版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022-2023學(xué)年高一下數(shù)學(xué)期末模擬試卷注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.已知數(shù)列滿足:,,則該數(shù)列中滿足的項(xiàng)共有()項(xiàng)A. B. C. D.2.過點(diǎn)作圓的切線,且直線與平行,則與間的距離是()A. B. C. D.3.連續(xù)擲兩次骰子,分別得到的點(diǎn)數(shù)作為點(diǎn)的坐標(biāo),則點(diǎn)落在圓內(nèi)的概率為A. B. C. D.4.已知圓柱的上、下底面的中心分別為,,過直線的平面截該圓柱所得的截面是面積為8的正方形,則該圓柱的表面積為A. B. C. D.5.已知a,,且,若對(duì),不等式恒成立,則的最大值為()A. B. C.1 D.6.對(duì)于數(shù)列,定義為數(shù)列的“好數(shù)”,已知某數(shù)列的“好數(shù)”,記數(shù)列的前項(xiàng)和為,若對(duì)任意的恒成立,則實(shí)數(shù)的取值范圍為()A. B. C. D.7.函數(shù)的值域?yàn)锳.[1,] B.[1,2] C.[,2] D.[8.直線:與圓的位置關(guān)系為()A.相離 B.相切 C.相交 D.無法確定9.如圖,PA垂直于以AB為直徑的圓所在平面,C為圓上異于A,B的任意一點(diǎn),垂足為E,點(diǎn)F是PB上一點(diǎn),則下列判斷中不正確的是()﹒A.平面PAC B. C. D.平面平面PBC10.下列函數(shù)中,值域?yàn)榈氖牵ǎ〢. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.在區(qū)間[-1,2]上隨機(jī)取一個(gè)數(shù)x,則x∈[0,1]的概率為.12._____13.已知三點(diǎn)A(1,0),B(0,),C(2,),則△ABC外接圓的圓心到原點(diǎn)的距離為________.14.函數(shù)y=sin2x+2sin2x的最小正周期T為_______.15.函數(shù)的值域?yàn)開_____.16.在中,已知,則下列四個(gè)不等式中,正確的不等式的序號(hào)為____________①②③④三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.在四棱錐中,,.(1)若點(diǎn)為的中點(diǎn),求證:平面;(2)當(dāng)平面平面時(shí),求二面角的余弦值.18.已知,,(1)求的解析式,并求出的最大值;(2)若,求的最小值和最大值,并指出取得最值時(shí)的值.19.已知向量,函數(shù),且當(dāng),時(shí),的最小值為.(1)求的值,并求的單調(diào)遞增區(qū)間;(2)先將函數(shù)的圖象上所有點(diǎn)的橫坐標(biāo)縮小到原來的倍(縱坐標(biāo)不變),再將所得圖象向右平移個(gè)單位,得到函數(shù)的圖象,求方程在區(qū)間上所有根之和.20.已知向量是夾角為的單位向量,,(1)求;(2)當(dāng)m為何值時(shí),與平行?21.定義在上的函數(shù),如果滿足:對(duì)任意,存在常數(shù),都有成立,則稱函數(shù)是上的有界函數(shù),其中稱為函數(shù)的上界.已知函數(shù).(1)當(dāng)時(shí),求函數(shù)在上的值域,并判斷函數(shù)在上是否為有界函數(shù),請(qǐng)說明理由;(2)若函數(shù)在上是以3為上界的有界函數(shù),求實(shí)數(shù)的取值范圍;(3)若,函數(shù)在上的上界是,求的解析式.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、C【解析】
