2022-2023學年天津市河東區(qū)高一數(shù)學第二學期期末教學質(zhì)量檢測模擬試題含解析_第1頁
2022-2023學年天津市河東區(qū)高一數(shù)學第二學期期末教學質(zhì)量檢測模擬試題含解析_第2頁
2022-2023學年天津市河東區(qū)高一數(shù)學第二學期期末教學質(zhì)量檢測模擬試題含解析_第3頁
2022-2023學年天津市河東區(qū)高一數(shù)學第二學期期末教學質(zhì)量檢測模擬試題含解析_第4頁
2022-2023學年天津市河東區(qū)高一數(shù)學第二學期期末教學質(zhì)量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年高一下數(shù)學期末模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.利用隨機模擬方法可估計無理數(shù)π的數(shù)值,為此設計右圖所示的程序框圖,其中rand()表示產(chǎn)生區(qū)間(0,1)上的隨機數(shù),P是s與n的比值,執(zhí)行此程序框圖,輸出結(jié)果P的值趨近于()A.π B.π4 C.π22.一個四面體的三視圖如圖所示,則該四面體的表面積是()A. B.C. D.3.空間中可以確定一個平面的條件是()A.三個點 B.四個點 C.三角形 D.四邊形4.等差數(shù)列an的公差d<0,且a12=a212,則數(shù)列aA.9 B.10 C.10和11 D.11和125.右邊莖葉圖記錄了甲、乙兩組各十名學生在高考前體檢中的體重(單位:).記甲組數(shù)據(jù)的眾數(shù)與中位數(shù)分別為,乙組數(shù)據(jù)的眾數(shù)與中位數(shù)分別為,則()A. B.C. D.6.在正方體中,為棱的中點,則異面直線與所成角的正切值為A. B. C. D.7.如圖,是圓的直徑,點是半圓弧的兩個三等分點,,,則()A. B. C. D.8.已知函數(shù)的部分圖象如圖所示,則()A. B.C. D.9.為了了解所加工的一批零件的長度,抽測了其中個零件的長度,在這個工作中,個零件的長度是()A.總體 B.個體 C.樣本容量 D.總體的一個樣本10.一只小狗在圖所示的方磚上走來走去,最終停在涂色方磚的概率為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.在中,,,,點在線段上,若,則的面積是_____.12.若等比數(shù)列滿足,且公比,則_____.13.某工廠甲、乙、丙三個車間生產(chǎn)了同種產(chǎn)品,數(shù)量分別為90件,60件,30件,為了解它們的產(chǎn)品質(zhì)量是否存在顯著差異,采用層抽樣方法抽取了一個容量為的樣本進行調(diào)查,其中從乙車間的產(chǎn)品中抽取了2件,應從甲車間的產(chǎn)品中抽取______件.14.函數(shù)的單調(diào)增區(qū)間是_________15.設為等差數(shù)列,若,則_____.16.已知等差數(shù)列,,,,則______.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.如圖,在邊長為2菱形ABCD中,,且對角線AC與BD交點為O.沿BD將折起,使點A到達點的位置.(1)若,求證:平面ABCD;(2)若,求三棱錐體積.18.已知函數(shù).(1)求的最小正周期;(2)求的單調(diào)增區(qū)間;(3)若,求的最大值與最小值.19.在△ABC中,a=3,b?c=2,cosB=.(Ⅰ)求b,c的值;(Ⅱ)求sin(B–C)的值.20.某種植園在芒果臨近成熟時,隨機從一些芒果樹上摘下100個芒果,其質(zhì)量分別在,,,,,(單位:克)中,經(jīng)統(tǒng)計的頻率分布直方圖如圖所示.(1)估計這組數(shù)據(jù)的平均數(shù)(同一組中的數(shù)據(jù)以這組數(shù)據(jù)所在區(qū)間中點的值作代表);(2)現(xiàn)按分層抽樣從質(zhì)量為[200,250),[250,300)的芒果中隨機抽取5個,再從這5個中隨機抽取2個,求這2個芒果都來自同一個質(zhì)量區(qū)間的概率;(3)某經(jīng)銷商來收購芒果,同一組中的數(shù)據(jù)以這組數(shù)據(jù)所在區(qū)間中點的值作代表,用樣本估計總體,該種植園中還未摘下的芒果大約還有10000個,經(jīng)銷商提出以下兩種收購方案:方案①:所有芒果以9元/千克收購;方案②:對質(zhì)量低于250克的芒果以2元/個收購,對質(zhì)量高于或等于250克的芒果以3元/個收購.通過計算確定種植園選擇哪種方案獲利更多.參考數(shù)據(jù):.21.已知等差數(shù)列滿足,,其前項和為.(1)求的通項公式及;(2)令,求數(shù)列的前項和,并求的值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】

根據(jù)程序框圖可知由幾何概型計算出x,y任?。?,1)上的數(shù)時落在x2【詳解】解:根據(jù)程序框圖可知P為頻率,它趨近于在邊長為1的正方形中隨機取一點落在扇形內(nèi)的的概率π×故選:B【點睛】本題考查的知識點是程序框圖,根據(jù)已知中的程序框圖分析出程序的功能,并將問題轉(zhuǎn)化為幾何概型問題是解答本題的關鍵,屬于基礎題.2、B【解析】

