




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
MONEYANDCAPITALMARKETSAND
INFORMATIONTECHNOLOGYDEPARTMENTS
PoweringtheDigital
Economy
OpportunitiesandRisksofArtificial
IntelligenceinFinance
PreparedbyElBachirBoukherouaaandGhiathShabsigh
incollaborationwith
KhaledAlAjmi,JoseDeodoro,AquilesFarias,EbruS.Iskender,
AlinT.Mirestean,andRangacharyRavikumar
DP/2021/024
2021
OCTOBER
MONEYANDCAPITALMARKETSANDINFORMATIONTECHNOLOGYDEPARTMENTS
DEPARTMENTALPAPERS
PoweringtheDigitalEconomy
OpportunitiesandRisksofArtificialIntelligencein
Finance
PreparedbyElBachirBoukherouaaandGhiathShabsigh
incollaborationwith
KhaledAlAjmi,JoseDeodoro,AquilesFarias,EbruS.Iskender,AlinT.Mirestean,andRangacharyRavikumar
Copyright?2021InternationalMonetaryFund
PoweringtheDigitalEconomy:OpportunitiesandRisksofArtificialIntelligenceinFinance
DP/2021/024
Authors:ElBachirBoukherouaaandGhiathShabsigh
incollaborationwith
KhaledAlAjmi,JoseDeodoro,AquilesFarias,EbruS.Iskender,AlinT.Mirestean,andRangacharyRavikumar
1
Cataloging-in-PublicationData
IMFLibrary
Names:Boukherouaa,ElBachir.|Shabsigh,Ghiath.|AlAjmi,Khaled.|Deodoro,Jose.|Farias,Aquiles.|Iskender,EbruS.|Mirestean,Alin.|Ravikumar,Rangachary.|InternationalMonetaryFund,publisher.
Title:Poweringthedigitaleconomy:opportunitiesandrisksofartificialintelligenceinfinance/preparedbyElBachirBoukherouaaandGhiathShabsighincollaborationwithKhaledAlAjmi,JoseDeodoro,AquilesFarias,EbruS.Iskender,AlinT.Mirestean,andRangacharyRavikumar.
Description:Washington,DC:InternationalMonetaryFund,2021.|2021September.|Departmentalpaperseries.|Includesbibliographicalreferences.
Identifiers:ISBN9781589063952(paper)
Subjects:LCSH:Artificialintelligence—Economicaspects.|Machinelearning—Economicaspects.|Financialservicesindustry—Technologicalinnovations.
Classification:LCCHC79.I55B682021
ISBN
978-1-59806-395-2(Paper)
JELClassificationNumbers:
C40,C510,C550,E17,G21,G23,G280,O310,O330
Keywords:
ArtificialIntelligence,MachineLearning,FinancialStability,EmbeddedBias,FinancialRegulation,Cybersecurity,RiskManagement,DataPrivacy
Author’sE-MailAddress:
GShabsigh@;EBoukherouaa@;KAlAjmi@;JDeodoro@;AFarias@;ESonbulIskender@;AMirestean@;RRavikumar@
TheDepartmentalPaperSeriespresentsresearchbyIMFstaffonissuesofbroadregionalorcross-countryinterest.Theviewsexpressedinthispaperarethoseoftheauthor(s)anddonotnecessarilyrepresenttheviewsoftheIMF,itsExecutiveBoard,orIMFmanagement.
Publicationordersmaybeplacedonlineorthroughthemail:
InternationalMonetaryFund,PublicationServices
P.O.Box92780,Washington,DC20090,USA
T.+(1)202.623.7430
publications@
IMF
elibrary.IMF.org
1WearegratefultoAdityaNarainandotherIMFcolleaguesforvaluablecomments,andtoJavierChangforproductionsupport.
