了解DDR2內(nèi)存諸多新技術(shù)_第1頁
了解DDR2內(nèi)存諸多新技術(shù)_第2頁
了解DDR2內(nèi)存諸多新技術(shù)_第3頁
了解DDR2內(nèi)存諸多新技術(shù)_第4頁
了解DDR2內(nèi)存諸多新技術(shù)_第5頁
已閱讀5頁,還剩16頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

在了解DDR2內(nèi)存諸多新技術(shù)前,先讓我們看一組DDR和DDR2技術(shù)對比的數(shù)據(jù)。1、延遲問題:從上表可以看出,在同等核心頻率下,DDR2的實際工作頻率是DDR的兩倍。這得益于DDR2內(nèi)存擁有兩倍于標準DDR內(nèi)存的4BIT預(yù)讀取能力。換句話說,雖然DDR2和DDR一樣,都采用了在時鐘的上升延和下降延同時進行數(shù)據(jù)傳輸?shù)幕痉绞?,但DDR2擁有兩倍于DDR的預(yù)讀取系統(tǒng)命令數(shù)據(jù)的能力。也就是說,在同樣100MHz的工作頻率下,DDR的實際頻率為200MHz,而DDR2則可以達到400MHz。這樣也就出現(xiàn)了另一個問題:在同等工作頻率的DDR和DDR2內(nèi)存中,后者的內(nèi)存延時要慢于前者。舉例來說,DDR200和DDR2-400具有相同的延遲,而后者具有高一倍的帶寬。實際上,DDR2-400和DDR400具有相同的帶寬,它們都是3.2GB/S,但是DDR400的核心工作頻率是200MHz,而DDR2-400的核心工作頻率是100MHz,也就是說DDR2-400的延遲要高于DDR400。2、封裝和發(fā)熱量:DDR2內(nèi)存技術(shù)最大的突破點其實不在于用戶們所認為的兩倍于DDR的傳輸能力而是在采用更低發(fā)熱量、更低功耗的情況下,DDR2可以獲得更快的頻率提升,突破標準DDR的400MHZ限制。DDR內(nèi)存通常采用TSOP芯片封裝形式,這種封裝形式可以很好的工作在200MHz上,當(dāng)頻率更高時,它過長的管腳就會產(chǎn)生很高的阻抗和寄生電容,這會影響它的穩(wěn)定性和頻率提升的難度。這也就是DDR的核心頻率很難突破275MHZ的原因。而DDR2內(nèi)存均采用FBGA封裝形式。不同于目前廣泛應(yīng)用的TSOP封裝形式,FBGA封裝提供了更好的電氣性能與散熱性,為DDR2內(nèi)存的穩(wěn)定工作與未來頻率的發(fā)展提供了良好的保障。DDR2內(nèi)存采用1.8V電壓,相對于DDR標準的2.5V,降低了不少,從而提供了明顯的更小的功耗與更小的發(fā)熱量,這一點的變化是意義重大的。DDR2采用的新技術(shù):除了以上所說的區(qū)別外,DDR2還引入了三項新的技術(shù),它們是OCD、ODT和PoStCAS。OCD(Off-ChipDriver):也就是所謂的離線驅(qū)動調(diào)整,DDRII通過OCD可以提高信號的完整性。DDRII通過調(diào)整上拉(pull-up)/下拉(pull-down)的電阻值使兩者電壓相等。使用OCD通過減少DQ-DQS的傾斜來提高信號的完整性;通過控制電壓來提高信號品質(zhì)。ODT:ODT是內(nèi)建核心的終結(jié)電阻器。我們知道使用DDRSDRAM的主板上面為了防止數(shù)據(jù)線終端反射信號需要大量的終結(jié)電阻。它大大增加了主板的制造成本。實際上,不同的內(nèi)存模組對終結(jié)電路的要求是不一樣的,終結(jié)電阻的大小決定了數(shù)據(jù)線的信號比和反射率,終結(jié)電阻小則數(shù)據(jù)線信號反射低但是信噪比也較低;終結(jié)電阻高,則數(shù)據(jù)線的信噪比高,但是信號反射也會增加。因此主板上的終結(jié)電阻并不能非常好的匹配內(nèi)存模組,還會在一定程度上影響信號品質(zhì)。DDR2可以根據(jù)自已的特點內(nèi)建合適的終結(jié)電阻,這樣可以保證最佳的信號波形。使用DDR2不但可以降低主板成本,還得到了最佳的信號品質(zhì),這是DDR不能比擬的。PostCAS:它是為了提高DDRII內(nèi)存的利用效率而設(shè)定的。在PostCAS操作中,CAS信號(讀寫/命令)能夠被插到RAS信號后面的一個時鐘周期,CAS命令可以在附加延遲(AdditiveLatency)后面保持有效。原來的tRCD(RAS到CAS和延遲)被AL(AdditiveLatency)所取代,AL可以在0,1,2,3,4中進行設(shè)置。由于CAS信號放在了RAS信號后面一個時鐘周期,因此ACT和CAS信號永遠也不會產(chǎn)生碰撞沖突。總的來說,DDR2采用了諸多的新技術(shù),改善了DDR的諸多不足,雖然它目前有成本高、延遲慢能諸多不足,但相信隨著技術(shù)的不斷提高和完善,這些問題終將得到解決。***支持內(nèi)存最大容量主板所能支持內(nèi)存的最大容量是指最大能在該主板上插入多大容量的內(nèi)存條,超過容量的內(nèi)存條即便插在主板上,主板也無不支持。主板支持的最大內(nèi)存容量理論上由芯片組所決定,北橋決定了整個芯片所能支持的最大內(nèi)存容量。但在實際應(yīng)用中,主板支持的最大內(nèi)存容量還受到主板上內(nèi)存插槽數(shù)量的限制,主板制造商出于設(shè)計、成本上的需要,可能會在主板上采用較少的內(nèi)存插槽,此時即便芯片組支持很大的內(nèi)存容量,但主板上并沒有足夠的內(nèi)存插槽供適用就沒法達到理論最大值。比如KT600北橋最大能支持4GB的內(nèi)存,但大部分的主板廠商只提供了兩個或三個184pin的DDRDIMM內(nèi)存插槽,其支持最大內(nèi)存容量就只能達到2GB或3GB。***雙通道內(nèi)存雙通道內(nèi)存技術(shù)其實是一種內(nèi)存控制和管理技術(shù),它依賴于芯片組的內(nèi)存控制器發(fā)生作用,在理論上能夠使兩條同等規(guī)格內(nèi)存所提供的帶寬增長一倍。它并不是什么新技術(shù),早就被應(yīng)用于服務(wù)器和工作站系統(tǒng)中了,只是為了解決臺式機日益窘迫的內(nèi)存帶寬瓶頸問題它才走到了臺式機主板技術(shù)的前臺。在幾年前,英特爾公司曾經(jīng)推出了支持雙通道內(nèi)存?zhèn)鬏敿夹g(shù)的i820芯片組,它與RDRAM內(nèi)存構(gòu)成了一對黃金搭檔,所發(fā)揮出來的卓絕性能使其一時成為市場的最大亮點,但生產(chǎn)成本過高的缺陷卻造成了叫好不叫座的情況,最后被市場所淘汰。由于英特爾已經(jīng)放棄了對RDRAM的支持,所以目前主流芯片組的雙通道內(nèi)存技術(shù)均是指雙通道DDR內(nèi)存技術(shù),主流雙通道內(nèi)存平臺英特爾方面是英特爾865、875系列,而AMD方面則是NVIDIANforce2系列。雙通道內(nèi)存技術(shù)是解決CPU總線帶寬與內(nèi)存帶寬的矛盾的低價、高性能的方案現(xiàn)在CPU的FSB(前端總線頻率)越來越高,英特爾Pentium4比AMDAthlonXP對內(nèi)存帶寬具有高得多的需求。英特爾Pentium4處理器與北橋芯片的數(shù)據(jù)傳輸采用QDR(QuadDataRate,四次數(shù)據(jù)傳輸)技術(shù),其FSB是外頻的4倍。英特爾Pentium4的FSB分別是400、533、800MHz,總線帶寬分別是3.2GB/sec,4.2GB/sec和6.4GB/sec,而DDR266/DDR333/DDR400所能提供的內(nèi)存帶寬分別是2.1GB/sec,2.7GB/sec和3.2GB/sec。在單通道內(nèi)存模式下,DDR內(nèi)存無法提供CPU所需要的數(shù)據(jù)帶寬從而成為系統(tǒng)的性能瓶頸。