2022-2023學(xué)年新疆博爾塔拉蒙古自治州第五師中學(xué)高一數(shù)學(xué)第二學(xué)期期末檢測(cè)試題含解析_第1頁
2022-2023學(xué)年新疆博爾塔拉蒙古自治州第五師中學(xué)高一數(shù)學(xué)第二學(xué)期期末檢測(cè)試題含解析_第2頁
2022-2023學(xué)年新疆博爾塔拉蒙古自治州第五師中學(xué)高一數(shù)學(xué)第二學(xué)期期末檢測(cè)試題含解析_第3頁
2022-2023學(xué)年新疆博爾塔拉蒙古自治州第五師中學(xué)高一數(shù)學(xué)第二學(xué)期期末檢測(cè)試題含解析_第4頁
2022-2023學(xué)年新疆博爾塔拉蒙古自治州第五師中學(xué)高一數(shù)學(xué)第二學(xué)期期末檢測(cè)試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022-2023學(xué)年高一下數(shù)學(xué)期末模擬試卷注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.某協(xié)會(huì)有200名會(huì)員,現(xiàn)要從中抽取40名會(huì)員作樣本,采用系統(tǒng)抽樣法等間距抽取樣本,將全體會(huì)員隨機(jī)按1~200編號(hào),并按編號(hào)順序平均分為40組(1-5號(hào),6-10號(hào),…,196-200號(hào)).若第5組抽出的號(hào)碼為22,則第1組至第3組抽出的號(hào)碼依次是()A.3,8,13 B.2,7,12 C.3,9,15 D.2,6,122.△中,已知,,,如果△有兩組解,則的取值范圍()A. B. C. D.3.在等差數(shù)列中,若,則()A. B. C. D.4.已知圓柱的側(cè)面展開圖是一個(gè)邊長為的正方形,則這個(gè)圓柱的體積是()A. B. C. D.5.從數(shù)字0,1,2,3,4中任取兩個(gè)不同的數(shù)字構(gòu)成一個(gè)兩位數(shù),則這個(gè)兩位數(shù)大于30的概率為()A. B. C. D.6.已知角的終邊經(jīng)過點(diǎn),則()A. B. C. D.7.已知,,且,,則的值為()A. B.1 C. D.8.在中,,點(diǎn)P是直線BN上一點(diǎn),若,則實(shí)數(shù)m的值是()A.2 B. C. D.9.已知等比數(shù)列的前n項(xiàng)和為,若,,,則()A. B. C. D.10.在中,若,則下列結(jié)論錯(cuò)誤的是()A.當(dāng)時(shí),是直角三角形 B.當(dāng)時(shí),是銳角三角形C.當(dāng)時(shí),是鈍角三角形 D.當(dāng)時(shí),是鈍角三角形二、填空題:本大題共6小題,每小題5分,共30分。11.在我國古代數(shù)學(xué)著作《孫子算經(jīng)》中,卷下第二十六題是:今有物,不知其數(shù),三三數(shù)之剩二,五五數(shù)之剩三,七七數(shù)之剩二,問物幾何?滿足題意的答案可以用數(shù)列表示,該數(shù)列的通項(xiàng)公式可以表示為________12.在《九章算術(shù)·商功》中將四個(gè)面均為直角三角形的三棱錐稱為鱉臑(biēnào),在如下圖所示的鱉臑中,,,,則的直角頂點(diǎn)為______.13.將函數(shù)的圖象向左平移個(gè)單位長度,得到函數(shù)的圖象,則__________.14.382與1337的最大公約數(shù)是__________.15.計(jì)算__________.16.若實(shí)數(shù)滿足,則取值范圍是____________。三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖,已知在側(cè)棱垂直于底面三棱柱中,,,,,點(diǎn)是的中點(diǎn).(1)求證:;(2)求證:(3)求三棱錐的體積.18.用紅、黃、藍(lán)三種不同顏色給圖中3個(gè)矩形隨機(jī)涂色,每個(gè)矩形只涂一種顏色,求3個(gè)矩形顏色都不同的概率.19.已知公差不為0的等差數(shù)列的前項(xiàng)和為,,且成等比數(shù)列.(1)求數(shù)列的通項(xiàng)公式;(2)設(shè),求數(shù)列的前項(xiàng)和.20.已知函數(shù)的圖象向左平移個(gè)單位長度后與函數(shù)圖象重合.(1)求和的值;(2)若函數(shù),求函數(shù)的單調(diào)遞減區(qū)間及圖象的對(duì)稱軸方程.21.已知過點(diǎn)A(0,1)且斜率為k的直線l與圓C:(x-2)2+(y-3)2=1交于M,N兩點(diǎn).(1)求k的取值范圍;(2)若=12,其中O為坐標(biāo)原點(diǎn),求|MN|.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、B【解析】