1IMFDEPARTMENTALPAPERSPoweringtheDigitalEconomy
ExecutiveSummary
Thispaperdiscussestheimpactoftherapidadoptionofartificialintelligence(AI)andmachinelearning(ML)inthefinancialsector.Ithighlightsthebenefitsthesetechnologiesbringintermsoffinancialdeepeningandefficiency,whileraisingconcernsaboutitspotentialinwideningthedigitaldividebetweenadvancedanddevelopingeconomies.Thepaperadvancesthediscussionontheimpactofthistechnologybydistillingandcategorizingtheuniquerisksthatitcouldposetotheintegrityandstabilityofthefinancialsystem,policychallenges,andpotentialregulatoryapproaches.Theevolvingnatureofthistechnologyanditsapplicationinfinancemeansthatthefullextentofitsstrengthsandweaknessesisyettobefullyunderstood.Giventheriskofunexpectedpitfalls,countrieswillneedtostrengthenprudentialoversight.
AIandMLaretechnologieswiththepotentialforenormoussocietalandeconomicimpact,bringingnewopportunitiesandbenefits.Recenttechnologicaladvancesincomputinganddatastoragepower,bigdata,andthedigitaleconomyarefacilitatingrapidAI/MLdeploymentinawiderangeofsectors,includingfinance.TheCOVID-19crisishasacceleratedtheadoptionofthesesystemsduetotheincreaseduseofdigitalchannels.
AI/MLsystemsarechangingthefinancialsectorlandscape.CompetitivepressuresarefuelingrapidadoptionofAI/MLinthefinancialsectorbyfacilitatinggainsinefficiencyandcostsavings,reshapingclientinterfaces,enhancingforecastingaccuracy,andimprovingriskmanagementandcompliance.AI/MLsystemsalsoofferthepotentialtostrengthenprudentialoversightandtoequipcentralbankswithnewtoolstopursuetheirmonetaryandmacroprudentialmandates.
Theseadvances,however,arecreatingnewconcernsarisingfromrisksinherentinthetechnologyanditsapplicationinthefinancialsector.Concernsincludeanumberofissues,suchasembeddedbiasinAI/MLsystems,theopaquenessoftheiroutcomes,andtheirrobustness(particularlywithrespecttocyberthreatsandprivacy).Furthermore,thetechnologyisbringingnewsourcesandtransmissionchannelsofsystemicrisks,includinggreaterhomogeneityinriskassessmentsandcreditdecisionsandrisinginterconnectednessthatcouldquicklyamplifyshocks.
AI/MLinfinanceshouldbebroadlywelcome,togetherwithpreparationstocapturetheirbenefitsandmitigatepotentialriskstothefinancialsystem’sintegrityandsafety.Preparationsincludestrengtheningthecapacityandmonitoringframeworksofoversightauthorities,engagingstakeholderstoidentifypossiblerisksandremedialregulatoryactions,updatingrelevantlegalandregulatory,andexpandingconsumereducation.ItisimportantthattheseactionsaretakeninthecontextofnationalAIstrategiesandinvolveallrelevantpublicandprivatebodies.
Cooperationandknowledgesharingattheregionalandinternationallevelisbecomingincreasinglyimportant.ThiswouldallowforthecoordinationofactionstosupportthesafedeploymentofAI/MLsystemsandthesharingofexperiencesandknowledge.Cooperationwillbeparticularlyimportanttoensurethatless-developedeconomiessharethebenefits.
