200元.打折前甲、乙兩種品牌粽子每盒分別為多少元?陽光敬老院需購買甲品牌粽子80盒,乙品牌粽子100盒,問打折后購買這批粽子比不打折節(jié)省了多少錢?19.(8分)如圖①,AB是⊙O的直徑,CD為弦,且AB⊥CD于E,點M為上一動點(不包括A,B兩點),射線AM與射線EC交于點F.(1)如圖②,當F在EC的延長線上時,求證:∠AMD=∠FMC.(2)已知,BE=2,CD=1.①求⊙O的半徑;②若△CMF為等腰三角形,求AM的長(結果保留根號).20.(8分)在平面直角坐標系中,O為坐標原點,點A(0,1),點C(1,0),正方形AOCD的兩條對角線的交點為B,延長BD至點G,使DG=BD,延長BC至點E,使CE=BC,以BG,BE為鄰邊作正方形BEFG.(Ⅰ)如圖①,求OD的長及的值;(Ⅱ)如圖②,正方形AOCD固定,將正方形BEFG繞點B逆時針旋轉,得正方形BE′F′G′,記旋轉角為α(0°<α<360°),連接AG′.①在旋轉過程中,當∠BAG′=90°時,求α的大小;②在旋轉過程中,求AF′的長取最大值時,點F′的坐標及此時α的大?。ㄖ苯訉懗鼋Y果即可).21.(8分)如圖,在△ABC中,∠ABC=90°,BD為AC邊上的中線.(1)按如下要求尺規(guī)作圖,保留作圖痕跡,標注相應的字母:過點C作直線CE,使CE⊥BC于點C,交BD的延長線于點E,連接AE;(2)求證:四邊形ABCE是矩形.22.(10分)為加快城鄉(xiāng)對接,建設美麗鄉(xiāng)村,某地區(qū)對A、B兩地間的公路進行改建,如圖,A,B兩地之間有一座山.汽車原來從A地到B地需途經(jīng)C地沿折線ACB行駛,現(xiàn)開通隧道后,汽車可直接沿直線AB行駛,已知BC=80千米,∠A=45°,∠B=30°.開通隧道前,汽車從A地到B地要走多少千米?開通隧道后,汽車從A地到B地可以少走多少千米?(結果保留根號)23.(12分)在△ABC中,∠BAC=90°,AB=AC,點D為直線BC上一動點(點D不與點B、C重合),以AD為直角邊在AD右側作等腰三角形ADE,使∠DAE=90°,連接CE.探究:如圖①,當點D在線段BC上時,證明BC=CE+CD.應用:在探究的條件下,若AB=,CD=1,則△DCE的周長為.拓展:(1)如圖②,當點D在線段CB的延長線上時,BC、CD、CE之間的數(shù)量關系為.(2)如圖③,當點D在線段BC的延長線上時,BC、CD、CE之間的數(shù)量關系為.24.某汽車制造公司計劃生產(chǎn)A、B兩種新型汽車共40輛投放到市場銷售.已知A型汽車每輛成本34萬元,售價39萬元;B型汽車每輛成本42萬元,售價50萬元.若該公司對此項計劃的投資不低于1536萬元,不高于1552萬元.請解答下列問題:(1)該公司有哪幾種生產(chǎn)方案?(2)該公司按照哪種方案生產(chǎn)汽車,才能在這批汽車全部售出后,所獲利潤最大,最大利潤是多少?(3)在(2)的情況下,公司決定拿出利潤的2.5%全部用于生產(chǎn)甲乙兩種鋼板(兩種都生產(chǎn)),甲鋼板每噸5000元,乙鋼板每噸6000元,共有多少種生產(chǎn)方案?(直接寫出答案)
參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】
首先利用勾股定理計算出AC的長,再根據(jù)折疊可得△DEC≌△D′EC,設ED=x,則D′E=x,AD′=AC﹣CD′=2,AE=4﹣x,再根據(jù)勾股定理可得方程22+x2=(4﹣x)2,再解方程即可【詳解】∵AB=3,AD=4,∴DC=3∴根據(jù)勾股定理得AC=5根據(jù)折疊可得:△DEC≌△D′EC,∴D′C=DC=3,DE=D′E設ED=x,則D′E=x,AD′=AC﹣CD′=2,AE=4﹣x,在Rt△AED′中:(AD′)2+(ED′)2=AE2,即22+x2=(4﹣x)2,解得:x=故選A.2、B【解析】分析:只要證明BE=BC即可解決問題;詳解:∵由題意可知CF是∠BCD的平分線,∴∠BCE=∠DCE.∵四邊形ABCD是平行四邊形,∴AB∥CD,∴∠DCE=∠E,∠BCE=∠AEC,∴BE=BC=1,∵AB=2,∴AE=BE-AB=1,故選B.點睛:本題考查的是作圖-基本作圖,熟知角平分線的作法是解答此題的關鍵.3、C【解析】
根據(jù)二次根式有意義和分式有意義的條件列出不等式,解不等式即可.【詳解】由題意得,x+3≥0,x≠0,解得x≥?3且x≠0,故選C.【點睛】本題考查分式有意義條件,二次根式有意義的條件,熟練掌握相關知識是解題的關鍵.4、A【解析】
延長A1A、B1B和C1C,從而得到P點位置,從而可得到P點坐標.【詳解】如圖,點P的坐標為(-4,-3).