根據(jù)系統(tǒng)抽樣原理求出抽樣間距,再根據(jù)第5組抽出的號(hào)碼求出第1組抽出的號(hào)碼,即可得出第2組、第3組抽取的號(hào)碼.【詳解】根據(jù)系統(tǒng)抽樣原理知,抽樣間距為200÷40=5,

當(dāng)?shù)?組抽出的號(hào)碼為22時(shí),即22=4×5+2,

所以第1組至第3組抽出的號(hào)碼依次是2,7,1.

故選:B.【點(diǎn)睛】本題考查了系統(tǒng)抽樣方法的應(yīng)用問題,是基礎(chǔ)題.2、D【解析】由正弦定理得A+C=180°-60°=120°,

由題意得:A有兩個(gè)值,且這兩個(gè)值之和為180°,

∴利用正弦函數(shù)的圖象可得:60°<A<120°,

若A=90,這樣補(bǔ)角也是90°,一解,不合題意,<sinA<1,

∵x=sinA,則2<x<故選D3、B【解析】

由等差數(shù)列的性質(zhì)可得,則答案易求.【詳解】在等差數(shù)列中,因?yàn)?,所?所以.故選B.【點(diǎn)睛】本題考查等差數(shù)列性質(zhì)的應(yīng)用.在等差數(shù)列中,若,則.特別地,若,則.4、A【解析】

由已知易得圓柱的高為,底面圓周長為,求出半徑進(jìn)而求得底面圓半徑即可求出圓柱體積?!驹斀狻康酌鎴A周長,,所以故選:A【點(diǎn)睛】此題考查圓柱的側(cè)面展開為長方形,長為底面圓周長,寬為圓柱高,屬于簡(jiǎn)單題目。5、B【解析】

直接利用古典概型的概率公式求解.【詳解】從數(shù)字0,1,2,3,4中任取兩個(gè)不同的數(shù)字構(gòu)成一個(gè)兩位數(shù)有10,12,13,14,20,21,23,24,30,31,32,34,40,41,42,43,共16個(gè),其中大于30的有31,32,34,40,41,42,43,共7個(gè),故所求概率為.故選B【點(diǎn)睛】本題主要考查古典概型的概率的計(jì)算,意在考查學(xué)生對(duì)該知識(shí)的理解掌握水平,屬于基礎(chǔ)題.6、C【解析】

首先根據(jù)題意求出,再根據(jù)正弦函數(shù)的定義即可求出的值.【詳解】,.故選:C【點(diǎn)睛】本題主要考查正弦函數(shù)的定義,屬于簡(jiǎn)單題.7、A【解析】

由已知求出,的值,再由,展開兩角差的余弦求解,即可得答案.【詳解】由,,且,,,,∴,∴,.故選:A.【點(diǎn)睛】本題考查兩角和與差的余弦、倍角公式,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運(yùn)算求解能力,求解時(shí)注意“拆角配角”思想的運(yùn)用.8、B【解析】

根據(jù)向量的加減運(yùn)算法則,通過,把用和表示出來,即可得到的值.【詳解】在中,,點(diǎn)是直線上一點(diǎn),所以,又三點(diǎn)共線,所以,即.故選:B.【點(diǎn)睛】本題考查實(shí)數(shù)值的求法,解題時(shí)要認(rèn)真審題,注意平面向量加法法則的合理運(yùn)用,屬于基礎(chǔ)題.9、D【解析】