2IMFDEPARTMENTALPAPERSPoweringtheDigitalEconomy
Contents
ExecutiveSummary1
AcronymsandAbbreviations
4
1.Introduction
5
2.ArtificialintelligenceintheFinancialSector
7
A.Forecasting
7
B.InvestmentandBankingServices
7
C.RiskandComplianceManagement
9
D.PrudentialSupervision
9
E.CentralBanking
12
3.RisksandPolicyConsiderations
14
A.EmbeddedBias
14
B.Unboxingthe“BlackBox”:ExplainabilityandComplexity
15
C.Cybersecurity
16
D.DataPrivacy
17
E.Robustness
17
F.ImpactonFinancialStability
18
4.Conclusion
20
Annexes
Annex1.HowMachineLearningAlgorithmsWork
21
Annex2.ArtificialIntelligenceinFinance—RiskProfile
24
Annex3.NationalArtificialIntelligenceStrategies
25
References
28
BOXES
Box1.ArtificialIntelligenceandMachineLearningCapabilities
6
Box2.ArtificialIntelligenceinInvestmentManagement—SampleUseCases
8
Box3.ArtificialIntelligenceinCreditUnderwriting
8
Box4.ArtificialIntelligenceinRegulatoryCompliance—SampleUseCases
10
Box5.ArtificialIntelligenceinSupervision—SampleApplications
11
Box6.ArtificialIntelligenceinCentralBanking—SampleApplications
13
Box7.Explainingthe"BlackBox"
16
FIGURES
Figure1.TopFiveTechnologiesEmployedinRegulatoryTechnologyOfferings
9
Figure2.TechnologiesUsedinSuprvisoryTechnologyTools
10
AnnexFigure1.1.MachineLearningParadigms
22
3IMFDEPARTMENTALPAPERSPoweringtheDigitalEconomy
AnnexFigure1.2.ExampleofanInputAttack
23
AnnexFigure3.1.NationalArtificialIntelligenceStrategyLandscape
25
AnnexFigure3.2.KeyFeaturesofNationalArtificialIntelligenceStrategies
26
4IMFDEPARTMENTALPAPERSPoweringtheDigitalEconomy
AcronymsandAbbreviations
AI
ArtificialIntelligence
AML/CFT
Anti-MoneyLaundering/CombatingtheFinancingofTerrorism
Fintech
FinancialTechnology
ML
MachineLearning
NLO
NaturalLanguageProcessing
OECD
OrganisationforEconomicCo-operationandDevelopment
Regtech
RegulatoryTechnology
Suptech
SupervisoryTechnology
5IMFDEPARTMENTALPAPERSPoweringtheDigitalEconomy
1.Introduction
Thispaperexplorestheuseofartificialintelligence(AI)andmachinelearning(ML)inthefinancialsectorandtheresultantpolicyimplications.
1
ItprovidesanontechnicalbackgroundontheevolutionandcapabilitiesofAI/MLsystems,theirdeploymentandusecasesinthefinancialsector,andthenewchallengestheypresenttofinancialsectorpolicymakers.
AI/MLsystemshavemademajoradvancesoverthepastdecade.Althoughthedevelopmentofamachinewiththecapacitytounderstandorlearnanyintellectualtaskthatahumanbeingperformsisnotwithinimmediategrasp,today’sAIsystemscanperformquitewelltasksthatarewelldefinedandnormallyrequirehumanintelligence.Thelearningprocess,acriticalcomponentofmostAIsystems,takestheformofML,whichreliesonmathematics,statistics,anddecisiontheory.AdvancesinMLandespeciallyindeeplearningalgorithmsareresponsibleformostoftherecentachievements,suchasself-drivingcars,digitalassistants,andfacialrecognition.
2
Thefinancialsector,ledbyfinancialtechnology(fintech)companies,hasbeenrapidlyincreasingtheuseofAI/MLsystems(Box1).Recentadoptionbythefinancialsectoroftechnologicaladvances,suchasbigdataandcloudcomputing,coupledwiththeexpansionofthedigitaleconomy,madetheeffectivedeploymentofAI/MLsystemspossible.Arecentsurveyoffinancialinstitutions(WEF2020)showsthat77percentofallrespondentsanticipatethatAIwillbeofhighorveryhighoverallimportancetotheirbusinesseswithintwoyears.McKinsey(2020a)estimatesthepotentialvalueofAIinthebankingsectortoreach$1trillion.
AI/MLcapabilitiesaretransformingthefinancialsector.
3
AI/MLsystemsarereshapingclientexperiences,includingcommunicationwithfinancialserviceproviders(forexample,chatbots),investing(forexample,robo-advisor),borrowing(forexample,automatedmortgageunderwriting),andidentityverification(forexample,imagerecognition).Theyarealsotransformingtheoperationsoffinancialinstitutions,providingsignificantcostsavingsbyautomatingprocesses,usingpredictiveanalyticsforbetterproductofferings,andprovidingmoreeffectiveriskandfraudmanagementprocessesandregulatorycompliance.Finally,AI/MLsystemsprovidecentralbanksandprudentialoversightauthoritieswithnewtoolstoimprovesystemicrisksurveillanceandstrengthenprudentialoversight.
