2022-2023學(xué)年云南省臨滄市數(shù)學(xué)高一第二學(xué)期期末監(jiān)測(cè)試題含解析_第1頁(yè)
2022-2023學(xué)年云南省臨滄市數(shù)學(xué)高一第二學(xué)期期末監(jiān)測(cè)試題含解析_第2頁(yè)
2022-2023學(xué)年云南省臨滄市數(shù)學(xué)高一第二學(xué)期期末監(jiān)測(cè)試題含解析_第3頁(yè)
2022-2023學(xué)年云南省臨滄市數(shù)學(xué)高一第二學(xué)期期末監(jiān)測(cè)試題含解析_第4頁(yè)
2022-2023學(xué)年云南省臨滄市數(shù)學(xué)高一第二學(xué)期期末監(jiān)測(cè)試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩13頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022-2023學(xué)年高一下數(shù)學(xué)期末模擬試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫(xiě)清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效;在草稿紙、試卷上答題無(wú)效。4.作圖可先使用鉛筆畫(huà)出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.設(shè)為數(shù)列的前項(xiàng)和,,則的值為()A. B. C. D.不確定2.閱讀如圖所示的程序框圖,當(dāng)輸入時(shí),輸出的()A.6 B. C.7 D.3.已知,且,把底數(shù)相同的指數(shù)函數(shù)與對(duì)數(shù)函數(shù)圖象的公共點(diǎn)稱(chēng)為(或)的“亮點(diǎn)”.當(dāng)時(shí),在下列四點(diǎn),,,中,能成為的“亮點(diǎn)”有()A.0個(gè) B.1個(gè) C.2個(gè) D.3個(gè)4.在△ABC中角ABC的對(duì)邊分別為A.B.c,cosC=,且acosB+bcosA=2,則△ABC面積的最大值為()A. B. C. D.5.設(shè)甲、乙兩地的距離為a(a>0),小王騎自行車(chē)以勻速?gòu)募椎氐揭业赜昧?0分鐘,在乙地休息10分鐘后,他又以勻速?gòu)囊业胤祷氐郊椎赜昧?0分鐘,則小王從出發(fā)到返回原地所經(jīng)過(guò)的路程y和其所用的時(shí)間x的函數(shù)圖象為()A. B.C. D.6.甲、乙兩名籃球運(yùn)動(dòng)員最近五場(chǎng)比賽的得分如莖葉圖所示,則()A.甲的中位數(shù)和平均數(shù)都比乙高B.甲的中位數(shù)和平均數(shù)都比乙低C.甲的中位數(shù)比乙的中位數(shù)高,但平均數(shù)比乙的平均數(shù)低D.甲的中位數(shù)比乙的中位數(shù)低,但平均數(shù)比乙的平均數(shù)高7.已知數(shù)列滿足遞推關(guān)系,則()A. B. C. D.8.用長(zhǎng)為4,寬為2的矩形做側(cè)面圍成一個(gè)圓柱,此圓柱軸截面面積為()A.8 B. C. D.9.在棱長(zhǎng)為2的正方體中,是內(nèi)(不含邊界)的一個(gè)動(dòng)點(diǎn),若,則線段的長(zhǎng)的取值范圍為()A. B. C. D.10.若圓上有且僅有兩個(gè)點(diǎn)到直線的距離等于,則的取值范圍是()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知函數(shù)fx=cosx+2cosx,12.在平面直角坐標(biāo)系中,角的頂點(diǎn)與原點(diǎn)重合,始邊與軸的非負(fù)半軸重合,終邊過(guò)點(diǎn),則_______;_______.13.已知向量,,且,則_______.14.?dāng)?shù)列中,,,,則的前2018項(xiàng)和為_(kāi)_____.15.已知,則與的夾角等于____.16.已知雙曲線:的右頂點(diǎn)為,以為圓心,為半徑作圓,圓與雙曲線的一條漸近線于交、兩點(diǎn),若,則的離心率為_(kāi)_________.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.在ΔABC中,角A,B,C的對(duì)邊分別為a,b,c,且滿足3(b(1)求角B的大??;(2)若ΔABC的面積為32,B是鈍角,求b18.某種汽車(chē)的購(gòu)車(chē)費(fèi)用是10萬(wàn)元,每年使用的保險(xiǎn)費(fèi)、養(yǎng)路費(fèi)、汽油費(fèi)約為萬(wàn)元,年維修費(fèi)用第一年是萬(wàn)元,第二年是萬(wàn)元,第三年是萬(wàn)元,…,以后逐年遞增萬(wàn)元汽車(chē)的購(gòu)車(chē)費(fèi)用、每年使用的保險(xiǎn)費(fèi)、養(yǎng)路費(fèi)、汽油費(fèi)、維修費(fèi)用的和平均攤到每一年的費(fèi)用叫做年平均費(fèi)用.設(shè)這種汽車(chē)使用年的維修費(fèi)用的和為,年平均費(fèi)用為.(1)求出函數(shù),的解析式;(2)這種汽車(chē)使用多少年時(shí),它的年平均費(fèi)用最?。孔钚≈凳嵌嗌??19.學(xué)生會(huì)有共名同學(xué),其中名男生名女生,現(xiàn)從中隨機(jī)選出名代表發(fā)言.求:同學(xué)被選中的概率;至少有名女同學(xué)被選中的概率.20.本題共3個(gè)小題,第1小題滿分3分,第2小題滿分6分,第3小題滿分9分.已知數(shù)列滿足.(1)若,求的取值范圍;(2)若是公比為等比數(shù)列,,求的取值范圍;(3)若成等差數(shù)列,且,求正整數(shù)的最大值,以及取最大值時(shí)相應(yīng)數(shù)列的公差.21.在等差數(shù)列中,已知.(1)求通項(xiàng);(2)求的前項(xiàng)和.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、C【解析】