試題分析:由三視圖可知,該幾何體是如下圖所示的三棱錐,其中平面平面,,且,,所以,與均為正三角形,且邊長為,所以,故該三棱錐的表面各為,故選B.考點:1.三視圖;2.多面體的表面積與體積.3、C【解析】

根據(jù)公理2即可得出答案.【詳解】在A中,不共線的三個點能確定一個平面,共線的三個點不能確定一個平面,故A錯誤;在B中,不共線的四個點最多能確定四個平面,故B錯誤;在C中,由于三角形的三個頂點不共線,因此三角形能確定一個平面,故C正確;在D中,四邊形有空間四邊形和平面四邊形,空間四邊形不能確定一個平面,故D錯誤.【點睛】本題對公理2進行了考查,確定一個平面關鍵是對過不在一條直線上的三點,有且只有一個平面的理解.4、C【解析】

利用等差數(shù)列性質(zhì)得到a11=0,再判斷S10【詳解】等差數(shù)列an的公差d<0,且a根據(jù)正負關系:S10或S故答案選C【點睛】本題考查了等差數(shù)列的性質(zhì),Sn的最大值,將Sn的最大值轉(zhuǎn)化為5、D【解析】甲組數(shù)據(jù)的眾數(shù)為x1=64,乙組數(shù)據(jù)的眾數(shù)為x2=66,則x1<x2;甲組數(shù)據(jù)的中位數(shù)為y1==65,乙組數(shù)據(jù)的中位數(shù)為y2==66.5,則y1<y2.6、C【解析】

利用正方體中,,將問題轉(zhuǎn)化為求共面直線與所成角的正切值,在中進行計算即可.【詳解】在正方體中,,所以異面直線與所成角為,設正方體邊長為,則由為棱的中點,可得,所以,則.故選C.【點睛】求異面直線所成角主要有以下兩種方法:(1)幾何法:①平移兩直線中的一條或兩條,到一個平面中;②利用邊角關系,找到(或構(gòu)造)所求角所在的三角形;③求出三邊或三邊比例關系,用余弦定理求角;(2)向量法:①求兩直線的方向向量;②求兩向量夾角的余弦;③因為直線夾角為銳角,所以②對應的余弦取絕對值即為直線所成角的余弦值.7、A【解析】

連接,證得,結(jié)合向量減法運算,求得.【詳解】連接,由于是半圓弧的兩個三等分點,所以,所以是等邊三角形,所以,所以四邊形是菱形,所以,所以.故選:A【點睛】本小題主要考查圓的幾何性質(zhì),考查向量相等的概念,考查向量減法的運算,屬于基礎題.8、D【解析】

由函數(shù)的最值求出A,由周期求出,由五點法作圖求出的值,從而得出結(jié)論.【詳解】根據(jù)函數(shù)的圖象求出函數(shù)的周期,然后可以求出,通過函數(shù)經(jīng)過的最大值點求出值,即可得到函數(shù)的解析式.由函數(shù)的圖象可知:,

.

當,函數(shù)取得最大值1,所以,

,

故選D.9、D【解析】

根據(jù)總體與樣本中的相關概念進行判斷.【詳解】由題意可知,在這個工作中,個零件的長度是總體的一個樣本,故選D.【點睛】本題考查總體與樣本中相關概念的理解,屬于基礎題.10、C【解析】

方磚上共分為九個全等的正方形,涂色方磚為其中的兩塊,由幾何概型的概率公式可計算出所求事件的概率.【詳解】由圖形可知,方磚上共分為九個全等的正方形,涂色方磚為其中的兩塊,由幾何概型的概率公式可知,小狗最終停在涂色方磚的概率為,故選:C.【點睛】本題考查利用幾何概型概率公式計算事件的概率,解題時要理解事件的基本類型,正確選擇古典概型和幾何概型概率公式進行計算,考查計算能力,屬于基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

過作于,設,運用勾股定理和三角形的面積公式,計算可得所求值.【詳解】過作于,設,,,,又,可得,即有,可得的面積為.故答案為.【點睛】本題考查解三角形,考查勾股定理的運用,以及三角形的面積公式,考查化簡運算能力,屬于基礎題.12、.【解析】

利用等比數(shù)列的通項公式及其性質(zhì)即可得出.【詳解】,故答案為:1.【點睛】本題考查了等比數(shù)列的通項公式及其性質(zhì),考查了推理能力與計算能力,屬于容易題.13、.【解析】

根據(jù)分層抽樣中樣本容量關系,即可求得從甲車間的產(chǎn)品中抽取數(shù)量.【詳解】根據(jù)分層抽樣為等概率抽樣,所以乙車間每個樣本被抽中的概率等于甲車間每個樣本被抽中的概率設從甲車間抽取樣本為件所以,解得所以從甲車間抽取樣本件故答案為:【點睛】本題考查了分層抽樣的特征及樣本數(shù)量的求法,屬于基礎題.14、,【解析】

