版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年高一下數(shù)學期末模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知函數(shù),(),若對任意的(),恒有,那么的取值集合是()A. B. C. D.2.如圖:樣本A和B分別取自兩個不同的總體,他們的樣本平均數(shù)分別為和,樣本標準差分別為和,則()A.B.C.D.3.直線與平行,則的值為()A. B.或 C.0 D.-2或04.已知不等式的解集是,則()A. B.1 C. D.35.在△ABC中,角所對的邊分別為,且則最大角為()A. B. C. D.6.過點且與直線垂直的直線方程是()A. B. C. D.7.若三點共線,則()A.13 B. C.9 D.8.過兩點,的直線的傾斜角為,則實數(shù)=()A.-1 B.1C. D.9.在中,若,則的形狀是()A.鈍角三角形 B.直角三角形C.銳角三角形 D.不能確定10.一支由學生組成的校樂團有男同學48人,女同學36人,若用分層抽樣的方法從該樂團的全體同學中抽取21人參加某項活動,則抽取到的男同學人數(shù)為()A.10 B.11 C.12 D.13二、填空題:本大題共6小題,每小題5分,共30分。11.已知等比數(shù)列的前項和為,若,且,則_____.12.在等比數(shù)列中,,公比,若,則的值為.13.若數(shù)列的前項和,滿足,則______.14.如圖,圓錐形容器的高為圓錐內(nèi)水面的高為,且,若將圓錐形容器倒置,水面高為,則等于__________.(用含有的代數(shù)式表示)15.某中學為了了解全校學生的閱讀情況,在全校采用隨機抽樣的方法抽取一個樣本進行問卷調(diào)查,并將他們在一個月內(nèi)去圖書館的次數(shù)進行了統(tǒng)計,將學生去圖書館的次數(shù)分為5組:制作了如圖所示的頻率分布表,則抽樣總?cè)藬?shù)為_______.16.在我國古代數(shù)學著作《孫子算經(jīng)》中,卷下第二十六題是:今有物,不知其數(shù),三三數(shù)之剩二,五五數(shù)之剩三,七七數(shù)之剩二,問物幾何?滿足題意的答案可以用數(shù)列表示,該數(shù)列的通項公式可以表示為________三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.在中,已知,是邊上的一點,,,.(1)求的大??;(2)求的長.18.已知數(shù)列的前項和為,且,.(1)求證:數(shù)列的通項公式;(2)設,,求.19.已知,與的夾角為.(1)若,求;(2)若與垂直,求.20.已知函數(shù),且,.(1)求該函數(shù)的最小正周期及對稱中心坐標;(2)若方程的根為,且,求的值.21.數(shù)列的前項和.(1)求數(shù)列的通項公式;(2)設,求數(shù)列的前項和.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】當時,,畫出圖象如下圖所示,由圖可知,時不符合題意,故選.【點睛】本題主要考查含有絕對值的不等式的解法,考查選擇題的解題策略中的特殊值法.主要的需要滿足的是,根據(jù)不等式的解法,大于在中間,小于在兩邊,可化簡為,左右兩邊為二次函數(shù),中間可以由對數(shù)函數(shù)圖象平移得到,由此畫出圖象驗證是否符合題意.2、B【解析】
從圖形中可以看出樣本A的數(shù)據(jù)均不大于10,而樣本B的數(shù)據(jù)均不小于10,A中數(shù)據(jù)波動程度較大,B中數(shù)據(jù)較穩(wěn)定,由此得到結(jié)論.【詳解】∵樣本A的數(shù)據(jù)均不大于10,而樣本B的數(shù)據(jù)均不小于10,,由圖可知A中數(shù)據(jù)波動程度較大,B中數(shù)據(jù)較穩(wěn)定,.故選B.3、A【解析】