令,由求出的值,再令時(shí),由得出,兩式相減可推出數(shù)列是等比數(shù)列,求出該數(shù)列的公比,再利用等比數(shù)列求和公式可求出的值.【詳解】當(dāng)時(shí),,得;當(dāng)時(shí),由得出,兩式相減得,可得.所以,數(shù)列是以為首項(xiàng),以為公比的等比數(shù)列,因此,.故選:C.【點(diǎn)睛】本題考查利用前項(xiàng)和求數(shù)列通項(xiàng),同時(shí)也考查了等比數(shù)列求和,在遞推公式中涉及與時(shí),可利用公式求解出,也可以轉(zhuǎn)化為來(lái)求解,考查推理能力與計(jì)算能力,屬于中等題.2、D【解析】

根據(jù)程序框圖,依次運(yùn)行程序即可得出輸出值.【詳解】輸入時(shí),,,,,,,輸出故選:D【點(diǎn)睛】此題考查程序框圖,關(guān)鍵在于讀懂框圖,根據(jù)結(jié)構(gòu)依次運(yùn)算,求出輸出值,尤其注意判斷框中的條件.3、C【解析】

利用“亮點(diǎn)”的定義對(duì)每一個(gè)點(diǎn)逐一分析得解.【詳解】由題得,,由于,所以點(diǎn)不在函數(shù)f(x)的圖像上,所以點(diǎn)不是“亮點(diǎn)”;由于,所以點(diǎn)不在函數(shù)f(x)的圖像上,所以點(diǎn)不是“亮點(diǎn)”;由于,所以點(diǎn)在函數(shù)f(x)和g(x)的圖像上,所以點(diǎn)是“亮點(diǎn)”;由于,所以點(diǎn)在函數(shù)f(x)和g(x)的圖像上,所以點(diǎn)是“亮點(diǎn)”.故選C【點(diǎn)睛】本題主要考查指數(shù)和對(duì)數(shù)的運(yùn)算,考查指數(shù)和對(duì)數(shù)函數(shù)的圖像和性質(zhì),意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平,屬于基礎(chǔ)題.4、D【解析】