而在雙通道內(nèi)存模式下,雙通道DDR266、DDR333、DDR400所能提供的內(nèi)存帶寬分別是4.2GB/sec,5.4GB/sec和6.4GB/sec,在這里可以看到,雙通道DDR400內(nèi)存剛好可以滿足800MHzFSBPentium4處理器的帶寬需求。而對AMDAthlonXP平臺而言,其處理器與北橋芯片的數(shù)據(jù)傳輸技術(shù)采用DDR(DoubleDataRate,雙倍數(shù)據(jù)傳輸)技術(shù),F(xiàn)SB是外頻的2倍,其對內(nèi)存帶寬的需求遠遠低于英特爾Pentium4平臺,其FSB分別為266、333、400MHz,總線帶寬分別是2.1GB/sec,2.7GB/sec和3.2GB/sec,使用單通道的DDR266、DDR333、DDR400就能滿足其帶寬需求,所以在AMDK7平臺上使用雙通道DDR內(nèi)存技術(shù),可說是收效不多性能提高并不如英特爾平臺那樣明顯,對性能影響最明顯的還是采用集成顯示芯片的整合型主板。NVIDIA推出的nForce芯片組是第一個把DDR內(nèi)存接口擴展為128-bit的芯片組,隨后英特爾在它的E7500服務(wù)器主板芯片組上也使用了這種雙通道DDR內(nèi)存技術(shù),SiS和VIA也紛紛響應(yīng),積極研發(fā)這項可使DDR內(nèi)存帶寬成倍增長的技術(shù)。但是,由于種種原因,要實現(xiàn)這種雙通道DDR(128bit的并行內(nèi)存接口)傳輸對于眾多芯片組廠商來說絕非易事。DDRSDRAM內(nèi)存和RDRAM內(nèi)存完全不同,后者有著高延時的特性并且為串行傳輸方式,這些特性決定了設(shè)計一款支持雙通道RDRAM內(nèi)存芯片組的難度和成本都不算太高。但DDRSDRAM內(nèi)存卻有著自身局限性,它本身是低延時特性的,采用的是并行傳輸模式,還有最重要的一點:當(dāng)DDRSDRAM工作頻率高于400MHz時,其信號波形往往會出現(xiàn)失真問題,這些都為設(shè)計一款支持雙通道DDR內(nèi)存系統(tǒng)的芯片組帶來不小的難度,芯片組的制造成本也會相應(yīng)地提高,這些因素都制約著這項內(nèi)存控制技術(shù)的發(fā)展。普通的單通道內(nèi)存系統(tǒng)具有一個64位的內(nèi)存控制器,而雙通道內(nèi)存系統(tǒng)則有2個64位的內(nèi)存控制器,在雙通道模式下具有128bit的內(nèi)存位寬,從而在理論上把內(nèi)存帶寬提高一倍。雖然雙64位內(nèi)存體系所提供的帶寬等同于一個128位內(nèi)存體系所提供的帶寬,但是二者所達到效果卻是不同的。雙通道體系包含了兩個獨立的、具備互補性的智能內(nèi)存控制器,理論上來說,兩個內(nèi)存控制器都能夠在彼此間零延遲的情況下同時運作。比如說兩個內(nèi)存控制器,一個為A、另一個為B。當(dāng)控制器B準備進行下一次存取內(nèi)存的時候,控制器A就在讀/寫主內(nèi)存,反之亦然。兩個內(nèi)存控制器的這種互補“天性”可以讓等待時間縮減50%。雙通道DDR的兩個內(nèi)存控制器在功能上是完全一樣的,并且兩個控制器的時序參數(shù)都是可以單獨編程設(shè)定的。這樣的靈活性可以讓用戶使用二條不同構(gòu)造、容量、速度的DIMM內(nèi)存條,此時雙通道DDR簡單地調(diào)整到最低的內(nèi)存標準來實現(xiàn)128bit帶寬,允許不同密度/等待時間特性的DIMM內(nèi)存條可以可靠地共同運作。支持雙通道DDR內(nèi)存技術(shù)的臺式機芯片組,英特爾平臺方面有英特爾的865P、865G、865GV、865PE、875P以及之后的915、925系列;VIA的PT880,ATI的Radeon9100IGP系列,SIS的SIIS655,SIS655FX和SIS655TX;AMD平臺方面則有VIA的KT880,NVIDIA的nForce2Ultra400,nForce2IGP,nForce2SPP及其以后的芯片。AMD的64位CPU,由于集成了內(nèi)存控制器,因此是否支持內(nèi)存雙通道看CPU就可以。目前AMD的臺式機CPU,只有939接口的才支持內(nèi)存雙通道,754接口的不支持內(nèi)存雙通道。除了AMD的64位CPU,其他計算機是否可以支持內(nèi)存雙通道主要取決于主板芯片組,支持雙通道的芯片組上邊有描述,也可以查看主板芯片組資料。此外有些芯片組在理論上支持不同容量的內(nèi)存條實現(xiàn)雙通道,不過實際還是建議盡量使用參數(shù)一致的兩條內(nèi)存條。內(nèi)存雙通道一般要求按主板上內(nèi)存插槽的顏色成對使用,此外有些主板還要在BIOS做一下設(shè)置,一般主板說明書會有說明。當(dāng)系統(tǒng)已經(jīng)實現(xiàn)雙通道后,有些主板在開機自檢時會有提示,可以仔細看看。由于自檢速度比較快,所以可能看不到。因此可以用一些軟件查看,很多軟件都可以檢查,比如cpu-z,比較小巧。在“memory"這一項中有“channels"項目,如果這里顯示“Dual"這樣的字,就表示已經(jīng)實現(xiàn)了雙通道。兩條256M的內(nèi)存構(gòu)成雙通道效果會比一條512M的內(nèi)存效果好,因為一條內(nèi)存無法構(gòu)成雙通道顯卡插槽接口類型是指顯卡與主板連接所采用的接口種類。顯卡的接口決定著顯卡與系統(tǒng)之間數(shù)據(jù)傳輸?shù)淖畲髱挘簿褪撬查g所能傳輸?shù)淖畲髷?shù)據(jù)量。不同的接口能為顯卡帶來不同的性能。,而且也決定著主板是否能夠使用此顯卡。只有在主板上有相應(yīng)接口的情況下,顯卡才能使用。顯卡發(fā)展至今共出現(xiàn)ISA、PCI、AGP等幾種接口,所能提供的數(shù)據(jù)帶寬依次增加。而采用下一代的PCIExpress接口的顯卡也將在2004年正式被推出,屆時顯卡的數(shù)據(jù)帶寬將得到進一步的增大,以解決顯卡與系統(tǒng)數(shù)據(jù)傳輸?shù)钠款i問題。PCI是PeripheralComponentInterconnect(外設(shè)部件互連標準)的縮寫,它是目前個人電腦中使用最為廣泛的接口,幾乎所有的主板產(chǎn)品上都帶有這種插槽。PCI插槽也是主板帶有最多數(shù)量的插槽類型,在目前流行的臺式機主板上,ATX結(jié)構(gòu)的主板一般帶有5?6個PCI插槽,而小一點的MATX主板也都帶有2?3個PCI插槽,可見其應(yīng)用的廣泛性。PCI是由Intel公司1991年推出的一種局部總線。從結(jié)構(gòu)上看,PCI是在CPU和原來的系統(tǒng)總線之間插入的一級總線,具體由一個橋接電路實現(xiàn)對這一層的管理,并實現(xiàn)上下之間的接口以協(xié)調(diào)數(shù)據(jù)的傳送。管理器提供了信號緩沖,使之能支持10種外設(shè),并能在高時鐘頻率下保持高性能,它為顯卡,聲卡,網(wǎng)卡,MODEM等設(shè)備提供了連接接口,它的工作頻率為33MHz/66MHz。最早提出的PCI總線工作在33MHz頻率之下,傳輸帶寬達到了133MB/s(33MHzX32bit/8),基本上滿足了當(dāng)時處理器的發(fā)展需要。隨著對更高性能的要求,1993年又提出了64bit的PCI總線,后來又提出把PCI總線的頻率提升到66MHz。目前廣泛采用的是32-bit、33MHz的PCI總線,64bit的PCI插槽更多是應(yīng)用于服務(wù)器產(chǎn)品。由于PCI總線只有133MB/s的帶寬,對聲卡、網(wǎng)卡、視頻卡等絕大多數(shù)輸入/輸出設(shè)備顯得綽綽有余,但對性能日益強大的顯卡則無法滿足其需求。目前PCI接口的顯卡已經(jīng)不多見了,只有較老的PC上才有,廠商也很少推出此類接口的產(chǎn)品。