利用累加法求出數(shù)列的通項(xiàng)公式,然后解不等式,得出符合條件的正整數(shù)的個(gè)數(shù),即可得出結(jié)論.【詳解】,,,解不等式,即,即,,則或.故選:C.【點(diǎn)睛】本題考查了數(shù)列不等式的求解,同時(shí)也涉及了利用累加法求數(shù)列通項(xiàng),解題的關(guān)鍵就是求出數(shù)列的通項(xiàng),考查運(yùn)算求解能力,屬于中等題.2、D【解析】由題意知點(diǎn)在圓C上,圓心坐標(biāo)為,所以,故切線的斜率為,所以切線方程為,即.因?yàn)橹本€l與直線平行,所以,解得,所以直線的方程是-4x+3y-8=0,即4x-3y+8=0.所以直線與直線l間的距離為.選D.3、B【解析】
由拋擲兩枚骰子得到點(diǎn)的坐標(biāo)共有36種,再利用列舉法求得點(diǎn)落在圓內(nèi)所包含的基本事件的個(gè)數(shù),利用古典概型的概率計(jì)算公式,即可求解.【詳解】由題意知,試驗(yàn)發(fā)生包含的事件是連續(xù)擲兩次骰子分別得到的點(diǎn)數(shù)作為點(diǎn)P的坐標(biāo),共有種結(jié)果,而滿足條件的事件是點(diǎn)P落在圓內(nèi),列舉出落在圓內(nèi)的情況:(1,1)(1,2)(1,3)(2,1)(2,2)(2,3)(3,1)(3,2),共有8種結(jié)果,根據(jù)古典概型概率公式,可得,故選B.【點(diǎn)睛】本題主要考查的是古典概型及其概率計(jì)算公式.,屬于基礎(chǔ)題.解題時(shí)要準(zhǔn)確理解題意,先要判斷該概率模型是不是古典概型,正確找出隨機(jī)事件A包含的基本事件的個(gè)數(shù)和試驗(yàn)中基本事件的總數(shù),令古典概型及其概率的計(jì)算公式求解是解答的關(guān)鍵,著重考查了分析問題和解答問題的能力,屬于基礎(chǔ)題.4、B【解析】分析:首先根據(jù)正方形的面積求得正方形的邊長(zhǎng),從而進(jìn)一步確定圓柱的底面圓半徑與圓柱的高,從而利用相關(guān)公式求得圓柱的表面積.詳解:根據(jù)題意,可得截面是邊長(zhǎng)為的正方形,結(jié)合圓柱的特征,可知該圓柱的底面為半徑是的圓,且高為,所以其表面積為,故選B.點(diǎn)睛:該題考查的是有關(guān)圓柱的表面積的求解問題,在解題的過程中,需要利用題的條件確定圓柱的相關(guān)量,即圓柱的底面圓的半徑以及圓柱的高,在求圓柱的表面積的時(shí)候,一定要注意是兩個(gè)底面圓與側(cè)面積的和.5、C【解析】
由,不等式恒成立,得,利用絕對(duì)值不等式的定理,逐步轉(zhuǎn)化,即可得到本題答案.【詳解】設(shè),對(duì),不等式恒成立的等價(jià)條件為,又表示數(shù)軸上一點(diǎn)到兩點(diǎn)的距離之和的倍,顯然當(dāng)時(shí),,則有,所以,得,從而,所以的最大值為1.故選:C.【點(diǎn)睛】本題主要考查絕對(duì)值不等式與恒成立問題的綜合應(yīng)用,較難.6、B【解析】分析:由題意首先求得的通項(xiàng)公式,然后結(jié)合等差數(shù)列的性質(zhì)得到關(guān)于k的不等式組,求解不等式組即可求得最終結(jié)果.詳解:由題意,,則,很明顯n?2時(shí),,兩式作差可得:,則an=2(n+1),對(duì)a1也成立,故an=2(n+1),則an?kn=(2?k)n+2,則數(shù)列{an?kn}為等差數(shù)列,故Sn?S6對(duì)任意的恒成立可化為:a6?6k?0,a7?7k?0;即,解得:.實(shí)數(shù)的取值范圍為.本題選擇B選項(xiàng).點(diǎn)睛:“新定義”主要是指即時(shí)定義新概念、新公式、新定理、新法則、新運(yùn)算五種,然后根據(jù)此新定義去解決問題,有時(shí)還需要用類比的方法去理解新的定義,這樣有助于對(duì)新定義的透徹理解.對(duì)于此題中的新概念,對(duì)閱讀理解能力有一定的要求.但是,透過現(xiàn)象看本質(zhì),它們考查的還是基礎(chǔ)數(shù)學(xué)知識(shí),所以說“新題”不一定是“難題”,掌握好三基,以不變應(yīng)萬變才是制勝法寶.7、D【解析】
