版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022-2023學年高一下數(shù)學期末模擬試卷注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知冪函數(shù)過點,則的值為()A. B.1 C.3 D.62.在一次隨機試驗中,彼此互斥的事件A,B,C,D的概率分別是0.1,0.2,0.3,0.4,則下列說法正確的是A.A+B與C是互斥事件,也是對立事件 B.B+C與D不是互斥事件,但是對立事件C.A+C與B+D是互斥事件,但不是對立事件 D.B+C+D與A是互斥事件,也是對立事件3.已知x,y為正實數(shù),則()A.2lgx+lgy=2lgx+2lgy B.2lg(x+y)=2lgx?2lgyC.2lgx?lgy=2lgx+2lgy D.2lg(xy)=2lgx?2lgy4.“”是“”成立的()A.充分非必要條件. B.必要非充分條件.C.充要條件. D.既非充分又非必要條件.5.在同一直角坐標系中,函數(shù)且的圖象可能是()A. B.C. D.6.某學生四次模擬考試時,其英語作文的減分情況如下表:考試次數(shù)x
1
2
3
4
所減分數(shù)y
4.5
4
3
2.5
顯然所減分數(shù)y與模擬考試次數(shù)x之間有較好的線性相關(guān)關(guān)系,則其線性回歸方程為()A.y=0.7x+5.25 B.y=﹣0.6x+5.25 C.y=﹣0.7x+6.25 D.y=﹣0.7x+5.257.某學生用隨機模擬的方法推算圓周率的近似值,在邊長為的正方形內(nèi)有一內(nèi)切圓,向正方形內(nèi)隨機投入粒芝麻,(假定這些芝麻全部落入該正方形中)發(fā)現(xiàn)有粒芝麻落入圓內(nèi),則該學生得到圓周率的近似值為()A. B. C. D.8.直線經(jīng)過點和,則直線的傾斜角為()A. B. C. D.9.已知是兩條不同直線,是三個不同平面,下列命題中正確的是()A.若則 B.若則C.若則 D.若則10.在等比數(shù)列中,若,則的值為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.若數(shù)列滿足,則_____.12.已知,則的取值范圍是_______;13.圓臺兩底面半徑分別為2cm和5cm,母線長為cm,則它的軸截面的面積是________cm2.14.已知銳角、滿足,,則的值為______.15.英國物理學家和數(shù)學家艾薩克·牛頓(Isaacnewton,1643-1727年)曾提出了物體在常溫環(huán)境下溫度變化的冷卻模型.現(xiàn)把一杯溫水放在空氣中冷卻,假設(shè)這杯水從開始冷卻,x分鐘后物體的溫度滿足:(其中…為自然對數(shù)的底數(shù)).則從開始冷卻,經(jīng)過5分鐘時間這杯水的溫度是________(單位:℃).16.不等式的解集為_________________;三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.某地區(qū)有小學21所,中學14所,現(xiàn)采用分層抽樣的方法從這些學校中抽取5所學校,對學生進行視力檢查.(1)求應(yīng)從小學、中學中分別抽取的學校數(shù)目;(2)若從抽取的5所學校中抽取2所學校作進一步數(shù)據(jù)分析:①列出所有可能抽取的結(jié)果;②求抽取的2所學校至少有一所中學的概率.18.如圖,在四棱錐中,底面是正方形,側(cè)面⊥底面,若分別為的中點.(Ⅰ)求證:平面;(Ⅱ)求證:平面⊥平面.19.已知等差數(shù)列滿足,且.(1)求數(shù)列的通項;(2)求數(shù)列的前項和的最大值.20.已知曲線上的任意一點到兩定點、距離之和為,直線交曲線于兩點,為坐標原點.(1)求曲線的方程;(2)若不過點且不平行于坐標軸,記線段的中點為,求證:直線的斜率與的斜率的乘積為定值;(3)若直線過點,求面積的最大值,以及取最大值時直線的方程.21.