AGP(AccelerateGraphicalPort),加速圖形接口。隨著顯示芯片的發(fā)展,PCI總線日益無法滿足其需求。英特爾于1996年7月正式推出了AGP接口,它是一種顯示卡專用的局部總線。嚴格的說,AGP不能稱為總線,它與PCI總線不同,因為它是點對點連接,即連接控制芯片和AGP顯示卡,但在習(xí)慣上我們依然稱其為AGP總線。AGP接口是基于PCI2.1版規(guī)范并進行擴充修改而成,工作頻率為66MHz。AGP總線直接與主板的北橋芯片相連,且通過該接口讓顯示芯片與系統(tǒng)主內(nèi)存直接相連,避免了窄帶寬的PCI總線形成的系統(tǒng)瓶頸,增加3D圖形數(shù)據(jù)傳輸速度,同時在顯存不足的情況下還可以調(diào)用系統(tǒng)主內(nèi)存。所以它擁有很高的傳輸速率,這是PCI等總線無法與其相比擬的。由于采用了數(shù)據(jù)讀寫的流水線操作減少了內(nèi)存等待時間,數(shù)據(jù)傳輸速度有了很大提高;具有133MHz及更高的數(shù)據(jù)傳輸頻率;地址信號與數(shù)據(jù)信號分離可提高隨機內(nèi)存訪問的速度;采用并行操作允許在CPU訪問系統(tǒng)RAM的同時AGP顯示卡訪問AGP內(nèi)存;顯示帶寬也不與其它設(shè)備共享,從而進一步提高了系統(tǒng)性能。AGP標準在使用32位總線時,有66MHz和133MHz兩種工作頻率,最高數(shù)據(jù)傳輸率為266Mbps和533Mbps,而PCI總線理論上的最大傳輸率僅為133Mbps。目前最高規(guī)格的AGP8X模式下,數(shù)據(jù)傳輸速度達到了2.1GB/S。AGP接口的發(fā)展經(jīng)歷了AGP1.0(AGP1X、AGP2X)、AGP2.0(AGPPro、AGP4X)、AGP3.0(AGP8X)等階段,其傳輸速度也從最早的AGP1X的266MB/S的帶寬發(fā)展到了AGP8X的2.1GB/S。AGP1.0(AGP1X、AGP2X)1996年7月AGP1.0圖形標準問世,分為1X和2X兩種模式,數(shù)據(jù)傳輸帶寬分別達到了266MB/S和533MB/S。這種圖形接口規(guī)范是在66MHzPCI2.1規(guī)范基礎(chǔ)上經(jīng)過擴充和加強而形成的,其工作頻率為66MHz,工作電壓為3.3v,在一段時間內(nèi)基本滿足了顯示設(shè)備與系統(tǒng)交換數(shù)據(jù)的需要。這種規(guī)范中的AGP帶寬很小,現(xiàn)在已經(jīng)被淘汰了,只有在前幾年的老主板上還見得到。AGP2.0(AGP4X)顯示芯片的飛速發(fā)展,圖形卡單位時間內(nèi)所能處理的數(shù)據(jù)呈幾何級數(shù)成倍增長,AGP1.0圖形標準越來越難以滿足技術(shù)的進步了,由此AGP2.0便應(yīng)運而生了。1998年5月份,AGP2.0規(guī)范正式發(fā)布,工作頻率依然是66MHz,但工作電壓降低到了1.5v,并且增加了4x模式,這樣它的數(shù)據(jù)傳輸帶寬達到了1066MB/sec,數(shù)據(jù)傳輸能力大大地增強了。AGPProAGPPro接口與AGP2.0同時推出,這是一種為了滿足顯示設(shè)備功耗日益加大的現(xiàn)實而研發(fā)的圖形接口標準,應(yīng)用該技術(shù)的圖形接口主要的特點是比AGP4x略長一些,其加長部分可容納更多的電源引腳,使得這種接口可以驅(qū)動功耗更大(25-110W)或者處理能力更強大的AGP顯卡。這種標準其實是專為高端圖形工作站而設(shè)計的,完全兼容AGP4x規(guī)范,使得AGP4x的顯卡也可以插在這種插槽中正常使用。AGPPro在原有AGP插槽的兩側(cè)進行延伸,提供額外的電能。它是用來增強,而不是取代現(xiàn)有AGP插槽的功能。根據(jù)所能提供能量的不同,可以把AGPPro細分為AGPPro110和AGPPro50。在某些高檔臺式機主板上也能見到AGPPro插槽,例如華碩的許多主板。AGP3.0(AGP8X)2000年8月,Intel推出AGP3.0規(guī)范,工作電壓降到0.8V,并增加了8x模式,這樣它的數(shù)據(jù)傳輸帶寬達到了2133MB/sec,數(shù)據(jù)傳輸能力相對于AGP4X成倍增長,能較好的滿足當(dāng)前顯示設(shè)備的帶寬需求。AGP接口的模式傳輸方式不同AGP接口的模式傳輸方式不同。1X模式的AGP,工作頻率達到了PCI總線的兩倍一66MHz,傳輸帶寬理論上可達到266MB/s。AGP2X工作頻率同樣為66MHz,但是它使用了正負沿(一個時鐘周期的上升沿和下降沿)觸發(fā)的工作方式,在這種觸發(fā)方式中在一個時鐘周期的上升沿和下降沿各傳送一次數(shù)據(jù),從而使得一個工作周期先后被觸發(fā)兩次,使傳輸帶寬達到了加倍的目的,而這種觸發(fā)信號的工作頻率為133MHz,這樣AGP2X的傳輸帶寬就達到了266MB/sX2(觸發(fā)次數(shù))=533MB/s的高度。AGP4X仍使用了這種信號觸發(fā)方式,只是利用兩個觸發(fā)信號在每個時鐘周期的下降沿分別引起兩次觸發(fā),從而達到了在一個時鐘周期中觸發(fā)4次的目的,這樣在理論上它就可以達到266MB/sX2(單信號觸發(fā)次數(shù))X2(信號個數(shù))=1066MB/s的帶寬了。在AGP8X規(guī)范中,這種觸發(fā)模式仍然使用,只是觸發(fā)信號的工作頻率變成266MHz,兩個信號觸發(fā)點也變成了每個時鐘周期的上升沿,單信號觸發(fā)次數(shù)為4次,這樣它在一個時鐘周期所能傳輸?shù)臄?shù)據(jù)就從AGP4X的4倍變成了8倍,理論傳輸帶寬將可達到266MB/sX4(單信號觸發(fā)次數(shù))X2(信號個數(shù))=2133MB/s的高度了。目前常用的AGP接口為AGP4X、AGPPRO、AGP通用及AGP8X接口。需要說明的是由于AGP3.0顯卡的額定電壓為0.8—1.5V,因此不能把AGP8X的顯卡插接到AGP1.0規(guī)格的插槽中。這就是說AGP8X規(guī)格與舊有的AGP1X/2X模式不兼容。而對于AGP4X系統(tǒng),AGP8X顯卡仍舊在其上工作,但僅會以AGP4X模式工作,無法發(fā)揮AGP8X的優(yōu)勢。PCIExpress是新一代的總線接口,而采用此類接口的顯卡產(chǎn)品,已經(jīng)在2004年正式面世。早在2001年的春季“英特爾開發(fā)者論壇”上,英特爾公司就提出了要用新一代的技術(shù)取代PCI總線和多種芯片的內(nèi)部連接,并稱之為第三代I/O總線技術(shù)。隨后在2001年底,包括Intel、AMD、DELL、IBM在內(nèi)的20多家業(yè)界主導(dǎo)公司開始起草新技術(shù)的規(guī)范,并在2002年完成,對其正式命名為PCIExpress。PCIExpress采用了目前業(yè)內(nèi)流行的點對點串行連接,比起PCI以及更早期的計算機總線的共享并行架構(gòu),每個設(shè)備都有自己的專用連接,不需要向整個總線請求帶寬,而且可以把數(shù)據(jù)傳輸率提高到一個很高的頻率,達到PCI所不能提供的高帶寬。相對于傳統(tǒng)PCI總線在單一時間周期內(nèi)只能實現(xiàn)單向傳輸,PCIExpress的雙單工連接能提供更高的傳輸速率和質(zhì)量,它們之間的差異跟半雙工和全雙工類似。PCIExpress的接口根據(jù)總線位寬不同而有所差異,包括XI、X4、X8以及X16(X2模式將用于內(nèi)部接口而非插槽模式)。較短的PCIExpress卡可以插入較長的PCIExpress插槽中使用。PCIExpress接口能夠支持熱拔插,這也是個不小的飛躍。PCIExpress卡支持的三種電壓分別為+3.3V、3.3Vaux以及+12V。