故選A.【點睛】本題考查了位似變換:如果兩個圖形不僅是相似圖形,而且對應頂點的連線相交于一點,對應邊互相平行,那么這樣的兩個圖形叫做位似圖形,這個點叫做位似中心.5、A【解析】
連接OB,根據(jù)切線的性質(zhì)和直角三角形的兩銳角互余求得∠AOB=64°,再由等腰三角形的性質(zhì)可得∠C=∠OBC,根據(jù)三角形外角的性質(zhì)即可求得∠ACB的度數(shù).【詳解】連接OB,∵AB與☉O相切于點B,∴∠OBA=90°,∵∠A=26°,∴∠AOB=90°-26°=64°,∵OB=OC,∴∠C=∠OBC,∴∠AOB=∠C+∠OBC=2∠C,∴∠C=32°.故選A.【點睛】本題考查了切線的性質(zhì),利用切線的性質(zhì),結合三角形外角的性質(zhì)求出角的度數(shù)是解決本題的關鍵.6、C【解析】分析:首先求出的值,然后根據(jù)立方根的計算法則得出答案.詳解:∵,,∴的立方根為-2,故選C.點睛:本題主要考查的是算術平方根與立方根,屬于基礎題型.理解算術平方根與立方根的含義是解決本題的關鍵.7、B【解析】
分別求出每一個不等式的解集,根據(jù)口訣:同大取大、同小取小、大小小大中間找、大大小小無解了確定不等式組的解集,據(jù)此即可得出答案.【詳解】解不等式﹣2x<4,得:x>﹣2,解不等式3x﹣5<1,得:x<2,則不等式組的解集為﹣2<x<2,所以不等式組的整數(shù)解為﹣1、0、1,故選:B.【點睛】考查的是解一元一次不等式組,正確求出每一個不等式解集是基礎,熟知“同大取大;同小取?。淮笮⌒〈笾虚g找;大大小小找不到”的原則是解答此題的關鍵.8、C【解析】
分清截線和被截線,根據(jù)平行線的性質(zhì)進行解答即可.【詳解】解:∵AB∥CD,∴∠BAD與∠D互補,即C選項符合題意;當AD∥BC時,∠BAD與∠B互補,∠1=∠2,∠BCD與∠D互補,故選項A、B、D都不合題意,故選:C.【點睛】本題考查了平行線的性質(zhì),熟記性質(zhì)并準確識圖是解題的關鍵.9、B【解析】分析:根據(jù)絕對值的性質(zhì),一個負數(shù)的絕對值等于其相反數(shù),可有相反數(shù)的意義求解.詳解:因為-的相反數(shù)為所以-的絕對值為.故選:B點睛:此題主要考查了求一個數(shù)的絕對值,關鍵是明確絕對值的性質(zhì),一個正數(shù)的絕對值等于本身,0的絕對值是0,一個負數(shù)的絕對值為其相反數(shù).10、B【解析】
利用配方法求二次函數(shù)最值的方法解答即可.【詳解】∵s=20t-5t2=-5(t-2)2+20,∴汽車剎車后到停下來前進了20m.故選B.【點睛】此題主要考查了利用配方法求最值的問題,根據(jù)已知得出頂點式是解題關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、4π【解析】根據(jù)扇形的面積公式可得:扇形AOB的面積為,故答案為4π.12、【解析】
根據(jù)平面向量的加法法則計算即可【詳解】.故答案為:【點睛】本題考查平面向量的加減法則,解題的關鍵是熟練掌握平面向量的加減法則,注意平面向量的加減適合加法交換律以及結合律,適合去括號法則.13、【解析】