定義在上的函數(shù),如果滿足:對任意,存在常數(shù),都有成立,則稱函數(shù)是上的有界函數(shù),其中稱為函數(shù)的上界.已知函數(shù).(1)當時,求函數(shù)在上的值域,并判斷函數(shù)在上是否為有界函數(shù),請說明理由;(2)若函數(shù)在上是以3為上界的有界函數(shù),求實數(shù)的取值范圍;(3)若,函數(shù)在上的上界是,求的解析式.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】
設(shè),代入點的坐標,求得,然后再求函數(shù)值.【詳解】設(shè),由題意,,即,∴.故選:C.【點睛】本題考查冪函數(shù)的解析式,屬于基礎(chǔ)題.2、D【解析】
不可能同時發(fā)生的事件為互斥事件,當兩個互斥事件的概率和為1,則兩個事件為對立事件,易得答案.【詳解】因為事件彼此互斥,所以與是互斥事件,因為,,,所以與是對立事件,故選D.【點睛】本題考查互斥事件、對立事件的概念,注意對立事件一定是互斥事件,而互斥事件不一定是對立事件.3、D【解析】因為as+t=as?at,lg(xy)=lgx+lgy(x,y為正實數(shù)),所以2lg(xy)=2lgx+lgy=2lgx?2lgy,滿足上述兩個公式,故選D.4、A【解析】
依次分析充分性與必要性是否成立.【詳解】時,而時不一定成立,所以“”是“”成立的充分非必要條件,選A.【點睛】本題考查充要關(guān)系判定,考查基本分析判斷能力,屬基礎(chǔ)題5、D【解析】
本題通過討論的不同取值情況,分別討論本題指數(shù)函數(shù)、對數(shù)函數(shù)的圖象和,結(jié)合選項,判斷得出正確結(jié)論.題目不難,注重重要知識、基礎(chǔ)知識、邏輯推理能力的考查.【詳解】當時,函數(shù)過定點且單調(diào)遞減,則函數(shù)過定點且單調(diào)遞增,函數(shù)過定點且單調(diào)遞減,D選項符合;當時,函數(shù)過定點且單調(diào)遞增,則函數(shù)過定點且單調(diào)遞減,函數(shù)過定點且單調(diào)遞增,各選項均不符合.綜上,選D.【點睛】易出現(xiàn)的錯誤有,一是指數(shù)函數(shù)、對數(shù)函數(shù)的圖象和性質(zhì)掌握不熟,導(dǎo)致判斷失誤;二是不能通過討論的不同取值范圍,認識函數(shù)的單調(diào)性.6、D【解析】試題分析:先求樣本中心點,利用線性回歸方程一定過樣本中心點,代入驗證,可得結(jié)論.解:先求樣本中心點,,由于線性回歸方程一定過樣本中心點,代入驗證可知y=﹣0.7x+5.25,滿足題意故選D.點評:本題考查線性回歸方程,解題的關(guān)鍵是利用線性回歸方程一定過樣本中心點,屬于基礎(chǔ)題.7、B【解析】
由落入圓內(nèi)的芝麻數(shù)占落入正方形區(qū)域內(nèi)的芝麻數(shù)的比例等于圓的面積與正方形的面積比相等,列等式求出的近似值.【詳解】邊長為的正方形內(nèi)有一內(nèi)切圓的半徑為,圓的面積為,正方形的面積為,由幾何概型的概率公式可得,得,因此,該學生得到圓周率的近似值為,故選:B.【點睛】本題考查利用隨機模擬思想求圓周率的近似值,解題的關(guān)鍵就是利用概率相等結(jié)合幾何概型的概率公式列等式求解,考查計算能力,屬于基礎(chǔ)題.8、D【解析】
算出直線的斜率后可得其傾斜角.【詳解】設(shè)直線的斜率為,且傾斜角為,則,根據(jù),而,故,故選D.【點睛】本題考查直線傾斜角的計算,屬于基礎(chǔ)題.9、D【解析】
A項,可能相交或異面,當時,存在,,故A項錯誤;B項,可能相交或垂直,當
時,存在,,故B項錯誤;C項,可能相交或垂直,當