用于取代AGP接口的PCIExpress接口位寬為X16,將能夠提供5GB/s的帶寬,即便有編碼上的損耗但仍能夠提供約為4GB/s左右的實際帶寬,遠遠超過AGP8X的2.1GB/s的帶寬。PCIExpress規(guī)格從1條通道連接到32條通道連接,有非常強的伸縮性,以滿足不同系統(tǒng)設(shè)備對數(shù)據(jù)傳輸帶寬不同的需求。例如,PCIExpressX1規(guī)格支持雙向數(shù)據(jù)傳輸,每向數(shù)據(jù)傳輸帶寬250MB/s,PCIExpressX1已經(jīng)可以滿足主流聲效芯片、網(wǎng)卡芯片和存儲設(shè)備對數(shù)據(jù)傳輸帶寬的需求,但是遠遠無法滿足圖形芯片對數(shù)據(jù)傳輸帶寬的需求。因此,必須采用PCIExpressX16,即16條點對點數(shù)據(jù)傳輸通道連接來取代傳統(tǒng)的AGP總線。PCIExpressX16也支持雙向數(shù)據(jù)傳輸,每向數(shù)據(jù)傳輸帶寬高達4GB/s,雙向數(shù)據(jù)傳輸帶寬有8GB/s之多,相比之下,目前廣泛采用的AGP8X數(shù)據(jù)傳輸只提供2.1GB/s的數(shù)據(jù)傳輸帶寬。盡管PCIExpress技術(shù)規(guī)格允許實現(xiàn)X1(250MB/秒),X2,X4,X8,X12,X16和X32通道規(guī)格,但是依目前形式來看,PCIExpressX1和PCIExpressX16將成為PCIExpress主流規(guī)格,同時芯片組廠商將在南橋芯片當(dāng)中添加對PCIExpressX1的支持,在北橋芯片當(dāng)中添加對PCIExpressX16的支持。除去提供極高數(shù)據(jù)傳輸帶寬之外,PCIExpress因為采用串行數(shù)據(jù)包方式傳遞數(shù)據(jù),所以PCIExpress接口每個針腳可以獲得比傳統(tǒng)I/O標準更多的帶寬,這樣就可以降低PCIExpress設(shè)備生產(chǎn)成本和體積。另外,PCIExpress也支持高階電源管理,支持熱插拔,支持數(shù)據(jù)同步傳輸,為優(yōu)先傳輸數(shù)據(jù)進行帶寬優(yōu)化。在兼容性方面,PCIExpress在軟件層面上兼容目前的PCI技術(shù)和設(shè)備,支持PCI設(shè)備和內(nèi)存模組的初始化,也就是說目前的驅(qū)動程序、操作系統(tǒng)無需推倒重來,就可以支持PCIExpress設(shè)備。因為節(jié)省購買系統(tǒng)成本的原因,有很多消費者在購買主板產(chǎn)品的時候,都選擇了集成顯示芯片的主板產(chǎn)品,但是由于部分集成顯示芯片的主板(如:使用Intel865GV/845GV芯片組的主板)不具備AGP插槽,使得用戶在想升級顯卡的時候非常的麻煩。因為雖然也有PCI接口的顯卡,但是比較少見,不容易購買并且價格也比較高。針對這種情況,為了方便用戶今后升級,一些主板廠商自己開發(fā)了一些可以兼容AGP顯卡的接口,實現(xiàn)在這樣的主板上使用獨立的AGP顯卡,目前主要有華擎的AGI(ASRockGraphicsInterface)接口和倍嘉的AGU(AdvancedGraphicsUpgrade)接口。這種接口外形和AGP接口一樣,可以兼容AGP8X/4X規(guī)格顯卡,支持微軟DirectX9.0標準,甚至可以使用配套的技術(shù)實現(xiàn)獨立顯卡和主板集成顯卡同時工作,可以作為簡易的雙頭顯示升級方案。有了這樣的接口就可以在Intel865GV/i845GV平臺上升級外接顯卡,靈活的升級系統(tǒng),提高系統(tǒng)性能,提升主板的價值。需要說明的是,這種接口兼容AGP8X/4X規(guī)格,但并不是真正的AGP接口。插上AGP顯卡后性能方面比真正的AGP顯卡差一些,并且建議使用者為帶有這樣顯卡接口的主板購買顯卡時參考主板廠商提供的顯卡兼容性列表,以免出現(xiàn)兼容方面的問題。不論是AGI接口還是AGU接口,它們更注重的是在盡量不增加成本的同時給用戶提供新的功能,便于使用市場主流顯卡,提高系統(tǒng)的性能。***硬盤接口類型硬盤接口是硬盤與主機系統(tǒng)間的連接部件,作用是在硬盤緩存和主機內(nèi)存之間傳輸數(shù)據(jù)。不同的硬盤接口決定著硬盤與計算機之間的連接速度,在整個系統(tǒng)中,硬盤接口的優(yōu)劣直接影響著程序運行快慢和系統(tǒng)性能好壞。從整體的角度上,硬盤接口分為IDE、SATA、SCSI和光纖通道四種,IDE接口硬盤多用于家用產(chǎn)品中,也部分應(yīng)用于服務(wù)器,SCSI接口的硬盤則主要應(yīng)用于服務(wù)器市場,而光纖通道只在高端服務(wù)器上,價格昂貴。SATA是種新生的硬盤接口類型,還正出于市場普及階段,在家用市場中有著廣泛的前景。在IDE和SCSI的大類別下,又可以分出多種具體的接口類型,又各自擁有不同的技術(shù)規(guī)范,具備不同的傳輸速度,比如ATA100和SATA;Ultral60SCSI和Ultra320SCSI都代表著一種具體的硬盤接口,各自的速度差異也較大。IDEIDE的英文全稱為“IntegratedDriveElectronics",即“電子集成驅(qū)動器",它的本意是指把“硬盤控制器”與“盤體”集成在一起的硬盤驅(qū)動器。把盤體與控制器集成在一起的做法減少了硬盤接口的電纜數(shù)目與長度,數(shù)據(jù)傳輸?shù)目煽啃缘玫搅嗽鰪?,硬盤制造起來變得更容易,因為硬盤生產(chǎn)廠商不需要再擔(dān)心自己的硬盤是否與其它廠商生產(chǎn)的控制器兼容。對用戶而言,硬盤安裝起來也更為方便。IDE這一接口技術(shù)從誕生至今就一直在不斷發(fā)展,性能也不斷的提高,其擁有的價格低廉、兼容性強的特點,為其造就了其它類型硬盤無法替代的地位。IDE代表著硬盤的一種類型,但在實際的應(yīng)用中,人們也習(xí)慣用IDE來稱呼最早出現(xiàn)IDE類型硬盤ATA-1,這種類型的接口隨著接口技術(shù)的發(fā)展已經(jīng)被淘汰了,而其后發(fā)展分支出更多類型的硬盤接口,比如ATA、UltraATA、DMA、UltraDMA等接口都屬于IDE硬盤。SCSISCSI的英文全稱為“SmallComputerSystemlnterface"(小型計算機系統(tǒng)接口),是同IDE(ATA)完全不同的接口,IDE接口是普通PC的標準接口,而SCSI并不是專門為硬盤設(shè)計的接口,是一種廣泛應(yīng)用于小型機上的高速數(shù)據(jù)傳輸技術(shù)。SCSI接口具有應(yīng)用范圍廣、多任務(wù)、帶寬大、CPU占用率低,以及熱插拔等優(yōu)點,但較高的價格使得它很難如IDE硬盤般普及,因此SCSI硬盤主要應(yīng)用于中、高端服務(wù)器和高檔工作站中。光纖通道光纖通道的英文拼寫是FibreChannel,和SCIS接口一樣光纖通道最初也不是為硬盤設(shè)計開發(fā)的接口技術(shù),是專門為網(wǎng)絡(luò)系統(tǒng)設(shè)計的,但隨著存儲系統(tǒng)對速度的需求,才逐漸應(yīng)用到硬盤系統(tǒng)中。光纖通道硬盤是為提高多硬盤存儲系統(tǒng)的速度和靈活性才開發(fā)的,它的出現(xiàn)大大提高了多硬盤系統(tǒng)的通信速度。光纖通道的主要特性有:熱插拔性、高速帶寬、遠程連接、連接設(shè)備數(shù)量大等。光纖通道是為在像服務(wù)器這樣的多硬盤系統(tǒng)環(huán)境而設(shè)計,能滿足高端工作站、服務(wù)器、海量存儲子網(wǎng)絡(luò)、外設(shè)間通過集線器、交換機和點對點連接進行雙向、串行數(shù)據(jù)通訊等系統(tǒng)對高數(shù)據(jù)傳輸率的要求。