首先利用同角三角函數(shù)的關(guān)系式求出sinC的值,進(jìn)一步利用余弦定理和三角形的面積公式及基本不等式的應(yīng)用求出結(jié)果.【詳解】△ABC中角ABC的對(duì)邊分別為a、b、c,cosC,利用同角三角函數(shù)的關(guān)系式sin1C+cos1C=1,解得sinC,由于acosB+bcosA=1,利用余弦定理,解得c=1.所以c1=a1+b1﹣1abcosC,整理得4,由于a1+b1≥1ab,故,所以.則,△ABC面積的最大值為,故選D.【點(diǎn)睛】本題考查的知識(shí)要點(diǎn):三角函數(shù)關(guān)系式的恒等變換,正弦定理余弦定理和三角形面積的應(yīng)用,基本不等式的應(yīng)用,主要考查學(xué)生的運(yùn)算能力和轉(zhuǎn)換能力,屬于中檔題.5、D【解析】試題分析:根據(jù)題意,甲、乙兩地的距離為a(a>0),小王騎自行車(chē)以勻速?gòu)募椎氐揭业赜昧?0min,在乙地休息10min后,他又以勻速?gòu)囊业胤祷氐郊椎赜昧?0min,那么可知先是勻速運(yùn)動(dòng),圖像為直線,然后再休息,路程不變,那么可知時(shí)間持續(xù)10min,那么最后還是同樣的勻速運(yùn)動(dòng),直線的斜率不變可知選D.考點(diǎn):函數(shù)圖像點(diǎn)評(píng):主要是考查了路程與時(shí)間的函數(shù)圖像的運(yùn)用,屬于基礎(chǔ)題.6、B【解析】

分別計(jì)算出兩組數(shù)據(jù)的中位數(shù)和平均數(shù)即可得出選項(xiàng).【詳解】根據(jù)題意:甲的平均數(shù)為:,中位數(shù)為29,乙的平均數(shù)為:,中位數(shù)為30,所以甲的中位數(shù)和平均數(shù)都比乙低.故選:B【點(diǎn)睛】此題考查根據(jù)莖葉圖表示的數(shù)據(jù)分別辨析平均數(shù)和中位數(shù)的大小關(guān)系,分別計(jì)算求解即可得出答案.7、B【解析】

兩邊取倒數(shù),可得新的等差數(shù)列,根據(jù)等差數(shù)列的通項(xiàng)公式,可得結(jié)果.【詳解】由,所以則,又,所以所以數(shù)列是以2為首項(xiàng),1為公比的等差數(shù)列所以,則所以故選:B【點(diǎn)睛】本題主要考查由遞推公式得到等差數(shù)列,難點(diǎn)在于取倒數(shù),學(xué)會(huì)觀察,屬基礎(chǔ)題.8、B【解析】

分別討論當(dāng)圓柱的高為4時(shí),當(dāng)圓柱的高為2時(shí),求出圓柱軸截面面積即可得解.【詳解】解:當(dāng)圓柱的高為4時(shí),設(shè)圓柱的底面半徑為,則,則,則圓柱軸截面面積為,當(dāng)圓柱的高為2時(shí),設(shè)圓柱的底面半徑為,則,則,則圓柱軸截面面積為,綜上所述,圓柱的軸截面面積為,故選:B.【點(diǎn)睛】本題考查了圓柱軸截面面積的求法,屬基礎(chǔ)題.9、C【解析】

先判斷是正四面體,可得正四面體的棱長(zhǎng)為,則的最大值為的長(zhǎng),的最小值是到平面的距離,結(jié)合不在三角形的邊上,計(jì)算可得結(jié)果.【詳解】由正方體的性質(zhì)可知,是正四面體,且正四面體的棱長(zhǎng)為,在內(nèi),的最大值為,的最小值是到平面的距離,設(shè)在平面的射影為,則為正三角形的中心,,,的最小值為,又因?yàn)椴辉谌切蔚倪吷?,所以的范圍是,故選C.【點(diǎn)睛】本題主要考查正方體的性質(zhì)及立體幾何求最值,屬于難題.解決圓錐曲線中的最值問(wèn)題一般有兩種方法:一是幾何意義以及平面幾何的有關(guān)結(jié)論來(lái)解決,非常巧妙;二是將立體幾何中最值問(wèn)題轉(zhuǎn)化為函數(shù)問(wèn)題,然后根據(jù)函數(shù)的特征選用參數(shù)法、配方法、判別式法、三角函數(shù)有界法、函數(shù)單調(diào)性法以及均值不等式法求解.10、B【解析】