TheCOVID-19pandemichasfurtherincreasedtheappetiteforAI/MLadoptioninthefinancialsector.BoE(2020)andMcKinsey(2020b)findthataconsiderablenumberoffinancialinstitutionsexpectAI/MLtoplayabiggerroleafterthepandemic.Keygrowthareasincludecustomerrelationshipandriskmanagement.BanksareexploringwaystoleveragetheirexperienceofusingAI/MLtohandlethehighvolumeofloanapplicationsduringthepandemictoimprovetheirunderwritingprocessandfrauddetection.Similarly,supervisorsrelyingonoff-siteintensivesupervisionactivitiesduringthepandemiccouldfurtherexploreAI/ML-supportedtoolsandprocessesinthepost-pandemicera.
TherapidprogressinAI/MLdevelopmentcoulddeepenthedigitaldividebetweenadvancedanddevelopingeconomies.AI/MLdeployment,andtheresultingbenefits,havebeenconcentratedlargelyinadvancedeconomiesandafewemergingmarkets.Thesetechnologiescouldalsobringsignificantbenefitstodevelopingeconomies,includingenhancedaccesstocreditbyreducingthecostofcreditriskassessments,particularlyincountriesthatdonothaveanestablishedcreditregistry(Syandothers2019).However,theseeconomiesarefallingbehind,lacking
1FollowingtheOxfordDictionary,AIisdefinedasthetheoryanddevelopmentofsystemsabletoperformintellectualtasksthatusuallyrequirehumanintelligence.MListhelearningcomponentofanAIsystem,andisdefinedastheprocessthatusesexperience,algorithms,andsomeperformancecriteriontogetbetteratperformingaspecifiedtask.GiventhatAIandMLheavilyoverlapandthatmoststatementsinthispaperholdtrueforbothconcepts,thetermsareoftenusedasapair(AI/ML).
2SeeAnnex1formoredetails.
3Thisincludesrevenuegainsandcostsavings.
6IMFDEPARTMENTALPAPERSPoweringtheDigitalEconomy
thenecessaryinvestment,accesstoresearch,andhumancapital.
4
Bridgingthisgapwillrequiredevelopingadigital-friendlypolicyframeworkanchoredaroundfourbroadpolicypillars:investingininfrastructure;investinginpoliciesforasupportivebusinessenvironment;investinginskills;andinvestinginriskmanagementframeworks(IMF2020).
Cooperationamongcountriesandbetweentheprivateandpublicsectorscouldhelpmitigatetheriskofawideningdigitaldivide.Sofar,globalinitiatives—includingthedevelopmentofprinciplestomitigateethicalrisksassociatedwithAI(UNESCO2021;OECD2019),callsforcooperationoninvestingindigitalinfrastructure(see,forexample,GoogleandInternationalFinanceCorporation(2020)),andtheprovisionofaccesstoresearchinlow-incomecountries(see,forexample,AI4G)—havebeenlimited.Multilateralorganizationscouldplayanimportantroleintransferringknowledge,raisinginvestments,buildingcapacity,andfacilitatingapeer-learningapproachtoguidedigitalpolicyeffortsindevelopingeconomies.Similarly,themembershipinseveralintergovernmentalworkinggroupsonAI(suchastheGlobalPartnershiponArtificialIntelligenceandtheOECDNetworkofExpertsonAI,amongothers)couldbeexpandedtoincludeless-developedeconomies.