SATA使用SATA(SerialATA)口的硬盤又叫串口硬盤,是未來PC機硬盤的趨勢。2001年,由Intel、APT、Dell、IBM、希捷、邁拓這幾大廠商組成的SerialATA委員會正式確立了SerialATA1.0規(guī)范,2002年,雖然串行ATA的相關(guān)設(shè)備還未正式上市,但SerialATA委員會已搶先確立了SerialATA2.0規(guī)范。SerialATA采用串行連接方式,串行ATA總線使用嵌入式時鐘信號,具備了更強的糾錯能力,與以往相比其最大的區(qū)別在于能對傳輸指令(不僅僅是數(shù)據(jù))進行檢查,如果發(fā)現(xiàn)錯誤會自動矯正,這在很大程度上提高了數(shù)據(jù)傳輸?shù)目煽啃?。串行接口還具有結(jié)構(gòu)簡單、支持熱插拔的優(yōu)點。支持Serial-ATA技術(shù)的標志主板上的Serial-ATA接口串口硬盤是一種完全不同于并行ATA的新型硬盤接口類型,由于采用串行方式傳輸數(shù)據(jù)而知名。相對于并行ATA來說,就具有非常多的優(yōu)勢。首先,SerialATA以連續(xù)串行的方式傳送數(shù)據(jù),一次只會傳送1位數(shù)據(jù)。這樣能減少SATA接口的針腳數(shù)目,使連接電纜數(shù)目變少,效率也會更高。實際上,SerialATA僅用四支針腳就能完成所有的工作,分別用于連接電纜、連接地線、發(fā)送數(shù)據(jù)和接收數(shù)據(jù),同時這樣的架構(gòu)還能降低系統(tǒng)能耗和減小系統(tǒng)復(fù)雜性。其次,SerialATA的起點更高、發(fā)展?jié)摿Ω?,SerialATA1.0定義的數(shù)據(jù)傳輸率可達150MB/S,這比目前最新的并行ATA(即ATA/133)所能達到133MB/s的最高數(shù)據(jù)傳輸率還高,而在SerialATA2.0的數(shù)據(jù)傳輸率將達到300MB/s,最終SATA將實現(xiàn)600MB/S的最高數(shù)據(jù)傳輸率。***擴展插槽擴展插槽是主板上用于固定擴展卡并將其連接到系統(tǒng)總線上的插槽,也叫擴展槽、擴充插槽。擴展槽是一種添加或增強電腦特性及功能的方法。例如,不滿意主板整合顯卡的性能,可以添加獨立顯卡以增強顯示性能;不滿意板載聲卡的音質(zhì),可以添加獨立聲卡以增強音效;不支持USB2.0或IEEE1394的主板可以通過添加相應(yīng)的USB2.0擴展卡或IEEE1394擴展卡以獲得該功能等。目前擴展插槽的種類主要有ISA,PCI,AGP,CNR,AMR,ACR和比較少見的WI-FI,VXB,以及筆記本電腦專用的PCMCIA等。歷史上出現(xiàn)過,早已經(jīng)被淘汰掉的還有MCA插槽,EISA插槽以及VESA插槽等等。未來的主流擴展插槽是PCIExpress插槽。ISA插槽PCI插槽AGP插槽AMR插槽CNR插槽ACR插槽PCIExpress插槽在選購主板產(chǎn)品時,擴展插槽的種類和數(shù)量的多少是決定購買的一個重要指標。有多種類型和足夠數(shù)量的擴展插槽就意味著今后有足夠的可升級性和設(shè)備擴展性,反之則會在今后的升級和設(shè)備擴展方面碰到巨大的障礙。這點對初學(xué)者尤其重要。例如不滿意整合主板的游戲性能想升級為獨立顯卡卻發(fā)現(xiàn)主板上沒有AGP插槽;想添加一塊視頻采集卡卻發(fā)現(xiàn)使用的PCI插槽都已插滿等等。但擴展插槽也并非越多越好,過多的插槽會導(dǎo)致主板成本上升從而加大用戶的購買成本,而且過多的插槽對許多用戶而言并沒有作用,例如一臺只需要做文本處理和上網(wǎng)的辦公電腦卻配有6個PCI插槽而且配有獨立顯卡,就是一種典型的資源浪費,這種類型的電腦只用整合型的MicroATX主板就能完全滿足使用要求。所以在具體產(chǎn)品的選購上要根據(jù)自己的需要來選購,符合自己的才是最好的。ISA插槽ISA插槽是基于ISA總線(IndustrialstandardArchitecture,工業(yè)標準結(jié)構(gòu)總線)的擴展插槽,其顏色一般為黑色,比PCI接口插槽要長些,位于主板的最下端。其工作頻率為8MHz左右,為16位插槽,最大傳輸率8MB/sec,可插接顯卡,聲卡,網(wǎng)卡已及所謂的多功能接口卡等擴展插卡。其缺點是CPU資源占用太高,數(shù)據(jù)傳輸帶寬太小,是已經(jīng)被淘汰的插槽接口。目前還能在許多老主板上看到ISA插槽,現(xiàn)在新出品的主板上已經(jīng)幾乎看不到ISA插槽的身影了,但也有例外,某些品牌的845E主板甚至875P主板上都還帶有ISA插槽,估計是為了滿足某些特殊用戶的需求。上圖中左側(cè)最長的插槽為ISA插槽(黑色),中間白色的為PCI插槽,右邊棕色的插槽為AGP插槽PCI插槽PCI插槽是基于PCI局部總線(PedpherdComponentinterconnect,周邊元件擴展接口)的擴展插槽,其顏色一般為乳白色,位于主板上AGP插槽的下方ISA插槽的上方。其位寬為32位或64位,工作頻率為33MHz,最大數(shù)據(jù)傳輸率為133MB/sec(32位)和266MB/sec(64位)??刹褰语@卡、聲卡、網(wǎng)卡、內(nèi)置Modem、內(nèi)置ADSLModem、USB2.0卡、IEEE1394卡、IDE接口卡、RAID卡、電視卡、視頻采集卡以及其它種類繁多的擴展卡。PCI插槽是主板的主要擴展插槽,通過插接不同的擴展卡可以獲得目前電腦能實現(xiàn)的幾乎所有外接功能。上圖中左側(cè)最長的插槽為ISA插槽(黑色),中間白色的為PCI插槽,右邊棕色的插槽為AGP插槽AGP插槽AGP(AcceleratedGraphicsPort)是在PCI總線基礎(chǔ)上發(fā)展起來的,主要針對圖形顯示方面進行優(yōu)化,專門用于圖形顯示卡。AGP標準也經(jīng)過了幾年的發(fā)展,從最初的AGP1.0、AGP2.0,發(fā)展到現(xiàn)在的AGP3.0,如果按倍速來區(qū)分的話,主要經(jīng)歷了AGP1X、AGP2X、AGP4X、AGPPRO,目前最新片版本就是AGP3.0,即AGP8X。AGP8X的傳輸速率可達到2.1GB/s,是AGP4X傳輸速度的兩倍。AGP插槽通常都是棕色,還有一點需要注意的是它不與PCI、ISA插槽處于同一水平位置,而是內(nèi)進一些,這使得PCI、ISA卡不可能插得進去當(dāng)然AGP插槽結(jié)構(gòu)也與PCI、ISA完全不同,根本不可能插錯的。上圖中左側(cè)最長的插槽為ISA插槽(黑色),中間白色的為PCI插槽,右邊棕色的插槽為AGP插槽。AMR插槽AMR(AudioModemRiser,聲音和調(diào)制解調(diào)器插卡)規(guī)范,它是1998年英特爾公司發(fā)起并號召其它相關(guān)廠商共同制定的一套開放工業(yè)標準,旨在將數(shù)字信號與模擬信號的轉(zhuǎn)換電路單獨做在一塊電路卡上。因為在此之前,當(dāng)主板上的模擬信號和數(shù)字信號同處在一起時,會產(chǎn)生互相干擾的現(xiàn)象。而AMR規(guī)范就是將聲卡和調(diào)制解調(diào)器功能集成在主板上,同時又把數(shù)字信號和模擬信號隔離開來,避免相互干擾。這樣做既降低了成本,又解決了聲卡與Modem子系統(tǒng)在功能上的一些限制。由于控制電路和數(shù)字電路能比較容易集成在芯片組中或主板上,而接口電路和模擬電路由于某些原因(如電磁干擾、電氣接口不同)難以集成到主板上。因此,英特爾公司就專門開發(fā)出了AMR插槽,目的是將模擬電路和I/O接口電路轉(zhuǎn)移到單獨的AMR插卡中,其它部件則集成在主板上的芯片組中。AMR插槽的位置一般在主板上PCI插槽(白色)的附近,比較短(大約只有5厘米),外觀呈棕色。