先求出圓心到直線的距離,然后結(jié)合圖象,即可得到本題答案.【詳解】由題意可得,圓心到直線的距離為,故由圖可知,當(dāng)時(shí),圓上有且僅有一個(gè)點(diǎn)到直線的距離等于;當(dāng)時(shí),圓上有且僅有三個(gè)點(diǎn)到直線的距離等于;當(dāng)則的取值范圍為時(shí),圓上有且僅有兩個(gè)點(diǎn)到直線的距離等于.故選:B【點(diǎn)睛】本題主要考查直線與圓的綜合問(wèn)題,數(shù)學(xué)結(jié)合是解決本題的關(guān)鍵.二、填空題:本大題共6小題,每小題5分,共30分。11、(0,1)【解析】

畫(huà)出函數(shù)f(x)在x∈0,2【詳解】解:畫(huà)出函數(shù)y=cosx+2|cosx|=3cos以及直線y=k的圖象,如圖所示;由f(x)的圖象與直線y=k有且僅有四個(gè)不同的交點(diǎn),可得0<k<1.故答案為:(0,1).【點(diǎn)睛】本題主要考查利用分段函數(shù)及三角函數(shù)的性質(zhì)求參數(shù),數(shù)形結(jié)合是解題的關(guān)鍵.12、【解析】

根據(jù)三角函數(shù)的定義直接求得的值,即可得答案.【詳解】∵角終邊過(guò)點(diǎn),,∴,,,∴.故答案為:;.【點(diǎn)睛】本題考查三角函數(shù)的定義,考查運(yùn)算求解能力,屬于基礎(chǔ)題.13、-2或3【解析】

用坐標(biāo)表示向量,然后根據(jù)垂直關(guān)系得到坐標(biāo)運(yùn)算關(guān)系,求出結(jié)果.【詳解】由題意得:或本題正確結(jié)果:或【點(diǎn)睛】本題考查向量垂直的坐標(biāo)表示,屬于基礎(chǔ)題.14、2【解析】

直接利用遞推關(guān)系式和數(shù)列的周期求出結(jié)果即可.【詳解】數(shù)列{an}中,a1=1,a2=2,an+2=an+1﹣an,則:a2=a2﹣a1=1,a4=a2﹣a2=﹣1,a5=a4﹣a2=﹣2,a1=a5﹣a4=﹣1,a7=a1﹣a5=1,…所以:數(shù)列的周期為1.a(chǎn)1+a2+a2+a4+a5+a1=0,數(shù)列{an}的前2018項(xiàng)和為:(a1+a2+a2+a4+a5+a1)+…+(a2011+a2012+a2012+a2014+a2015+a2011)+a2017+a2018,=0+0+…+0+(a1+a2)=2.故答案為:2【點(diǎn)睛】本題考查的知識(shí)要點(diǎn):數(shù)列的遞推關(guān)系式的應(yīng)用,數(shù)列的周期的應(yīng)用,主要考查學(xué)生的運(yùn)算能力和轉(zhuǎn)化能力,屬于基礎(chǔ)題.15、【解析】

根據(jù)向量的坐標(biāo)即可求出,根據(jù)向量夾角的公式即可求出.【詳解】∵,,,,∴,又,∴.故答案為:.【點(diǎn)睛】考查向量坐標(biāo)的數(shù)量積運(yùn)算,向量坐標(biāo)求向量長(zhǎng)度的方法,以及向量夾角的余弦公式,屬于基礎(chǔ)題.16、【解析】如圖所示,由題意可得|OA|=a,|AN|=|AM|=b,∵∠MAN=60°,∴|AP|=b,∴|OP|=.設(shè)雙曲線C的一條漸近線y=x的傾斜角為θ,則tanθ=.又tanθ=,∴,解得a2=3b2,∴e=.答案:點(diǎn)睛:求雙曲線的離心率的值(或范圍)時(shí),可將條件中提供的雙曲線的幾何關(guān)系轉(zhuǎn)化為關(guān)于雙曲線基本量的方程或不等式,再根據(jù)和轉(zhuǎn)化為關(guān)于離心率e的方程或不等式,通過(guò)解方程或不等式求得離心率的值(或取值范圍).三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)B=π3或2π【解析】