AI/MLadoptioninthefinancialsectorisbringingnewuniquerisksandchallengesthatneedtobeaddressedtoensurefinancialstability.AI/ML-baseddecisionsmadebyfinancialinstitutionsmaynotbeeasilyexplainableandcouldpotentiallybebiased.AI/MLadoptionbringsinnewuniquecyberrisksandprivacyconcerns.FinancialstabilityissuescouldalsoarisewithrespecttotherobustnessoftheAI/MLalgorithmsinthefaceofstructuralshiftsandincreasedinterconnectednessthroughwidespreadrelianceonfewAI/MLserviceproviders.Chapter2explorestheadoptionofAI/MLinthefinancialsectorandpossibleassociatedrisks,Chapter3discussesrelatedpolicyconcerns,andChapter4providessomeconclusions.
Box1.ArtificialIntelligenceandMachineLearningCapabilities
?Forecasting.Machinelearningalgorithmsareusedforforecastingandbenefitfromusinglargedatasets.Theyusuallyperformbetterthantraditionalstatisticaloreconometricmodels.1Inthefinancialsector,thisisusedinsuchareasascreditriskscoring,economicandfinancialvariablesforecasting,riskmanagement,andsoon.
?Naturallanguageprocessing.Artificialintelligencesystemscancommunicatebyunderstandingandgeneratinghumanlanguage.Boostedbydeeplearningandstatisticalmodels,naturallanguageprocessinghasbeenusedinthefinancialsectorinsuchapplicationsaschatbots,contractreviewing,andreportgeneration.
?Imagerecognition.Facialandsignaturerecognitionisbeingusedbysomefinancialinstitutionsandfinancialtechnologycompaniestoassistwithcarryingoutcertainanti-moneylaundering/combatingthefinancingofterrorism(AML/CFT)requirements(forexample,theidentificationandverificationofcustomersforcustomerduediligenceprocess),andforstrengtheningsystemssecurity.
?Anomalydetection.Classificationalgorithmscanbeappliedtodetectrareitems,outliers,oranomalousdata.Inthefinancialsector,insidertrading,creditcardandinsurancefrauddetection,andAML/CFTaresomeoftheapplicationsthatleveragethiscapability(Chandola,Banerjee,andKumar2009).
4SeeAlonsoandothers(2020)forabroaderdiscussionaboutpossibleimplicationsofAIondevelopingeconomies.Inparticular,thepaperfindsthatthenewtechnologyriskswideningthegapbetweenrichandpoorcountriesbyshiftingmoreinvestmenttoadvancedeconomieswhereautomationisalreadyestablished,withnegativeconsequencesforjobsindevelopingeconomies.
7IMFDEPARTMENTALPAPERSPoweringtheDigitalEconomy
2.ArtificialIntelligenceintheFinancialSector
Thecapabilityofacquiringlargesetsofdatafromtheenvironmentandprocessingitwithartificialintelligence(AI)andmachinelearning(ML)ischangingthefinancialsectorlandscape.AI/MLfacilitatesenhancedcapacitytopredicteconomic,financial,andriskevents;reshapefinancialmarkets;improveriskmanagementandcompliance;strengthenprudentialoversight;andequipcentralbankswithnewtoolstopursuetheirmonetaryandmacroprudentialmandates.
A.Forecasting
AI/MLsystemsareusedinthefinancialsectortoforecastmacro-economicandfinancialvariables,meetcustomerdemands,providepaymentcapacity,andmonitorbusinessconditions.AI/MLmodelsofferflexibilitycomparedtotraditionalstatisticalandeconometricmodels,canhelpexploreotherwisehard-to-detectrelationshipsbetweenvariables,andamplifythetoolkitsusedbyinstitutions.EvidencesuggeststhatMLmethodsoftenoutperformlinearregression-basedmethodsinforecastaccuracyandrobustness(BolhuisandRayner2020).
WhiletheuseofAI/MLinforecastingoffersbenefits,italsoposeschallenges.Useofnontraditionaldata(forexample,socialmediadata,browsinghistory,andlocationdata)inAI/MLcouldbebeneficialinfindingnewrelationshipsbetweenvariables.Similarly,byusingAInaturallanguageprocessing(NLP),unstructureddata(forexample,theinformationinemailtexts)canbebroughtintotheforecastingprocess.However,theuseofnontraditionaldatainfinancialforecastingraisesseveralconcerns,includingthegoverninglegalandregulatoryframework;ethicalandprivacyimplications;anddataqualityintermsofcleanliness,accuracy,relevancy,andpotentialbiases.