根據(jù)等比數(shù)列前n項(xiàng)和的性質(zhì)可知、、成等比數(shù)列,即可得關(guān)于的等式,化簡(jiǎn)即可得解.【詳解】等比數(shù)列的前n項(xiàng)和為,若,,根據(jù)等比數(shù)列前n項(xiàng)和性質(zhì)可知,、、滿足:化簡(jiǎn)可得故選:D【點(diǎn)睛】本題考查了等比數(shù)列前n項(xiàng)和的性質(zhì)及簡(jiǎn)單應(yīng)用,屬于基礎(chǔ)題.10、D【解析】

由正弦定理化簡(jiǎn)已知可得,利用余弦定理,勾股定理,三角形兩邊之和大于第三邊等知識(shí)逐一分析各個(gè)選項(xiàng)即可得解.【詳解】解:為非零實(shí)數(shù)),可得:,由正弦定理,可得:,對(duì)于A,時(shí),可得:,可得,即為直角,可得是直角三角形,故正確;對(duì)于B,時(shí),可得:,可得為最大角,由余弦定理可得,可得是銳角三角形,故正確;對(duì)于C,時(shí),可得:,可得為最大角,由余弦定理可得,可得是鈍角三角形,故正確;對(duì)于D,時(shí),可得:,可得,這樣的三角形不存在,故錯(cuò)誤.故選:D.【點(diǎn)睛】本題主要考查了正弦定理,余弦定理,勾股定理在解三角形中的應(yīng)用,考查了分類討論思想,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

根據(jù)題意結(jié)合整除中的余數(shù)問題、最小公倍數(shù)問題,進(jìn)行分析求解即可.【詳解】由題意得:一個(gè)數(shù)用3除余2,用7除也余2,所以用3與7的最小公倍數(shù)21除也余2,而用21除余2的數(shù)我們首先就會(huì)想到23;23恰好被5除余3,即最小的一個(gè)數(shù)為23,同時(shí)這個(gè)數(shù)相差又是3,5,7的最小公倍數(shù),即,即數(shù)列的通項(xiàng)公式可以表示為,故答案為:.【點(diǎn)睛】本題以數(shù)學(xué)文化為背景,利用數(shù)列中的整除、最小公倍數(shù)進(jìn)行求解,考查邏輯推理能力和運(yùn)算求解能力.12、【解析】

根據(jù),可得平面,進(jìn)而可得,再由,證明平面,即可得出,是的直角頂點(diǎn).【詳解】在三棱錐中,,,且,∴平面,又平面,∴,又∵,且,∴平面,又平面,∴,∴的直角頂點(diǎn)為.故答案為:.【點(diǎn)睛】本題考查了直線與直線以及直線與平面垂直的應(yīng)用問題,屬于基礎(chǔ)題.13、【解析】

先利用輔助角公式將函數(shù)的解析式化簡(jiǎn),根據(jù)三角函數(shù)的變化規(guī)律求出函數(shù)的解析式,即可計(jì)算出的值.【詳解】,由題意可得,因此,,故答案為.【點(diǎn)睛】本題考查輔助角公式化簡(jiǎn)、三角函數(shù)圖象變換,在三角圖象相位變換的問題中,首先應(yīng)該將三角函數(shù)的解析式化為(或)的形式,其次要注意左加右減指的是在自變量上進(jìn)行加減,考查計(jì)算能力,屬于中等題.14、191【解析】

利用輾轉(zhuǎn)相除法,求382與1337的最大公約數(shù).【詳解】因?yàn)椋?,所?82與1337的最大公約數(shù)為191,故填:.【點(diǎn)睛】本題考查利用輾轉(zhuǎn)相除法求兩個(gè)正整數(shù)的最大公因數(shù),屬于容易題.15、【解析】