過點作,交延長線于,連接,交于,根據(jù)折疊的性質(zhì)可得,,根據(jù)同角的余角相等可得,可得,由平行線的性質(zhì)可得,根據(jù)的三角函數(shù)值可求出、的長,根據(jù)為中點即可求出的長,根據(jù)余弦的定義的值即可得答案.【詳解】過點作,交延長線于,連接,交于,∵四邊形是菱形,∴,∵將菱形紙片翻折,使點落在的中點處,折痕為,∴,,∵,,∴,∴,∵,∴,∴,∵,,∴,∴,,∵為中點,∴,∴,∴,∴.故答案為【點睛】本題考查了折疊的性質(zhì)、菱形的性質(zhì)及三角函數(shù)的定義,折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應邊和對應角相等,熟練掌握三角函數(shù)的定義并熟記特殊角的三角函數(shù)值是解題關鍵.14、4【解析】分析:首先由S△PAB=S矩形ABCD,得出動點P在與AB平行且與AB的距離是2的直線l上,作A關于直線l的對稱點E,連接AE,連接BE,則BE的長就是所求的最短距離.然后在直角三角形ABE中,由勾股定理求得BE的值,即PA+PB的最小值.詳解:設△ABP中AB邊上的高是h.∵S△PAB=S矩形ABCD,∴AB?h=AB?AD,∴h=AD=2,∴動點P在與AB平行且與AB的距離是2的直線l上,如圖,作A關于直線l的對稱點E,連接AE,連接BE,則BE的長就是所求的最短距離.在Rt△ABE中,∵AB=4,AE=2+2=4,∴BE=,即PA+PB的最小值為4.故答案為4.點睛:本題考查了軸對稱-最短路線問題,三角形的面積,矩形的性質(zhì),勾股定理,兩點之間線段最短的性質(zhì).得出動點P所在的位置是解題的關鍵.15、1.【解析】
∵∠AOB=∠COD,∴S陰影=S△AOB.∵四邊形ABCD是平行四邊形,∴OA=AC=×1=2.∵AB⊥AC,∴S陰影=S△AOB=OA?AB=×2×1=1.【點睛】本題考查了扇形面積的計算.16、-1【解析】
分析:根據(jù)點在曲線上點的坐標滿足方程的關系,將點(-1,2)代入,得:,解得:k=-1.三、解答題(共8題,共72分)17、證明見解析【解析】試題分析:(1)根據(jù)已知求得∠BDF=∠BCD,再根據(jù)∠BFD=∠DFC,證明△BFD∽△DFC,從而得BF:DF=DF:FC,進行變形即得;(2)由已知證明△AEG∽△ADC,得到∠AEG=∠ADC=90°,從而得EG∥BC,繼而得,由(1)可得,從而得,問題得證.試題解析:(1)∵∠ACB=90°,∴∠BCD+∠ACD=90°,∵CD是Rt△ABC的高,∴∠ADC=∠BDC=90°,∴∠A+∠ACD=90°,∴∠A=∠BCD,∵E是AC的中點,∴DE=AE=CE,∴∠A=∠EDA,∠ACD=∠EDC,∵∠EDC+∠BDF=180°-∠BDC=90°,∴∠BDF=∠BCD,又∵∠BFD=∠DFC,∴△BFD∽△DFC,∴BF:DF=DF:FC,∴DF2=BF·CF;(2)∵AE·AC=ED·DF,∴,又∵∠A=∠A,∴△AEG∽△ADC,∴∠AEG=∠ADC=90°,∴EG∥BC,∴,由(1)知△DFD∽△DFC,∴,∴,∴EG·CF=ED·DF.18、(1)打折前甲品牌粽子每盒70元,乙品牌粽子每盒80元.(2)打折后購買這批粽子比不打折節(jié)省了3120元.【解析】分析:(1)設打折前甲品牌粽子每盒x元,乙品牌粽子每盒y元,根據(jù)“打折前,買6盒甲品牌粽子和3盒乙品牌粽子需600元;打折后,買50盒甲品牌粽子和40盒乙品牌粽子需要5200元”,即可得出關于x、y的二元一次方程組,解之即可得出結論;(2)根據(jù)節(jié)省錢數(shù)=原價購買所需錢數(shù)-打折后購買所需錢數(shù),即可求出節(jié)省的錢數(shù).詳解:(1)設打折前甲品牌粽子每盒x元,乙品牌粽子每盒y元,根據(jù)題意得:,解得:.答:打折前甲品牌粽子每盒40元,乙品牌粽子每盒120元.(2)80×40+100×120-80×0.8×40-100×0.75×120=3640(元).答:打折后購買這批粽子比不打折節(jié)省了3640元.點睛:本題考查了二元一次方程組的應用,解題的關鍵是:(1)找準等量關系,正確列出二元一次方程組;(2)根據(jù)數(shù)量關系,列式計算.19、(1)詳見解析;(2)2;②1或【解析】