因?yàn)楹瘮?shù),平方求出的取值范圍,再根據(jù)函數(shù)的性質(zhì)求出的值域.【詳解】函數(shù)定義域?yàn)椋?,因?yàn)椋?,所以的值域?yàn)?故選D.【點(diǎn)睛】本題考查函數(shù)的值域,此題也可用三角換元求解.求函數(shù)值域常用方法:?jiǎn)握{(diào)性法,換元法,判別式法,反函數(shù)法,幾何法,平方法等.8、C【解析】
求出圓的圓心坐標(biāo)和半徑,然后運(yùn)用點(diǎn)到直線距離求出的值和半徑進(jìn)行比較,判定出直線與圓的關(guān)系.【詳解】因?yàn)閳A,所以圓心,半徑,所以圓心到直線的距離為,則直線與圓相交.故選【點(diǎn)睛】本題考查了直線與圓的位置關(guān)系,運(yùn)用點(diǎn)到直線的距離公式求出和半徑比較,得到直線與圓的位置關(guān)系.9、C【解析】
根據(jù)線面垂直的性質(zhì)及判定,可判斷ABC選項(xiàng),由面面垂直的判定可判斷D.【詳解】對(duì)于A,PA垂直于以AB為直徑的圓所在平面,而底面圓面,則,又由圓的性質(zhì)可知,且,則平面PAC.所以A正確;對(duì)于B,由A可知,由題意可知,且,所以平面,而平面,所以,所以B正確;對(duì)于C,由B可知平面,因而與平面不垂直,所以不成立,所以C錯(cuò)誤.對(duì)于D,由A、B可知,平面PAC,平面,由面面垂直的性質(zhì)可得平面平面PBC.所以D正確;綜上可知,C為錯(cuò)誤選項(xiàng).故選:C.【點(diǎn)睛】本題考查了線面垂直的性質(zhì)及判定,面面垂直的判定定理,屬于基礎(chǔ)題.10、B【解析】
依次判斷各個(gè)函數(shù)的值域,從而得到結(jié)果.【詳解】選項(xiàng):值域?yàn)椋e(cuò)誤選項(xiàng):值域?yàn)?,正確選項(xiàng):值域?yàn)?,錯(cuò)誤選項(xiàng):值域?yàn)椋e(cuò)誤本題正確選項(xiàng):【點(diǎn)睛】本題考查初等函數(shù)的值域問題,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
直接利用長(zhǎng)度型幾何概型求解即可.【詳解】因?yàn)閰^(qū)間總長(zhǎng)度為,符合條件的區(qū)間長(zhǎng)度為,所以,由幾何概型概率公式可得,在區(qū)間[-1,2]上隨機(jī)取一個(gè)數(shù)x,則x∈[0,1]的概率為,故答案為:.【點(diǎn)睛】解決幾何概型問題常見類型有:長(zhǎng)度型、角度型、面積型、體積型,求與長(zhǎng)度有關(guān)的幾何概型問題關(guān)鍵是計(jì)算問題的總長(zhǎng)度以及事件的長(zhǎng)度.12、【解析】
將寫成,切化弦后,利用兩角和差余弦公式可將原式化為,利用二倍角公式可變?yōu)?,由可化?jiǎn)求得結(jié)果.【詳解】本題正確結(jié)果:【點(diǎn)睛】本題考查利用三角恒等變換公式進(jìn)行化簡(jiǎn)求值的問題,涉及到兩角和差余弦公式、二倍角公式的應(yīng)用.13、【解析】