可插接AMR聲卡或AMRModem卡,不過由于現(xiàn)在絕大多數(shù)整合型主板上都集成了AC'97音效芯片,所以AMR插槽主要是與AMRModem配合使用。但由于AMRModem卡比一般的內(nèi)置軟Modem卡更占CPU資源,使用效果并不理想,而且價格上也不比內(nèi)置Modem卡占多大優(yōu)勢,故此AMR插槽很快被CNR所取代。AMR插槽CNR插槽為順應(yīng)寬帶網(wǎng)絡(luò)技術(shù)發(fā)展的需求,彌補AMR規(guī)范設(shè)計上的不足,英特爾適時推出了CNR(CommunicATIonNetworkRiser,通訊網(wǎng)絡(luò)插卡)標準。與AMR規(guī)范相比,新的CNR標準應(yīng)用范圍更加廣泛,它不僅可以連接專用的CNRModem還能使用專用的家庭電話網(wǎng)絡(luò)(HomePNA),并符合PC2000標準的即插即用功能。最重要的是,它增加了對10/100MB局域網(wǎng)功能的支持,以及提供對AC'97兼容的AC-Link、SMBus接口和USB(1.X或2.0)接口的支持。另外,CNR標準支持ATX、MicroATX和FlexATX規(guī)格的主板,但不支持NLX形式的主板(AMR支持)。從外觀上看,CNR插槽比AMR插槽比較相似(也呈棕色),但前者要略長一點,而且兩者的針腳數(shù)也不相同,所以AMR插槽與CNR插槽無法兼容。CNR支持的插卡類型有AudioCNR、ModemCNR、USBHubCNR、HomePNACNR、LANCNR等。但市場對CNR的支持度不夠,相應(yīng)的產(chǎn)品很少,所以大多數(shù)主板上的CNR插槽也成了無用的擺設(shè)。CNR插槽ACR插槽ACR是AdvancedCommuniATIonRiser(高級通訊插卡)的縮寫,它是VIA(威盛)公司為了與英特爾的AMR相抗衡而聯(lián)合AMD、3Com、Lucent(朗訊)、Motorola(摩托羅拉)、NVIDIA、TexasInstruments等世界著名廠商于2001年6月推出的一項開放性行業(yè)技術(shù)標準,其目的也上為了拓展AMR在網(wǎng)絡(luò)通訊方面的功能。ACR不但能夠與AMR規(guī)范完全兼容,而且定義了一個非常完善的網(wǎng)絡(luò)與通訊的標準接口。ACR插卡可以提供諸如Modem、LAN(局域網(wǎng))、HomePNA、寬帶網(wǎng)(ADSL、CableModem)、無線網(wǎng)絡(luò)和多聲道音效處理等功能。ACR插槽大多都設(shè)計放在原來ISA插槽的地方。ACR插槽采用120針腳設(shè)計,兼容普通的PCI插槽,但方向正好與之相反,這樣可以保證兩種類型的插卡不會混淆。管ACR和CNR標準都包含了AMR標準的全部內(nèi)容,但這兩者并不兼容,甚至可以說是互相排斥(這也是市場競爭的惡果)。兩者最明顯的差別是,CNR放棄了原有的基礎(chǔ)架構(gòu),即放棄了對AMR標準的兼容,而ACR標準在增加了眾多新功能的同時保留了與AMR的兼容性。但與CNR一樣,市場對ACR的支持度不夠,相應(yīng)的產(chǎn)品很少,所以大多數(shù)主板上的ACR插槽也成了無用的擺設(shè)。上圖中最左側(cè)的插槽為ACR插槽,注意其與右側(cè)5個PCI插槽的區(qū)別。PCIExpress插槽PCI-Express是最新的總線和接口標準,它原來的名稱為“3GI0”,是由英特爾提出的,很明顯英特爾的意思是它代表著下一代I/O接口標準。交由PCI-SIG(PCI特殊興趣組織)認證發(fā)布后才改名為“PCI-Express”。這個新標準將全面取代現(xiàn)行的PCI和AGP,最終實現(xiàn)總線標準的統(tǒng)一。它的主要優(yōu)勢就是數(shù)據(jù)傳輸速率高,目前最高可達到lOGB/s以上,而且還有相當(dāng)大的發(fā)展?jié)摿?。PCIExpress也有多種規(guī)格,從PCIExpress1X到PCIExpress16X,能滿足現(xiàn)在和將來一定時間內(nèi)出現(xiàn)的低速設(shè)備和高速設(shè)備的需求。能支持PCIExpress的主要是英特爾的i915和i925系列芯片組。當(dāng)然要實現(xiàn)全面取代PCI和AGP也需要一個相當(dāng)長的過程,就象當(dāng)初PCI取代ISA一樣,都會有個過渡的過程。***擴展接口擴展接口是主板上用于連接各種外部設(shè)備的接口。通過這些擴展接口,可以把打印機,外置Modem,掃描儀,閃存盤,MP3播放機,DC,DV,移動硬盤,手機,寫字板等外部設(shè)備連接到電腦上。而且,通過擴展接口還能實現(xiàn)電腦間的互連。目前,常見的擴展接口有串行接口(SerialPort),并行接口(ParallelPort),通用串行總線接口(USB),IEEE1394接口等。串行接口串行接口,簡稱串口,也就是COM接口,是采用串行通信協(xié)議的擴展接口。串口的出現(xiàn)是在1980年前后,數(shù)據(jù)傳輸率是115kbps?230kbps,串口一般用來連接鼠標和外置Modem以及老式攝像頭和寫字板等設(shè)備,目前部分新主板已開始取消該接口。并行接口并行接口,簡稱并口,也就是LPT接口,是采用并行通信協(xié)議的擴展接口并口的數(shù)據(jù)傳輸率比串口快8倍,標準并口的數(shù)據(jù)傳輸率為1Mbps,一般用來連接打印機、掃描儀等。所以并口又被稱為打印口。另外,串口和并口都能通過直接電纜連接的方式實現(xiàn)雙機互連,在此方式下數(shù)據(jù)只能低速傳輸。多年來PC的串口與并口的功能和結(jié)構(gòu)并沒有什么變化。在使用串并口時,原則上每一個外設(shè)必須插在一個接口上,如果所有的接口均被用上了就只能通過添加插卡來追加接口。串、并口不僅速度有限,而且在使用上很不方便,例如不支持熱插拔等。隨著USB接口的普及,目前都已經(jīng)很少使用了,而且隨著BTX規(guī)范的推廣,是必然會被淘汰的。USBUSB是英文UniversalSerialBus的縮寫,中文含義是“通用串行總線”。它不是一種新的總線標準,而是應(yīng)用在PC領(lǐng)域的接口技術(shù)。USB是在1994年底由英特爾、康柏、IBM、Microsoft等多家公司聯(lián)合提出的。不過直到近期,它才得到廣泛地應(yīng)用。從1994年11月11日發(fā)表了USBV0.7版本以后,USB版本經(jīng)歷了多年的發(fā)展,到現(xiàn)在已經(jīng)發(fā)展為2.0版本,成為目前電腦中的標準擴展接口。目前主板中主要是采用USB1.1和USB2.0,各USB版本間能很好的兼容。USB用一個4針插頭作為標準插頭,采用菊花鏈形式可以把所有的外設(shè)連接起來,最多可以連接127個外部設(shè)備,并且不會損失帶寬。USB需要主機硬件、操作系統(tǒng)和外設(shè)三個方面的支持才能工作。目前的主板一般都采用支持USB功能的控制芯片組,主板上也安裝有USB接口插座,而且除了背板的插座之外,主板上還預(yù)留有USB插針,可以通過連線接到機箱前面作為前置USB接口以方便使用(注意,在接線時要仔細閱讀主板說明書并按圖連接,千萬不可接錯而使設(shè)備損壞)。而且USB接口還可以通過專門的USB連機線實現(xiàn)雙機互連,并可以通過Hub擴展出更多的接口。USB具有傳輸速度快(USB1.1是12Mbps,USB2.0是480Mbps),使用方便,支持熱插拔,連接靈活,獨立供電等優(yōu)點,可以連接鼠標、鍵盤、打印機、掃描儀、攝像頭、閃存盤、MP3機、手機、數(shù)碼相機、移動硬盤、外置光軟驅(qū)、USB網(wǎng)卡、ADSLModem、CableModem等,幾乎所有的外部設(shè)備。