若直線與平行,則,解出a值后,驗證兩條直線是否重合,可得答案.【詳解】若直線與平行,
則,
解得或,
又時,直線與表示同一條直線,
故,
故選A.本題考查的知識點是直線的一般式方程,直線的平行關系,正確理解直線平行的幾何意義是解答的關鍵.4、A【解析】
的兩個解為-1和2.【詳解】【點睛】函數(shù)零點、一元二次等式的解、函數(shù)與x軸的交點之間的相互轉(zhuǎn)換。5、C【解析】
根據(jù)正弦定理可得三邊的比例關系;由大邊對大角可知最大,利用余弦定理求得余弦值,從而求得角的大小.【詳解】由正弦定理可得:設,,最大為最大角本題正確選項:【點睛】本題考查正弦定理、余弦定理的應用,涉及到三角形中大邊對大角的關系,屬于基礎題.6、D【解析】
由已知直線方程求得直線的斜率,再根據(jù)兩直線垂直,得到所求直線的斜率,最后用點斜式寫出所求直線的方程.【詳解】已知直線的斜率為:因為兩直線垂直所以所求直線的斜率為又所求直線過點所以所求直線方程為:即:故選:D【點睛】本題主要考查了直線與直線的位置關系及直線方程的求法,還考查了運算求解的能力,屬于基礎題.7、D【解析】
根據(jù)三點共線,有成立,解方程即可.【詳解】因為三點共線,所以有成立,因此,故本題選D.【點睛】本題考查了斜率公式的應用,考查了三點共線的性質(zhì),考查了數(shù)學運算能力.8、A【解析】
根據(jù)兩點的斜率公式及傾斜角和斜率關系,即可求得的值.【詳解】過兩點,的直線斜率為由斜率與傾斜角關系可知即解得故選:A【點睛】本題考查了兩點間的斜率公式,直線的斜率與傾斜角關系,屬于基礎題.9、A【解析】
由正弦定理得,再由余弦定理求得,得到,即可得到答案.【詳解】因為在中,滿足,由正弦定理知,代入上式得,又由余弦定理可得,因為C是三角形的內(nèi)角,所以,所以為鈍角三角形,故選A.【點睛】本題主要考查了利用正弦定理、余弦定理判定三角形的形狀,其中解答中合理利用正、余弦定理,求得角C的范圍是解答本題的關鍵,著重考查了推理與運算能力,屬于基礎題.10、C【解析】
先由男女生總數(shù)以及抽取的人數(shù)確定抽樣比,由男生總?cè)藬?shù)乘以抽樣比即可得出結(jié)果.【詳解】用分層抽樣的方法從校樂團中抽取人,所得抽樣比為,因此抽取到的男同學人數(shù)為人.故選C【點睛】本題主要考查分層抽樣,熟記概念即可,屬于??碱}型.二、填空題:本大題共6小題,每小題5分,共30分。11、4或1024【解析】
當時得到,當時,代入公式計算得到,得到答案.【詳解】比數(shù)列的前項和為,當時:易知,代入驗證,滿足,故當時:故答案為:4或1024【點睛】本題考查了等比數(shù)列,忽略掉的情況是容易發(fā)生的錯誤.12、1【解析】
因為,,故答案為1.考點:等比數(shù)列的通項公式.13、【解析】
令,得出,令,由可計算出在時的表達式,然后就是否符合進行檢驗,由此可得出.【詳解】當時,;當時,則.也適合.綜上所述,.故答案為:.【點睛】本題考查利用求,一般利用來計算,但需要對進行檢驗,考查計算能力,屬于基礎題.14、【解析】
根據(jù)水的體積不變,列出方程,解出的值,即可得到答案.【詳解】設圓錐形容器的底面面積為,則未倒置前液面的面積為,所以水的體積為,設倒置后液面面積為,則,所以,所以水的體積為,所以,解得.【點睛】本題主要考查了圓錐的結(jié)構(gòu)特征,以及圓錐的體積的計算與應用,其中解答中熟練應用圓錐的結(jié)構(gòu)特征,利用體積公式準確運算是解答的關鍵,著重考查了空間想象能力,以及推理與運算能力,屬于中檔試題.15、20【解析】
總體人數(shù)占的概率是1,也可以理解成每個人在整體占的比重一樣,所以三組的頻率為:,共有14人,即14人占了整體的0.7,那么整體共有人?!驹斀狻壳叭M,即三組的頻率為:,,解得:【點睛】此題考查概率,通過部分占總體的概率即可計算出總體的樣本值,屬于簡單題目。16、【解析】