B.InvestmentandBankingServices
Inthefinancialsector,advancesinAI/MLinrecentyearshavehadtheirgreatestimpactontheinvestmentmanagementindustry.Theindustryhasusedtechnologyfordecadesintrading,clientservices,andback-officeoperations,mostlytomanagelargestreamsoftradingdataandinformationandtoexecutehigh-frequencytrading.However,AI/MLandrelatedtechnologiesarereshapingtheindustrybyintroducingnewmarketparticipants(forexample,productcustomization),improvedclientinterfaces(forexample,chatbots),betteranalyticsanddecision-makingmethods,andcost-reductionthroughautomatedprocesses(Box2).
Comparedtotheinvestmentmanagementindustry,thepenetrationofAI/MLinbankinghasbeenslower.Thebankingindustryhastraditionallybeenattheforefrontoftechnologicaladvancements(forexample,throughtheintroductionofATMs,electroniccardpayments,andonlinebanking).However,confidentialityandtheproprietarynatureofbankingdatahaveslowedAI/MLadoption.Nonetheless,AI/MLpenetrationinthebankingindustryhasacceleratedinrecentyears,inpartonaccountofrisingcompetitionfromfinancialtechnology(fintech)companies(includingfintechlenders),butalsofueledbyAI/ML’scapacitytoimproveclientrelations(forexample,throughchatbotsandAI/ML-poweredmobilebanking),productplacement(forexample,throughbehavioralandpersonalizedinsightsanalytics),back-officesupport,riskmanagement,creditunderwriting(Box3),and,importantly,costsavings.
5
5TheaggregatepotentialcostsavingsforbanksfromAI/MLsystemsisestimatedat$447billionby2023(Digalaki2021).
8IMFDEPARTMENTALPAPERSPoweringtheDigitalEconomy
Box2.ArtificialIntelligenceinInvestmentManagement—SampleUseCases1
?Increasedmarketliquidityprovisionthroughawideruseofhigh-frequencyalgorithmictradingandmoreefficientmarketpriceformation.
?Expandedwealthadvisoryservicesbyprovidingpersonalandtargetedinvestmentadvicetomass-marketcustomersinacost-effectivemanner,includingforlow-incomepopulations.
?Enhancedefficiencywithartificialintelligenceandmachinelearning(AI/ML)takingonagrowingportionofinvestmentmanagementresponsibilities.
?MorecustomizedinvestmentportfoliosbasedonAI/MLtargetedcustomerexperiences.
?DevelopmentofnewreturnprofilesthroughtheuseofAI/MLinsteadofestablishedstrategies.
1SeeWEF(2018)foramoredetaileddiscussion.
Box3.ArtificialIntelligenceinCreditUnderwriting
?Artificialintelligence/machinelearning(AI/ML)predictivemodelscanhelpprocesscreditscoring,enhancinglenders’abilitytocalculatedefaultandprepaymentrisks.ResearchfindsthatMLreducesbanks’lossesondelinquentcustomersbyupto25percent(Khandani,Adlar,andLo2010).Thereisalsoevidencethat,givetheirgreateraccuracyinpredictingdefaults,automatedfinancialunderwritingsystemsbenefitunderservedapplicants,whichresultsinhigherborrowerapprovalrates(Gates,Perry,andZorn2002),asdoesthefacilitationoflow-costautomatedevaluationofsmallborrowers(Bazarbash2019).
?AI/ML-assistedunderwritingprocessesenabletheharnessingofsocial,business,location,andinternetdata,inadditiontotraditionaldatausedincreditdecisions.AI/MLreducesturnaroundtimeandincreasestheefficiencyoflendingdecisions.Evenifaclientdoesnothaveacredithistory,AI/MLcangenerateacreditscorebyanalyzingtheclient’sdigitalfootprint(socialmediaactivity,billspaymenthistory,andsearchengineactivity).AI/MLalsohasthepotentialtobeusedincommerciallendingdecisionsforriskquantificationofcommercialborrowers.1However,financialinstitutionsandsupervisorsshouldbecautiousinusingandassessingAI/MLincreditunderwritingandbuildrobustvalidationandmonitoringprocesses.