IEEE1394IEEE1394的前身即Firewire(火線),是1986年由蘋果電腦公司針對高速數(shù)據(jù)傳輸所開發(fā)的一種傳輸介面,并于1995年獲得美國電機電子工程師協(xié)會認可,成為正式標準?,F(xiàn)在大家看到的IEEE1394、Firewire和i.LINK其實指的都是這個標準,通常,在PC個人計算機領(lǐng)域?qū)⑺Q為IEEE1394,在電子消費品領(lǐng)域,則更多的將它稱為i.LINK,而對于蘋果機則仍以最早的Firewire稱之。IEEE1394也是一種高效的串行接口標準,功能強大而且性能穩(wěn)定,而且支持熱拔插和即插即用。IEEE1394可以在一個端口上連接多達63個設(shè)備,設(shè)備間采用樹形或菊花鏈拓撲結(jié)構(gòu)。IEEE1394標準定義了兩種總線模式,即:Backplane模式和Cable模式。其中Backplane模式支持12.5、25、50Mbps的傳輸速率;Cable模式支持100、200、400Mbps的傳輸速率。目前最新的IEEE1394b標準能達到800Mbps的傳輸速率。IEEE1394是橫跨PC及家電產(chǎn)品平臺的一種通用界面,適用于大多數(shù)需要高速數(shù)據(jù)傳輸?shù)漠a(chǎn)品,如高速外置式硬盤、CD-ROM、DVD-ROM、掃描儀、打印機、數(shù)碼相機、攝影機等。IEEE1394分為有供電功能的6針A型接口和無供電功能的4針B型接口,A型接口可以通過轉(zhuǎn)接線兼容B型,但是B型轉(zhuǎn)換成A型后則沒有供電的能力。6針的A型接口在Apple的電腦和周邊設(shè)備上使用很廣,而在消費類電子產(chǎn)品以及PC上多半都是采用的簡化過的4針B型接口,需要配備單獨的電源適配器。IEEE1394接口可以直接當(dāng)做網(wǎng)卡聯(lián)機,也可以通過Hub擴展出更多的接口。沒有IEEE1394接口的主板也可以通過插接IEEE1394擴展卡的方式獲得此功能***硬件監(jiān)控為了讓用戶能夠了解硬件的工作狀態(tài)(溫度、轉(zhuǎn)速、電壓等),主板上通常有一塊至兩塊專門用于監(jiān)控硬件工作狀態(tài)的硬件監(jiān)控芯片。當(dāng)硬件監(jiān)控芯片與各種傳感元件(電壓、溫度、轉(zhuǎn)速)配合時,便能在硬件工作狀態(tài)不正常時,自動采取保護措施或及時調(diào)整相應(yīng)元件的工作參數(shù),以保證電腦中各配件工作在正常狀態(tài)下。常見的有溫度控制芯片和通用硬件監(jiān)控芯片等等。溫度控制芯片:主流芯片可以支持兩組以上的溫度檢測,并在溫度超過一定標準的時候自動調(diào)整處理器散熱風(fēng)扇的轉(zhuǎn)速,從而降低CPU的溫度。超過預(yù)設(shè)溫度時還可以強行自動關(guān)機,從而保護電腦系統(tǒng)。常見的溫度控制芯片有AnalogDevices的ADT7463等等。通用硬件監(jiān)控芯片:這種芯片通常還整合了超級I/O(輸出/輸出管理)功能,可以用來監(jiān)控受監(jiān)控對象的電壓、溫度、轉(zhuǎn)速等。對于溫度的監(jiān)控需與溫度傳感元件配合;對風(fēng)扇電機轉(zhuǎn)速的監(jiān)控,則需與CPU或顯卡的散熱風(fēng)扇配合比較常見的硬件監(jiān)控芯片有華邦公司的W83697HF和W83627HF,SMSC公司的LPC47M172,ITE公司的IT8705F、IT8703F,ASUS公司的AS99172F(此芯片能同時對三組系統(tǒng)風(fēng)扇和三組系統(tǒng)溫度進行監(jiān)控)等電源回路電源回路是主板中的一個重要組成部分,其作用是對主機電源輸送過來的電流進行電壓的轉(zhuǎn)換,將電壓變換至CPU所能接受的內(nèi)核電壓值,使CPU正常工作,以及對主機電源輸送過來的電流進行整形和過濾,濾除各種雜波和干擾信號以保證電腦的穩(wěn)定工作。電源回路的主要部分一般都位于主板CPU插槽附近。電源回路依其工作原理可分為線性電源供電方式和開關(guān)電源供電方式。1.線性電源供電方式這是好多年以前的主板供電方式,它是通過改變晶體管的導(dǎo)通程度來實現(xiàn)的,晶體管相當(dāng)于一個可變電阻,串接在供電回路中。由于可變電阻與負載流過相同的電流,因此要消耗掉大量的能量并導(dǎo)致升溫,電壓轉(zhuǎn)換效率低。尤其是在需要大電流的供電電路中線性電源無法使用。目前這種供電方式早已經(jīng)被淘汰掉了。1.開關(guān)電源供電方式這是目前廣泛采用的供電方式,PWM控制器IC芯片提供脈寬調(diào)制,并發(fā)出脈沖信號,使得場效應(yīng)管MOSFET1與MOSFET2輪流導(dǎo)通。扼流圈L0與L1是作為儲能電感使用并與相接的電容組成LC濾波電路。其工作原理是這樣的:當(dāng)負載兩端的電壓VCORE(如CPU需要的電壓)要降低時,通過MOSFET場效應(yīng)管的開關(guān)作用,外部電源對電感進行充電并達到所需的額定電壓。當(dāng)負載兩端的電壓升高時,通過MOSFET場效應(yīng)管的開關(guān)作用,外部電源供電斷開,電感釋放出剛才充入的能量,這時的電感就變成了電源繼續(xù)對負載供電。隨著電感上存儲能量的消耗,負載兩端的電壓開始逐漸降低,外部電源通過MOSFET場效應(yīng)管的開關(guān)作用又要充電。依此類推在不斷地充電和放電的過程中就行成了一種穩(wěn)定的電壓,永遠使負載兩端的電壓不會升高也不會降低,這就是開關(guān)電源的最大優(yōu)勢。還有就是由于MOSFET場效應(yīng)管工作在開關(guān)狀態(tài),導(dǎo)通時的內(nèi)阻和截止時的漏電流都較小,所以自身耗電量很小,避免了線性電源串接在電路中的電阻部分消耗大量能量的問題。這也就是所謂的“單相電源回路”的工作原理。單相供電一般可以提供最大25A的電流,而現(xiàn)今常用的CPU早已超過了這個數(shù)字,P4處理器功率可以達到70-80瓦,工作電流甚至達到50A,單相供電無法提供足夠可靠的動力,所以現(xiàn)在主板的供電電路設(shè)計都采用了兩相甚至多相的設(shè)計。(如圖2)就是一個兩相供電的示意圖,很容易看懂,就是兩個單相電路的并聯(lián),因此它可以提供雙倍的電流供給,理論上可以綽綽有余地滿足目前CPU的需要了。但上述只是純理論,實際情況還要添加很多因素,如開關(guān)元件性能,導(dǎo)體的電阻,都是影響Vcore的要素。實際應(yīng)用中存在供電部分的效率問題,電能不會100%轉(zhuǎn)換,一般情況下消耗的電能都轉(zhuǎn)化為熱量散發(fā)出來,所以我們常見的任何穩(wěn)壓電源總是電器中最熱的部分。要注意的是,溫度越高代表其效率越低。這樣一來,如果電路的轉(zhuǎn)換效率不是很高,那么采用兩相供電的電路就可能無法滿足CPU的需要,所以又出現(xiàn)了三相甚至更多相供電電路。但是,這也帶來了主板布線復(fù)雜化,如果此時布線設(shè)計如果不很合理,就會影響高頻工作的穩(wěn)定性等一系列問題。目前在市面上見到的主流主板產(chǎn)品有很多采用三相供電電路,雖然可以供給CPU足夠動力,但由于電路設(shè)計的不足使主板在極端情況下的穩(wěn)定性一定程度上受到了限制,如要解決這個問題必然會在電路設(shè)計布線方面下更大的力氣,而成本也隨之上升了。電源回路采用多相供電的原因是為了提供更平穩(wěn)的電流,從控制芯片PWM發(fā)出來的是那種脈沖方波信號,經(jīng)過LC震蕩回路整形為類似直流的電流,方波的高電位時間很短,相越多,整形出來的準直流電越接近直流。電源回路對電腦的性能發(fā)揮以及工作的穩(wěn)定性起著非常重要的作用,是主板的一個重要的性能參數(shù)。在選購時應(yīng)該選擇主流大廠設(shè)計精良,用料充足的產(chǎn)品。