求出的垂直平分線方程,兩垂直平分線交點(diǎn)為外接圓圓心.再由兩點(diǎn)間距離公式計(jì)算.【詳解】由點(diǎn)B(0,),C(2,),得線段BC的垂直平分線方程為x=1,①由點(diǎn)A(1,0),B(0,),得線段AB的垂直平分線方程為②聯(lián)立①②,解得△ABC外接圓的圓心坐標(biāo)為,其到原點(diǎn)的距離為.故答案為:【點(diǎn)睛】本題考查三角形外接圓圓心坐標(biāo),外心是三角形三條邊的中垂線的交點(diǎn),到三頂點(diǎn)距離相等.14、【解析】考點(diǎn):此題主要考查三角函數(shù)的概念、化簡(jiǎn)、性質(zhì),考查運(yùn)算能力.15、【解析】
由反三角函數(shù)的性質(zhì)得到,即可求得函數(shù)的值域.【詳解】由,則,,又,,即,函數(shù)的值域?yàn)?故答案:.【點(diǎn)睛】本題考查反三角函數(shù)的性質(zhì)及其應(yīng)用,屬于基礎(chǔ)題.16、②③【解析】
根據(jù),分當(dāng)和兩種情況分類討論,每一類中利用正、余弦函數(shù)的單調(diào)性判斷,特別注意,當(dāng)時(shí),.【詳解】當(dāng)時(shí),在上是增函數(shù),因?yàn)椋?,因?yàn)樵谏鲜菧p函數(shù),且,所以,當(dāng)時(shí),且,因?yàn)樵谏鲜菧p函數(shù),所以,而,所以.故答案為:②③【點(diǎn)睛】本題主要考查了正弦函數(shù)與余弦函數(shù)的單調(diào)性在三角形中的應(yīng)用,還考查了運(yùn)算求解的能力,屬于中檔題.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2).【解析】
(I)結(jié)合平面與平面平行判定,得到平面BEM平行平面PAD,結(jié)合平面與平面性質(zhì),證明結(jié)論.(II)建立空間坐標(biāo)系,分別計(jì)算平面PCD和平面PDB的法向量,結(jié)合向量數(shù)量積公式,計(jì)算余弦值,即可.【詳解】(Ⅰ)取的中點(diǎn)為,連結(jié),.由已知得,為等邊三角形,.∵,,∴,∴,∴.又∵平面,平面,∴∥平面.∵為的中點(diǎn),為的中點(diǎn),∴∥.又∵平面,平面,∴∥平面.∵,∴平面∥平面.∵平面,∴∥平面.(Ⅱ)連結(jié),交于點(diǎn),連結(jié),由對(duì)稱性知,為的中點(diǎn),且,.∵平面平面,,∴平面,,.以為坐標(biāo)原點(diǎn),的方向?yàn)檩S正方向,建立空間直角坐標(biāo)系.則(0,,0),(3,0,0),(0,0,1).易知平面的一個(gè)法向量為.設(shè)平面的法向量為,則,,∴,∵,,∴.令,得,∴,∴.設(shè)二面角的大小為,則.【點(diǎn)睛】本道題考查了平面與平面平行判定和性質(zhì),考查了空間向量數(shù)量積公式,關(guān)鍵建立空間坐標(biāo)系,難度偏難.18、(1),最大值為.(2)時(shí),最小值0.時(shí),最大值.【解析】
(1)利用數(shù)量積公式、倍角公式和輔助角公式,化簡(jiǎn),再利用三角函數(shù)的有界性,即可得答案;(2)利用整體法求出,再利用三角函數(shù)線,即可得答案.【詳解】(1)∴,的最大值為.(2)由(1)得,∵,.,當(dāng)時(shí),即時(shí),取最小值0.當(dāng),即時(shí),取最大值.【點(diǎn)睛】本題考查向量數(shù)量積、二倍角公式、輔助角公式、三角函數(shù)的性質(zhì),考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運(yùn)算求解能力,求解時(shí)注意整體法的應(yīng)用.19、(1),;(2).【解析】
(1)運(yùn)用向量的數(shù)量積運(yùn)算和輔助角公式化簡(jiǎn),求解和求其單調(diào)區(qū)間;(2)根據(jù)圖像的平移和函數(shù)的對(duì)稱軸求解.【詳解】(1)函數(shù),得.即,由題意得,得所以,函數(shù)的單調(diào)增區(qū)間為.(2)由題意,,又,得解得:或即或或故所有根之和為.【點(diǎn)睛】本題考查正弦型函數(shù)的值域、單調(diào)性和對(duì)稱性,屬于基礎(chǔ)題.20、(1)1;(2)﹣6【解析】