1SeeBazarbash(2019)foradiscussionofthepotentialstrengthsandweaknessesofAI/ML-basedcreditassessment.
AI/MLintroducesnewchallengesandpotentialrisks.TheuseofAI/MLininvestmentandbankingdependsontheavailabilityoflargevolumesofgood-quality,timelydata.Withthestorageanduseoflargequantitiesofsensitivedata,dataprivacyandcybersecurityareofparamountimportance.DifficultiesinexplainingtherationaleofAI/ML-basedfinancialdecisionsisincreasinglyanimportantissueasAI/MLalgorithmsmayuncoverunknowncorrelationsindatasetsthatstakeholdersmaystruggletounderstandbecausetheunderlyingcausalityisunknown.Inaddition,thesemodelsmayperformpoorlyintheeventofmajorandsuddenmovementsininputdataresultinginthebreakdownofestablishedcorrelations(forexample,inresponsetoacrisis),potentiallyprovidinginaccuratedecisions,withadverseoutcomesforfinancialinstitutionsortheirclients.
9IMFDEPARTMENTALPAPERSPoweringtheDigitalEconomy
C.RiskandComplianceManagement
AI/MLadvancesinrecentyearsarechangingthescopeandroleoftechnologyinregulatorycompliance.Regulatorytechnology(regtech)
6
hasassumedgreaterimportanceinresponsetotheregulatorytighteningandrisingcompliancecostsfollowingthe2008globalfinancialcrisis.Forthemostpart,technologyhasbeenusedtodigitizecomplianceandreportingprocesses(Arner,Barberis,andBuckley2017).However,advancesinAI/MLoverthepastfewyearsarereshapingriskandcompliancemanagementbyleveragingbroadsetsofdata,ofteninrealtime,andautomatingcompliancedecisions.Thishasimprovedcompliancequalityandreducedcosts.
MaturingAI/MLtechnologyhasthepotentialto
propelfurtheradoptionofregtechinthefinancial
sector.Accordingtoarecentglobalsurvey,AI/MLis
thetoptechnologyunderconsiderationamong
regtechfirms(Schizasandothers2019;Figure1).
IncreasedadoptionofAI/MLinregtechhas
significantlyexpandeditsusecases,cuttingacross
banking,securities,insurance,andotherfinancial
services,andcoveringawidevarietyofactivities.
Theseincludeidentityverification,anti-money
laundering/combatingthefinancingofterrorism,
frauddetection,riskmanagement,stresstesting,
microprudentialandmacroprudentialreporting,as
wellasco
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 高碑店假山的施工方案
- 碎石加工施工方案
- 總包與勞務(wù)分包消防協(xié)議
- 基坑爬梯施工方案
- 逆變一體機基礎(chǔ)施工方案
- 佛山歐式花園施工方案
- 上海倍發(fā)信息科技有限公司股東全部權(quán)益價值資產(chǎn)評估報告
- 建元信托2024年度審計報告及財務(wù)報表
- 浙江紡織電纜托架施工方案
- 澄海區(qū)中學初二數(shù)學試卷
- 好的心理治愈只需一次:《了凡四訓(xùn)》的心理學解讀
- 三年級aredcoat公開課一等獎?wù)n件省賽課獲獎?wù)n件
- 污水處理廠項目委托運營協(xié)議
- 小螞蟻搬家繪本故事
- 開展因私出國境管理工作的自查報告10篇
- 分子克隆及蛋白表達常見問題和對策
- 全美國聯(lián)邦刑事訴訟規(guī)則(中英文對照)
- 哈爾濱LED廣告市場 媒體數(shù)據(jù)分析
- 載波與測距碼
- 鋼結(jié)構(gòu)設(shè)計手冊
- (新版)特種設(shè)備安全管理高分通關(guān)題庫600題(附答案)
評論
0/150
提交評論