根據(jù)題意結(jié)合整除中的余數(shù)問題、最小公倍數(shù)問題,進行分析求解即可.【詳解】由題意得:一個數(shù)用3除余2,用7除也余2,所以用3與7的最小公倍數(shù)21除也余2,而用21除余2的數(shù)我們首先就會想到23;23恰好被5除余3,即最小的一個數(shù)為23,同時這個數(shù)相差又是3,5,7的最小公倍數(shù),即,即數(shù)列的通項公式可以表示為,故答案為:.【點睛】本題以數(shù)學文化為背景,利用數(shù)列中的整除、最小公倍數(shù)進行求解,考查邏輯推理能力和運算求解能力.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】試題分析:(1)在中,由余弦定理得,最后根據(jù)的值及,即可得到的值;(2)在中,由正弦定理得到,從而代入數(shù)據(jù)進行運算即可得到的長.試題解析:(1)在中,,由余弦定理可得又因為,所以(2)在中,由正弦定理可得所以.考點:1.正弦定理;2.余弦定理;3.解斜三角形.18、(1);(2).【解析】
(1)利用即可求出答案;(2)利用裂項相消法即可求出答案.【詳解】解:(1)∵,當時,,當時,,∴,;(2)∵,∴.【點睛】本題主要考查數(shù)列已知求,考查裂項相消法求和,屬于中檔題.19、(1);(2)【解析】
(1)根據(jù)向量共線,對向量的夾角分類討論,利用數(shù)量積公式即可完成求解;(2)根據(jù)向量垂直得到數(shù)量積為,再根據(jù)已知條件并借助數(shù)量積公式即可計算出的值.【詳解】(1)∵,∴與的夾角為或,當時,,當時,,綜上所述,;(2)∵,∴,即,∵,∴,∴∵向量的夾角的范圍是,∴【點睛】本題考查根據(jù)向量的平行、垂直求解向量的夾角以及向量數(shù)量積公式的運用,難度較易.注意共線向量的夾角為或.20、(1)最小正周期為.對稱中心坐標為;(2)-1【解析】
(1)由題意兩未知數(shù)列兩方程即可求出、的值,再進行三角變換,可得的解析式,再利用正弦函數(shù)的周期公式、圖象的對稱性,即可得出結(jié)論.(2)先由條件求得的值,可得的值.【詳解】(1)由,得:,解得:,,,即函數(shù)的最小正周期為.由得:函數(shù)的對稱中心坐標為;
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024-2030年中國高校后勤行業(yè)管理模式及投資戰(zhàn)略分析報告版
- 2024-2030年中國馬桶行業(yè)競爭力策略及未來5發(fā)展趨勢報告
- 2024-2030年中國食色行業(yè)市場運營模式及未來發(fā)展動向預測報告
- 2024-2030年中國食品包裝吸收墊行業(yè)消費狀況與需求前景預測報告
- 2024-2030年中國頂板離層儀產(chǎn)業(yè)未來發(fā)展趨勢及投資策略分析報告
- 2024-2030年中國集蛋架車項目可行性研究報告
- 2024-2030年中國陶瓷模型石膏粉行業(yè)供需狀況發(fā)展戰(zhàn)略規(guī)劃分析報告
- 2024年房地產(chǎn)項目風險共擔利潤分配協(xié)議
- 2024年建筑項目合作伙伴協(xié)議
- 2024年教室預約使用協(xié)議
- GB/T 42455.2-2024智慧城市建筑及居住區(qū)第2部分:智慧社區(qū)評價
- 2024年認證行業(yè)法律法規(guī)及認證基礎知識
- 中國石油天然氣股份有限公司股權處置實施細則
- 高中化學趣味知識競賽(課堂PPT)
- 三管塔筏板計算
- 柴油購銷合同
- MD380總體技術方案重點講義
- 天車道軌施工方案
- 傳染病轉(zhuǎn)診單
- 手術室各級護士崗位任職資格及職責
- 班組建設實施細則
評論
0/150
提交評論