***BIOS計算機用戶在使用計算機的過程中,都會接觸到BIOS,它在計算機系統(tǒng)中起著非常重要的作用。一塊主板性能優(yōu)越與否,很大程度上取決于主板上的BIOS管理功能是否先進。BIOS(BasicInput/OutputSystem,基本輸入輸出系統(tǒng))全稱是ROM—BIOS,是只讀存儲器基本輸入/輸出系統(tǒng)的簡寫,它實際是一組被固化到電腦中,為電腦提供最低級最直接的硬件控制的程序,它是連通軟件程序和硬件設(shè)備之間的樞紐,通俗地說,BIOS是硬件與軟件程序之間的一個“轉(zhuǎn)換器”或者說是接口(雖然它本身也只是一個程序),負責(zé)解決硬件的即時要求,并按軟件對硬件的操作要求具體執(zhí)行。BIOS芯片是主板上一塊長方型或正方型芯片,BIOS中主要存放:自診斷程序:通過讀取CMOSRAM中的內(nèi)容識別硬件配置,并對其進行自檢和初始化;CMOS設(shè)置程序:引導(dǎo)過程中,用特殊熱鍵啟動,進行設(shè)置后,存入CMOSRAM中;系統(tǒng)自舉裝載程序:在自檢成功后將磁盤相對0道0扇區(qū)上的引導(dǎo)程序裝入內(nèi)存,讓其運行以裝入DOS系統(tǒng);主要I/O設(shè)備的驅(qū)動程序和中斷服務(wù);由于BIOS直接和系統(tǒng)硬件資源打交道,因此總是針對某一類型的硬件系統(tǒng),而各種硬件系統(tǒng)又各有不同,所以存在各種不同種類的BIOS,隨著硬件技術(shù)的發(fā)展,同一種BIOS也先后出現(xiàn)了不同的版本,新版本的BIOS比起老版本來說,功能更強。BIOS的功能目前市場上主要的BIOS有AMIBIOS和AwardBIOS以及PhoenixBIOS,其中,Award和Phoenix已經(jīng)合并,二者的技術(shù)也互有融合。從功能上看,BIOS分為三個部分:自檢及初始化程序;硬件中斷處理;程序服務(wù)請求;一)自檢及初始化這部分負責(zé)啟動電腦,具體有三個部分,第一個部分是用于電腦剛接通電源時對硬件部分的檢測,也叫做加電自檢(PowerOnSelfTest,簡稱POST),功能是檢查電腦是否良好,通常完整的POST自檢將包括對CPU,640K基本內(nèi)存,1M以上的擴展內(nèi)存,ROM,主板,CMOS存儲器,串并口,顯示卡,軟硬盤子系統(tǒng)及鍵盤進行測試,一旦在自檢中發(fā)現(xiàn)問題,系統(tǒng)將給出提示信息或鳴笛警告。自檢中如發(fā)現(xiàn)有錯誤,將按兩種情況處理:對于嚴重故障(致命性故障)則停機,此時由于各種初始化操作還沒完成,不能給出任何提示或信號;對于非嚴重故障則給出提示或聲音報警信號,等待用戶處理。第二個部分是初始化,包括創(chuàng)建中斷向量、設(shè)置寄存器、對一些外部設(shè)備進行初始化和檢測等,其中很重要的一部分是BIOS設(shè)置,主要是對硬件設(shè)置的一些參數(shù),當(dāng)電腦啟動時會讀取這些參數(shù),并和實際硬件設(shè)置進行比較,如果不符合,會影響系統(tǒng)的啟動。最后一個部分是引導(dǎo)程序,功能是引導(dǎo)DOS或其他操作系統(tǒng)。BIOS先從軟盤或硬盤的開始扇區(qū)讀取引導(dǎo)記錄,如果沒有找到,則會在顯示器上顯示沒有引導(dǎo)設(shè)備,如果找到引導(dǎo)記錄會把電腦的控制權(quán)轉(zhuǎn)給引導(dǎo)記錄,由引導(dǎo)記錄把操作系統(tǒng)裝入電腦,在電腦啟動成功后,BIOS的這部分任務(wù)就完成了。(二)程序服務(wù)處理和硬件中斷處理這兩部分是兩個獨立的內(nèi)容,但在使用上密切相關(guān)。程序服務(wù)處理程序主要是為應(yīng)用程序和操作系統(tǒng)服務(wù),這些服務(wù)主要與輸入輸出設(shè)備有關(guān),例如讀磁盤、文件輸出到打印機等。為了完成這些操作,BIOS必須直接與計算機的I/O設(shè)備打交道,它通過端口發(fā)出命令,向各種外部設(shè)備傳送數(shù)據(jù)以及從它們那兒接收數(shù)據(jù),使程序能夠脫離具體的硬件操作,而硬件中斷處理則分別處理PC機硬件的需求,因此這兩部分分別為軟件和硬件服務(wù),組合到一起,使計算機系統(tǒng)正常運行。BIOS的服務(wù)功能是通過調(diào)用中斷服務(wù)程序來實現(xiàn)的,這些服務(wù)分為很多組每組有一個專門的中斷。例如視頻服務(wù),中斷號為10H;屏幕打印,中斷號為05H;磁盤及串行口服務(wù),中斷14H等。每一組又根據(jù)具體功能細分為不同的服務(wù)號。應(yīng)用程序需要使用哪些外設(shè)、進行什么操作只需要在程序中用相應(yīng)的指令說明即可,無需直接控制。CMOS是互補金屬氧化物半導(dǎo)體的縮寫。其本意是指制造大規(guī)模集成電路芯片用的一種技術(shù)或用這種技術(shù)制造出來的芯片。在這里通常是指電腦主板上的一塊可讀寫的RAM芯片。它存儲了電腦系統(tǒng)的實時鐘信息和硬件配置信息等。系統(tǒng)在加電引導(dǎo)機器時,要讀取CMOS信息,用來初始化機器各個部件的狀態(tài)。它靠系統(tǒng)電源和后備電池來供電,系統(tǒng)掉電后其信息不會丟失。CMOS與BIOS的區(qū)別由于CMOS與BIOS都跟電腦系統(tǒng)設(shè)置密切相關(guān),所以才有CMOS設(shè)置和BIOS設(shè)置的說法。也正因此,初學(xué)者常將二者混淆。CMOSRAM是系統(tǒng)參數(shù)存放的地方,而BIOS中系統(tǒng)設(shè)置程序是完成參數(shù)設(shè)置的手段。因此,準確的說法應(yīng)是通過BIOS設(shè)置程序?qū)MOS參數(shù)進行設(shè)置。而我們平常所說的CMOS設(shè)置和BIOS設(shè)置是其簡化說法,也就在一定程度上造成了兩個概念的混淆。升級BIOS的作用現(xiàn)在的BIOS芯片都采用了FlashROM,都能通過特定的寫入程序?qū)崿F(xiàn)BIOS的升級,升級BIOS主要有兩大目的:免費獲得新功能升級BIOS最直接的好處就是不用花錢就能獲得許多新功能,比如能支持新頻率和新類型的CPU,例如以前的某些老主板通過升級BIOS支持圖拉丁核心Pentiumlll和Celeron,現(xiàn)在的某些主板通過升級BIOS能支持最新的Prescott核心Pentium4ECPU;突破容量限制,能直接使用大容量硬盤;獲得新的啟動方式;開啟以前被屏蔽的功能,例如英特爾的超線程技術(shù),VIA的內(nèi)存交錯技術(shù)等;識別其它新硬件等。解決舊版BIOS中的BUGBIOS既然也是程序,就必然存在著BUG,而且現(xiàn)在硬件技術(shù)發(fā)展日新月異,隨著市場競爭的加劇,主板廠商推出產(chǎn)品的周期也越來越短,在BIOS編寫上必然也有不盡如意的地方,而這些BUG常會導(dǎo)致莫名其妙的故障,例如無故重啟,經(jīng)常死機,系統(tǒng)效能低下,設(shè)備沖突,硬件設(shè)備無故“丟失”等等。在用戶反饋以及廠商自己發(fā)現(xiàn)以后,負責(zé)任的廠商都會及時推出新版的BIOS以修正這些已知的BUG,從而解決那些莫名其妙的故障。由于BIOS升級具有一定的危險性,各主板廠商針對自己的產(chǎn)品和用戶的實際需求,也開發(fā)了許多BIOS特色技術(shù)。例如BIOS刷新方面的有著名的技嘉的@BIOSWriter,支持技嘉主板在線自動查找新版BIOS并自動下載和刷新BIOS,免除了用戶人工查找新版BIOS的麻煩,也避免了用戶誤刷不同型號主板BIOS的危險,而且技嘉@BIOS還支持許多非技嘉主板在windows下備份和刷新BIOS;其它相類似的BI

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論