(1)想辦法證明∠AMD=∠ADC,∠FMC=∠ADC即可解決問題;(2)①在Rt△OCE中,利用勾股定理構建方程即可解決問題;②分兩種情形討論求解即可.【詳解】解:(1)證明:如圖②中,連接AC、AD.∵AB⊥CD,∴CE=ED,∴AC=AD,∴∠ACD=∠ADC,∵∠AMD=∠ACD,∴∠AMD=∠ADC,∵∠FMC+∠AMC=110°,∠AMC+∠ADC=110°,∴∠FMC=∠ADC,∴∠FMC=∠ADC,∴∠FMC=∠AMD.(2)解:①如圖②﹣1中,連接OC.設⊙O的半徑為r.在Rt△OCE中,∵OC2=OE2+EC2,∴r2=(r﹣2)2+42,∴r=2.②∵∠FMC=∠ACD>∠F,∴只有兩種情形:MF=FC,F(xiàn)M=MC.如圖③中,當FM=FC時,易證明CM∥AD,∴,∴AM=CD=1.如圖④中,當MC=MF時,連接MO,延長MO交AD于H.∵∠MFC=∠MCF=∠MAD,∠FMC=∠AMD,∴∠ADM=∠MAD,∴MA=MD,∴,∴MH⊥AD,AH=DH,在Rt△AED中,AD=,∴AH=,∵tan∠DAE=,∴OH=,∴MH=2+,在Rt△AMH中,AM=.【點睛】本題考查了圓的綜合題:熟練掌握與圓有關的性質(zhì)、圓的內(nèi)接正方形的性質(zhì)和旋轉的性質(zhì);靈活利用全等三角形的性質(zhì);會利用面積的和差計算不規(guī)則幾何圖形的面積.20、(Ⅰ)(Ⅱ)①α=30°或150°時,∠BAG′=90°②當α=315°時,A、B、F′在一條直線上時,AF′的長最大,最大值為+2,此時α=315°,F(xiàn)′(+,﹣)【解析】
(1)根據(jù)正方形的性質(zhì)以及勾股定理即可解決問題,(2)①因為∠BAG′=90°,BG′=2AB,可知sin∠AG′B=,推出∠AG′B=30°,推出旋轉角α=30°,據(jù)對稱性可知,當∠ABG″=60°時,∠BAG″=90°,也滿足條件,此時旋轉角α=150°,②當α=315°時,A、B、F′在一條直線上時,AF′的長最大.【詳解】(Ⅰ)如圖1中,∵A(0,1),∴OA=1,∵四邊形OADC是正方形,∴∠OAD=90°,AD=OA=1,∴OD=AC==,∴AB=BC=BD=BO=,∵BD=DG,∴BG=,∴==.(Ⅱ)①如圖2中,∵∠BAG′=90°,BG′=2AB,∴sin∠AG′B==,∴∠AG′B=30°,∴∠ABG′=60°,∴∠DBG′=30°,∴旋轉角α=30°,根據(jù)對稱性可知,當∠ABG″=60°時,∠BAG″=90°,也滿足條件,此時旋轉角α=150°,綜上所述,旋轉角α=30°或150°時,∠BAG′=90°.②如圖3中,連接OF,∵四邊形BE′F′G′是正方形的邊長為∴BF′=2,∴當α=315°時,A、B、F′在一條直線上時,AF′的長最大,最大值為+2,此時α=315°,F(xiàn)′(+,﹣)【點睛】本題考查的是正方形的性質(zhì)、旋轉變換的性質(zhì)以及銳角三角函數(shù)的定義,解決本題的關鍵是要熟練掌握正方形的四條邊相等、四個角相等,旋轉變換的性質(zhì)以及特殊角的三角函數(shù)值的應用.21、(1)見解析;(2)見解析.【解析】
(1)根據(jù)題意作圖即可;