(1)由正弦定理和三角恒等變換的公式,化簡(jiǎn)得3sin(A+B)=2sinBsin(2)由(1)和三角形的面積公式,可求得ac=2,再由余弦定理和基本不等式,即可求解b的最小值.【詳解】(1)由題意,知3(b結(jié)合正弦定理得:3(即3sin又在△ABC中,sin(A+B)=sinC>0因?yàn)锽∈(0,π)所以B=π3或(2)由三角形的面積公式,可得12又由sinB=32因?yàn)锽是鈍角,所以B=2π由余弦定理得b2當(dāng)且僅當(dāng)a=c時(shí)取等號(hào),所以b的最小值為6.【點(diǎn)睛】本題主要考查了正弦定理、余弦定理和三角形的面積公式的應(yīng)用,其中在解有關(guān)三角形的題目時(shí),要抓住題設(shè)條件和利用某個(gè)定理的信息,合理應(yīng)用正弦定理和余弦定理求解是解答的關(guān)鍵,著重考查了運(yùn)算與求解能力,屬于中檔試題.18、(1),;(2)時(shí),年平均費(fèi)用最小,最小值為3萬(wàn)元.【解析】試題分析:根據(jù)題意可知,汽車(chē)使用年的維修費(fèi)用的和為,而第一年的維修費(fèi)用是萬(wàn)元,以后逐年遞增萬(wàn)元,每一年的維修費(fèi)用形成以為首項(xiàng),為公差的等差數(shù)列,根據(jù)等差數(shù)列的前項(xiàng)和即可求出的解析式;將購(gòu)車(chē)費(fèi)、每年使用的保險(xiǎn)費(fèi)、養(yǎng)路費(fèi)、汽油費(fèi)以及維修費(fèi)用之和除以即可得到年平均費(fèi)用,根據(jù)基本不等式即可求出平均費(fèi)用的最小值.試題解析:(1)根據(jù)題意可知,汽車(chē)使用年的維修費(fèi)用的和為,而第一年的維修費(fèi)用是萬(wàn)元,以后逐年遞增萬(wàn)元,每一年的維修費(fèi)用形成以為首項(xiàng),為公差的等差數(shù)列,根據(jù)等差數(shù)列的前項(xiàng)和公式可得:因?yàn)橘?gòu)車(chē)費(fèi)、每年使用的保險(xiǎn)費(fèi)、養(yǎng)路費(fèi)、汽油費(fèi)以及維修費(fèi)用之和為,所以年平均費(fèi)用為;(2)因?yàn)樗援?dāng)且僅當(dāng)即時(shí),年平均費(fèi)用最小,最小值為3萬(wàn)元.考點(diǎn):本題考查了等差數(shù)列的前項(xiàng)和公式以的掌握,以及基本不等式的應(yīng)用,同時(shí)考查了學(xué)生解決實(shí)際應(yīng)用題的能力.19、(1)(2)【解析】

(1)用列舉法列出所有基本事件,得到基本事件的總數(shù)和同學(xué)被選中的,然后用古典概型概率公式可求得;(2)利用對(duì)立事件的概率公式即可求得.【詳解】解:選兩名代表發(fā)言一共有,,共種情況,其中.被選中的情況是共種.所以被選中的概本為.不妨設(shè)四位同學(xué)為男同學(xué),則沒(méi)有女同學(xué)被選中的情況是:共種,則至少有一名女同學(xué)被選中的概率為.【點(diǎn)睛】本題考查了古典概型的概率公式和對(duì)立事件的概率公式,屬基礎(chǔ)題.20、(1);(2);(3)的最大值為1999,此時(shí)公差為.【解析】

(1)依題意:,又將已知代入求出x的范圍;(2)先求出通項(xiàng):,由求出,對(duì)q分類(lèi)討論求出Sn分別代入不等式Sn≤Sn+1≤3Sn,得到關(guān)于q的不等式組,解不等式組求出q的范圍.(3)依題意得到關(guān)于k的不等式,得出k的最大值,并得出k取最大值時(shí)a1,a2,…ak的公差.【詳解】(1)依題意:,∴;又∴3≤x≤27,綜上可得:3≤x≤6(2)由已知得,,,∴,當(dāng)q=1時(shí),Sn=n,Sn≤Sn+1≤3Sn,即,成立

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論