(1)利用單位向量的定義,直接運(yùn)算即可;(2)利用,有,得出,然后列方程求解即可【詳解】解:(1);(2)當(dāng),則存在實(shí)數(shù)使,所以不共線,得,【點(diǎn)睛】本題考查向量平行的定義,注意列方程運(yùn)算即可,屬于簡(jiǎn)單題21、(1)見解析;(2);(3).【解析】
(1)通過判斷函數(shù)的單調(diào)性,求出的值域,進(jìn)而可判斷在上是否為有
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 廣東科學(xué)技術(shù)職業(yè)學(xué)院《民航英語(yǔ)》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東酒店管理職業(yè)技術(shù)學(xué)院《現(xiàn)場(chǎng)總線控制技術(shù)》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東金融學(xué)院《家用電器設(shè)計(jì)》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東工業(yè)大學(xué)《反應(yīng)工程概論》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東東軟學(xué)院《技術(shù)經(jīng)濟(jì)分析與生產(chǎn)管理》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東創(chuàng)新科技職業(yè)學(xué)院《第二外語(yǔ)日語(yǔ)(二)》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東白云學(xué)院《科學(xué)技術(shù)與工程倫理》2023-2024學(xué)年第一學(xué)期期末試卷
- 贛南師范大學(xué)科技學(xué)院《中國(guó)當(dāng)代文學(xué)(2)》2023-2024學(xué)年第一學(xué)期期末試卷
- 贛州師范高等??茖W(xué)?!队袡C(jī)寶石學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 甘孜職業(yè)學(xué)院《生物技術(shù)綜合性實(shí)驗(yàn)?zāi)K》2023-2024學(xué)年第一學(xué)期期末試卷
- 《旅游大數(shù)據(jù)》-課程教學(xué)大綱
- 工藝以及質(zhì)量保證措施,工程實(shí)施的重點(diǎn)、難點(diǎn)分析和解決方案
- 2024至2030年中國(guó)購(gòu)物商場(chǎng)行業(yè)市場(chǎng)深度調(diào)查與投資發(fā)展研究報(bào)告
- 期末測(cè)試(試題)2023-2024學(xué)年五年級(jí)上冊(cè)數(shù)學(xué)人教版
- 七年級(jí)上冊(cè)道德與法治第1-4單元共4個(gè)單元復(fù)習(xí)教學(xué)設(shè)計(jì)
- SY-T 5412-2023 下套管作業(yè)規(guī)程
- 《天然藥物學(xué)基礎(chǔ)》復(fù)習(xí)考試題庫(kù)(帶答案)
- 四色安全風(fēng)險(xiǎn)空間分布圖設(shè)計(jì)原則和要求
- 八年級(jí)化學(xué)下冊(cè)期末試卷及答案【完整版】
- 德國(guó)高等工程教育認(rèn)證制度研究
- 合伙人散伙分家協(xié)議書范文
評(píng)論
0/150
提交評(píng)論