令,即可求得結(jié)果.【詳解】令,解得:,所以單調(diào)遞增區(qū)間是,故填:,【點睛】本題考查了型如:單調(diào)區(qū)間的求法,屬于基礎題型.15、【解析】

根據(jù)等差數(shù)列的性質(zhì):在等差數(shù)列中若則即可【詳解】故答案為:【點睛】本題主要考查的等差數(shù)列的性質(zhì):若則,這一性質(zhì)是常考的知識點,屬于基礎題。16、【解析】

利用等差中項的基本性質(zhì)求得,,并利用等差中項的性質(zhì)求出的值,由此可得出的值.【詳解】由等差中項的性質(zhì)可得,同理,由于、、成等差數(shù)列,所以,則,因此,.故答案為:.【點睛】本題考查利用等差中項的性質(zhì)求值,考查計算能力,屬于基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)見解析(2)【解析】

(1)證明與即可.(2)法一:證明平面,再過點做垂足為,證明為三棱錐的高再求解即可.法二:通過進行轉(zhuǎn)化求解即可.法三:通過進行轉(zhuǎn)化求解即可.【詳解】證明:(1)∵在菱形ABCD中,,,AC與BD交于點O.以BD為折痕,將折起,使點A到達點的位置,∴,又,,∴,∴,∵,∴平面ABCD(2)(法一):∵,,取的中點,則且,因為且,,所以平面,過點做垂足為,則平面BCD,又∴,解得,∴三棱錐體積.(法二):因為,,取AC中點E,,,,又(法三)因為且,,所以平面,,所以.【點睛】本題主要考查了線面垂直的證明與錐體體積的求解方法等.需要根據(jù)題意找到合適的底面與高,或者利用割補法求解體積.屬于中檔題.18、(1);(2)[kπ﹣,kπ+],k∈Z;(3)f(x)=2,f(x)=﹣1【解析】

(1)利用三角恒等變換,化簡函數(shù)的解析式,再利用正弦函數(shù)的周期性,得出結(jié)論;(2)利用正弦函數(shù)的單調(diào)性,求出f(x)的單調(diào)增區(qū)間;(3)利用正弦函數(shù)的定義域和值域,求得當時,f(x)的最大值與最小值.【詳解】(1)∵函數(shù)f(x)=sin4x+2sinxcosx﹣cos4x=(sin4x﹣cos4x)+sin2x=﹣cos2x+sin2x=2sin(2x﹣),∴f(x)的最小正周期為=π.(2)令2kπ﹣≤2x﹣≤2kπ+,求得kπ﹣≤x≤kπ+,可得f(x)的單調(diào)增區(qū)間為[kπ﹣,kπ+],k∈Z.(3)若,則2x﹣∈,當2x﹣=時,f(x)=2;當2x﹣=﹣時,f(x)=.【點睛】本題主要考查三角恒等變換,正弦函數(shù)的周期性、單調(diào)性,正弦函數(shù)的定義域和值域,屬于中檔題.19、(Ⅰ);(Ⅱ).【解析】

(Ⅰ)由題意列出關于a,b,c的方程組,求解方程組即可確定b,c的值;(Ⅱ)由題意結(jié)合正弦定理和兩角和差正余弦公式可得的值.【詳解】(Ⅰ)由題意可得:,解得:.(Ⅱ)由同角三角函數(shù)基本關系可得:,結(jié)合正弦定理可得:,很明顯角C為銳角,故,故.【點睛】本題主要考查余弦定理、正弦定理的應用,兩角和差正余弦公式的應用等知識,意在考查學生的轉(zhuǎn)化能力和計算求解能力.20、(1)255;(2);(3)選擇方案②獲利多【解析】

1)由頻率分布直方圖能求出這組數(shù)據(jù)的平均數(shù).(2)利用分層抽樣從這兩個范圍內(nèi)抽取5個芒果,則質(zhì)量在[200,250)內(nèi)的芒果有2個,記為a1,a2,質(zhì)量在[250,300)內(nèi)的芒果有3個,記為b1,b2,b3,從抽取的5個芒果中抽取2個,利用列舉法能求出這2個芒果都來自同一個質(zhì)量區(qū)間的概率.(3)方案①收入22950元,方案②:低于250克的芒果的收入為8400元,不低于250克的芒果的收入為17400元,由此能求出選擇方案②獲利多.【詳解】(1)由頻率分布直方圖知,各區(qū)間頻率為0.07,0.15,0.20,0.30,0.25,0.03這組數(shù)據(jù)的平均數(shù).(2)利用分層抽樣從這兩個范圍內(nèi)抽取5個芒果,則質(zhì)量在[200,250)內(nèi)的芒果有2個,記為,,質(zhì)量在[250,300)內(nèi)的芒果有3個,記為,,;從抽取的5個芒果中抽取2個共有10種不同情況:,,,,,,,,,.記事件為“這2個芒果都來自同一個質(zhì)量區(qū)間”,則有4種不同組合:,,,從而,故這2個芒果都來自同一個質(zhì)量區(qū)間的概率為.(3)方案①收入:(元);方案②:低于250克

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論