時,存在,,故C項錯誤;D項,垂直于同一平面的兩條直線相互平行,故D項正確,故選D.本題主要考查的是對線,面關(guān)系的理解以及對空間的想象能力.考點:直線與平面、平面與平面平行的判定與性質(zhì);直線與平面、平面與平面垂直的判定與性質(zhì).10、B【解析】
根據(jù)等比數(shù)列的性質(zhì):若,則.【詳解】等比數(shù)列中,,,故選B.【點睛】本題考查等比數(shù)列的通項公式和性質(zhì),此題也可用通項公式求解.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
由遞推公式逐步求出.【詳解】.故答案為:【點睛】本題考查數(shù)列的遞推公式,屬于基礎(chǔ)題.12、【解析】
本題首先可以根據(jù)向量的運算得出,然后等式兩邊同時平方并化簡,得出,最后根據(jù)即可得出的取值范圍.【詳解】設(shè)向量與向量的夾角為,因為,所以,即,因為,所以,即,所以的取值范圍是.【點睛】本題考查向量的運算以及向量的數(shù)量積的相關(guān)性質(zhì),向量的數(shù)量積公式,考查計算能力,是簡單題.13、63【解析】
首先畫出軸截面,然后結(jié)合圓臺的性質(zhì)和軸截面整理計算即可求得最終結(jié)果.【詳解】畫出軸截面,如圖,過A作AM⊥BC于M,則BM=5-2=3(cm),AM==9(cm),所以S四邊形ABCD==63(cm2).【點睛】本題主要考查圓臺的空間結(jié)構(gòu)特征及相關(guān)元素的計算等知識,意在考查學生的轉(zhuǎn)化能力和計算求解能力.14、【解析】
計算出角的取值范圍,利用同角三角函數(shù)的平方關(guān)系計算出的值和的值,然后利用兩角差的余弦公式可計算出的值.【詳解】由題意可知,,,,則,.因此,.故答案為.【點睛】本題考查利用兩角差的余弦公式求值,同時也考查了同角三角函數(shù)的平方關(guān)系求值,解題時要明確所求角與已知角之間的關(guān)系,合理利用公式是解題的關(guān)鍵,考查運算求解能力,屬于中等題.15、45【解析】
直接利用對數(shù)的運算性質(zhì)計算即可,【詳解】.故答案為:45.【點睛】本題考查對數(shù)的運算性質(zhì),考查計算能力,屬于基礎(chǔ)題.16、【解析】
根據(jù)絕對值定義去掉絕對值符號后再解不等式.【詳解】時,原不等式可化為,,∴;時,原不等式可化為,,∴.綜上原不等式的解為.故答案為.【點睛】本題考查解絕對值不等式,解絕對值不等式的常用方法是根據(jù)絕對值定義去掉絕對值符號,然后求解.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)3所、2所;(2)①共10種;②【解析】
(1)根據(jù)分層抽樣的方法,得到分層抽樣的比例,即可求解樣本中小學與中學抽取的學校數(shù)目;(2)①3所小學分別記為;2所中學分別記為,利用列舉法,即可求得抽取的2所學校的所有結(jié)果;②利用古典概型的概率計算公式,即可求得相應(yīng)的概率.【詳解】(1)學??倲?shù)為35所,所以分層抽樣的比例為,計算各類學校應(yīng)抽取的數(shù)目為:,故從小學、中學中分別抽取的學校數(shù)目為3所、2所.(2)①3所小學分別記為;2所中學分別記為應(yīng)抽取的2所學校的所有結(jié)果為:共10種.②設(shè)“抽取的2所學校至少有一所中學”作為事件.其結(jié)果共有7種,所以概率為.【點睛】本題主要考查了分層抽樣的應(yīng)用,以及古典概型及其概率的計算,其中解答中認真審題,合理利用列舉法求得基本事件的總數(shù)是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.18、(1)證明見解析;(2)證明見解析.【解析】
(Ⅰ)利用線面平行的判定定理,只需證明EF∥PA,即可;(Ⅱ)先證明線面垂直,CD⊥平面PAD,再證明面面垂直,平面PAD⊥平面PDC