(2)先根據(jù)BD為AC邊上的中線,AD=DC,再證明△ABD≌△CED(AAS)得AB=EC,已知∠ABC=90°即可得四邊形ABCE是矩形.【詳解】(1)解:如圖所示:E點即為所求;(2)證明:∵CE⊥BC,∴∠BCE=90°,∵∠ABC=90°,∴∠BCE+∠ABC=180°,∴AB∥CE,∴∠ABE=∠CEB,∠BAC=∠ECA,∵BD為AC邊上的中線,∴AD=DC,在△ABD和△CED中,∴△ABD≌△CED(AAS),∴AB=EC,∴四邊形ABCE是平行四邊形,∵∠ABC=90°,∴平行四邊形ABCE是矩形.【點睛】本題考查了全等三角形的判定與性質(zhì)與矩形的性質(zhì),解題的關鍵是熟練的掌握全等三角形的判定與性質(zhì)與矩形的性質(zhì).22、(1)開通隧道前,汽車從A地到B地要走(80+40)千米;(2)汽車從A地到B地比原來少走的路程為[40+40(﹣)]千米.【解析】
(1)過點C作AB的垂線CD,垂足為D,在直角△ACD中,解直角三角形求出CD,進而解答即可;(2)在直角△CBD中,解直角三角形求出BD,再求出AD,進而求出汽車從A地到B地比原來少走多少路程.【詳解】(1)過點C作AB的垂線CD,垂足為D,∵AB⊥CD,sin30°=,BC=80千米,∴CD=BC?sin30°=80×=40(千米),AC=(千米),AC+BC=80+(千米),答:開通隧道前,汽車從A地到B地要走(80+)千米;(2)∵cos30°=,BC=80(千米),∴BD=BC?cos30°=80×(千米),∵tan45°=,CD=40(千米),∴AD=(千米),∴AB=AD+BD=40+(千米),∴汽車從A地到B地比原來少走多少路程為:AC+BC﹣AB=80+﹣40﹣=40+40(千米).答:汽車從A地到B地比原來少走的路程為[40+40]千米.【點睛】本題考查了勾股定理的運用以及解一般三角形,求三角形的邊或高的問題一般可以轉化為解直角三角形的問題,解決的方法就是作高線.23、探究:證明見解析;應用:;拓展:(1)BC=CD-CE,(2)BC=CE-CD【解析】試題分析:探究:判斷出∠BAD=∠CAE,再用SAS即可得出結論;
應用:先算出BC,進而算出BD,再用勾股定理求出DE,即可得出結論;
拓展:(1)同探究的方法得出△ABD≌△ACE,得出BD=CE,即可
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 45589-2025番茄褐色皺果病毒檢疫鑒定方法
- GB/T 45518-2025紡織品禁限用染料的測定液相色譜-高分辨質(zhì)譜法
- 計算機應用系統(tǒng)的維護與管理試題及答案
- 設置火災應急預案的目的(3篇)
- 火災應急預案評審結論(3篇)
- 2025年計算機技術預測試題及答案
- 石化廠發(fā)生火災應急預案(3篇)
- 突發(fā)停電火災應急預案(3篇)
- 了解持續(xù)集成與持續(xù)交付的試題及答案
- 車站的消防應急預案火災(3篇)
- 廣東省廣州市2025屆高三二模數(shù)學試卷(原卷版)
- 濟南幼兒師范高等專科學校招聘筆試真題2024
- 2025全國保密教育線上培訓考試試題庫及答案
- 院感感染培訓試題及答案
- 生產(chǎn)經(jīng)營單位事故隱患內(nèi)部報告獎勵制度
- 2024年呼和浩特市玉泉區(qū)消防救援大隊招聘政府專職消防員真題
- 2025年中考語文文言文復習:神話寓言 練習題(含答案解析)
- 管理股協(xié)議書范本
- 《醫(yī)療機構節(jié)能減排教育》課件
- 大學計算機基礎 第6章算法與數(shù)據(jù)結構基礎學習資料
- GA/T 751-2024公安視頻圖像屏幕顯示信息疊加規(guī)范
評論
0/150
提交評論