采用分離常數(shù)法對(duì)所給極限式變形,可得到極限值.【詳解】.【點(diǎn)睛】本題考查分離常數(shù)法求極限,難度較易.16、;【解析】

利用三角換元,設(shè),;利用輔助角公式將化為,根據(jù)三角函數(shù)值域求得結(jié)果.【詳解】可設(shè),,本題正確結(jié)果:【點(diǎn)睛】本題考查利用三角換元法求解取值范圍的問題,關(guān)鍵是能夠?qū)栴}轉(zhuǎn)化為三角函數(shù)值域的求解問題.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)見解析;(3)8.【解析】試題分析:(1)由勾股定理得,由面得到,從而得到面,故;(2)連接交于點(diǎn),則為的中位線,得到∥,從而得到∥面;(3)過作垂足為,面,面積法求,求出三角形的面積,代入體積公式進(jìn)行運(yùn)算.試題解析:(1)證明:在中,由勾股定理得為直角三角形,即.又面,,,面,.(2)證明:設(shè)交于點(diǎn),則為的中點(diǎn),連接,則為的中位線,則在中,∥,又面,則∥面.(3)在中過作垂足為,由面⊥面知,面,.而,,.考點(diǎn):直線與平面平行的判定;棱柱、棱錐、棱臺(tái)的體積.18、【解析】試題分析:可畫出樹枝圖,得到基本事件的總數(shù),再利用古典概型及其概率的計(jì)算公式,即可求解事件的概率.試題解析:所有可能的基本事件共有27個(gè),如圖所示.記“3個(gè)矩形顏色都不同”為事件A,由圖,可知事件A的基本事件有2×3=6(個(gè)),故P(A)==.19、(1)(2)【解析】

試題分析:(1)由已知條件,利用等差數(shù)列的前n項(xiàng)和公式和通項(xiàng)公式及等比數(shù)列的性質(zhì)列出方程組,求出等差數(shù)列的首項(xiàng)和公差,由此能求出數(shù)列{an}的通項(xiàng)公式;(2)由題意推導(dǎo)出bn=22n+1+1,由此利用分組求和法能求出數(shù)列{bn}的前n項(xiàng)和.詳解:(Ⅰ)設(shè)等差數(shù)列的公差為.因?yàn)?,所?①因?yàn)槌傻缺葦?shù)列,所以.②由①,②可得:.所以.(Ⅱ)由題意,設(shè)數(shù)列的前項(xiàng)和為,,,所以數(shù)列為以為首項(xiàng),以為公比的等比數(shù)列所以點(diǎn)睛:這個(gè)題目考查的是數(shù)列通項(xiàng)公式的求法及數(shù)列求和的常用方法;數(shù)列通項(xiàng)的求法中有常見的已知和的關(guān)系,求表達(dá)式,一般是寫出作差得通項(xiàng),但是這種方法需要檢驗(yàn)n=1時(shí)通項(xiàng)公式是否適用;數(shù)列求和常用法有:錯(cuò)位相減,裂項(xiàng)求和,分組求和等.20、(1),;(2)減區(qū)間為,對(duì)稱軸方程為【解析】

(1)先根據(jù)平移后周期不變求得,再根據(jù)三角函數(shù)的平移方法求得即可.(2)根據(jù)(1)中,代入可得,利用輔助角公式求得,再代入調(diào)遞減區(qū)間及圖象的對(duì)稱軸方程求解即可.【詳解】(1)因?yàn)楹瘮?shù)的圖象向左平移個(gè)單位長度后與函數(shù)圖象重合,所以.所以,因?yàn)?所以.(2)由(1),,所以,.令,解得所以函數(shù)的單調(diào)遞減區(qū)間為.令,可得圖象的對(duì)稱軸方程為.【點(diǎn)睛】本題主要考查了三角函數(shù)的平移運(yùn)用以及輔助角公式.同時(shí)也考查了根據(jù)三角函數(shù)的解析式求解單調(diào)區(qū)間以及對(duì)稱軸等方法.屬于中檔題.21、(3);(3)3.【解析】試題分析:(3)由題意可得,直線l的斜率存在,用點(diǎn)斜式求得直線l的方程,根據(jù)圓心到直線的距離等于半徑求得k的值,可得滿足條件的k的范圍.(3)由題意可得,經(jīng)過點(diǎn)M、N、A的直線方程為y=kx+3,根據(jù)直線和圓相

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論