即可.【詳解】(Ⅰ)證明:連結(jié)AC,在正方形ABCD中,F(xiàn)為BD中點,正方形對角線互相平分,∴F為AC中點,又E是PC中點,在△CPA中,EF∥PA,且PA?平面PAD,EF?平面PAD,∴EF∥平面PAD.(Ⅱ)∵平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,CD⊥AD,平面∴CD⊥平面PAD,∵CD?平面PDC,∴平面PAD⊥平面PDC【點睛】本題主要考查空間直線與平面平行的判定定理,以及平面與平面垂直的判定定理,要求熟練掌握相關(guān)的判定定理.19、(1)(2)144【解析】
(1)把帶入通項式即可求出公差,從而求出通項。(2)根據(jù)(1)的結(jié)果以及等差數(shù)列前項和公式即可?!驹斀狻浚?)設(shè)公差為,則則則(2)由等差數(shù)列求和公式得則所以當時,有最大值144【點睛】本題主要考查了等差數(shù)列的通項以及等差數(shù)列的前和公式,屬于基礎(chǔ)題20、(1)(2)證明見解析;(3)或【解析】
(1)利用橢圓的定義可知曲線為的橢圓,直接寫出橢圓的方程.(2)設(shè)直線,設(shè),聯(lián)立直線方程與橢圓方程,通過韋達定理求解KOM,然后推出直線OM的斜率與的斜率的乘積為定值.(3)設(shè)直線方程是與橢圓方程聯(lián)立,根據(jù)面積公式,代入根與系數(shù)的關(guān)系,利用換元和基本不等式求最值.【詳解】(1)由題意知曲線是以原點為中心,長軸在軸上的橢圓,設(shè)其標準方程為,則有,所以,∴.(2)證明:設(shè)直線的方程為,設(shè)則由可得,即∴,∴,,,∴直線的斜率與的斜率的乘積=為定值(3)點,由可得,,解得∴設(shè)當時,取得最大值.此時,即所以直線方程是【點睛】本題考查橢圓定義及方程、韋達定理的應(yīng)用及三角形面積的范圍等問題,考查推理論證能力、運算求解能力,考查化歸與轉(zhuǎn)化思想,函數(shù)與方程思想,是中檔題.21、(1)見解析;(2);(3).【解析】
(1)通過判斷函數(shù)的單調(diào)性,求出的值域,進而可判斷在上是否為
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度農(nóng)家樂餐飲服務(wù)與食材供應(yīng)合同4篇
- 2025年度電力設(shè)施維護司機派遣服務(wù)合同4篇
- 2025年度企業(yè)員工短期培訓(xùn)費支付標準合同
- 二零二五年度新能源車輛采購配送及運營服務(wù)合同3篇
- 二零二五年度企業(yè)法律顧問提前終止服務(wù)合同協(xié)議書
- 二零二五年度城市綠化項目臨時綠化員聘用合同4篇
- 2025年度個人與企業(yè)貸款融資合作協(xié)議合同范本4篇
- 2025版門面轉(zhuǎn)讓合同范本:商業(yè)地產(chǎn)經(jīng)營權(quán)轉(zhuǎn)讓詳細協(xié)議
- 課題申報參考:南水北調(diào)中線水源區(qū)家庭農(nóng)場耕地生態(tài)保護行為形成邏輯與實現(xiàn)機制研究
- 2025年度美容院美容護理產(chǎn)品代工合同4篇
- 定額〔2025〕1號文-關(guān)于發(fā)布2018版電力建設(shè)工程概預(yù)算定額2024年度價格水平調(diào)整的通知
- 2024年城市軌道交通設(shè)備維保及安全檢查合同3篇
- 電力溝施工組織設(shè)計-電纜溝
- 【教案】+同一直線上二力的合成(教學設(shè)計)(人教版2024)八年級物理下冊
- 湖北省武漢市青山區(qū)2023-2024學年七年級上學期期末質(zhì)量檢測數(shù)學試卷(含解析)
- 單位往個人轉(zhuǎn)賬的合同(2篇)
- 電梯操作證及電梯維修人員資格(特種作業(yè))考試題及答案
- 科研倫理審查與違規(guī)處理考核試卷
- GB/T 44101-2024中國式摔跤課程學生運動能力測評規(guī)范
- 鍋爐本體安裝單位工程驗收表格
- 高危妊娠的評估和護理
評論
0/150
提交評論