北京市八十中2022-2023學年高一數(shù)學第二學期期末復習檢測模擬試題含解析_第1頁
北京市八十中2022-2023學年高一數(shù)學第二學期期末復習檢測模擬試題含解析_第2頁
北京市八十中2022-2023學年高一數(shù)學第二學期期末復習檢測模擬試題含解析_第3頁
北京市八十中2022-2023學年高一數(shù)學第二學期期末復習檢測模擬試題含解析_第4頁
北京市八十中2022-2023學年高一數(shù)學第二學期期末復習檢測模擬試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年高一下數(shù)學期末模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.把一個已知圓錐截成個圓臺和一個小圓錐,已知圓臺的上、下底面半徑之比為,母線長為,則己知圓錐的母線長為().A. B. C. D.2.已知點、、在圓上運動,且,若點的坐標為,的最大值為()A. B. C. D.3.已知數(shù)列且是首項為2,公差為1的等差數(shù)列,若數(shù)列是遞增數(shù)列,且滿足,則實數(shù)a的取值范圍是()A. B.C. D.4.從裝有紅球和綠球的口袋內(nèi)任取2個球(其中紅球和綠球都多于2個),那么互斥而不對立的兩個事件是()A.至少有一個紅球,至少有一個綠球B.恰有一個紅球,恰有兩個綠球C.至少有一個紅球,都是紅球D.至少有一個紅球,都是綠球5.己知向量,.若,則m的值為()A. B.4 C.- D.-46.要得到函數(shù)的圖象,只需將函數(shù)的圖象A.向左平移個單位長度B.向右平移個單位長度C.向左平移個單位長度D.向右平移個單位長度7.如圖,為了測量山坡上燈塔的高度,某人從高為的樓的底部處和樓頂處分別測得仰角為,,若山坡高為,則燈塔高度是()A. B. C. D.8.點、、、在同一個球的球面上,,.若四面體的體積的最大值為,則這個球的表面積為()A. B. C. D.9.要得到函數(shù)的圖像,只需要將函數(shù)的圖像()A.向右平移個長度單位 B.向左平移個長度單位C.向右平移個長度單位 D.向左平移個長度單位10.設函數(shù)是定義在上的奇函數(shù),當時,,則()A.-4 B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.一個公司共有240名員工,下設一些部門,要采用分層抽樣方法從全體員工中抽取一個容量為20的樣本.已知某部門有60名員工,那么從這一部門抽取的員工人數(shù)是.12.已知向量a=1,2,b=2,-2,c=13.已知平面向量,若,則________14.在區(qū)間[-1,2]上隨機取一個數(shù)x,則x∈[0,1]的概率為.15.若直線l1:ax+3y+1=0與l2:2x+(a+1)y+1=0互相平行,則a的值為________.16.把二進制數(shù)化為十進制數(shù)是:______.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知,函數(shù),,(1)證明:是奇函數(shù);(2)如果方程只有一個實數(shù)解,求a的值.18.已知函數(shù).(1)解關于的不等式;(2)若關于的不等式的解集為,求實數(shù)的值.19.的內(nèi)角A,B,C的對邊分別為a,b,c,已知(1)求A;(2)若A為銳角,,的面積為,求的周長.20.各項均不相等的等差數(shù)列前項和為,已知,且成等比數(shù)列.(1)求數(shù)列的通項公式;(2)令,求數(shù)列的前項和.21.在中,角的對邊分別為.若.(1)求;(2)求的面積的最大值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】

設圓錐的母線長為,根據(jù)圓錐的軸截面三角形的相似性,通過圓臺的上、下底面半徑之比為來求解.【詳解】設圓錐的母線長為,因為圓臺的上、下底面半徑之比為,所以,解得.故選:B【點睛】本題主要考查了旋轉(zhuǎn)體軸截面中的比例關系,還考查了運算求解的能力,屬于基礎題.2、C【解析】

由題意可知為圓的一條直徑,由平面向量加法的平行四邊形法則可得(為坐標原點),然后利用平面向量模的三角不等式以及圓的幾何性質(zhì)可得出的最大值.【詳解】如下圖所示:,為圓的一條直徑,由平面向量加法的平行四邊形法則可得(為坐標原點),由平面向量模的三角不等式可得,當且僅當點的坐標為時,等號成立,因此,的最大值為.故選:C.【點睛】本題考查向量模的最值問題,涉及平面向量模的三角不等式以及圓的幾何性質(zhì)的應用,考查數(shù)形結合思想的應用,屬于中等題.3、D【解析】

根據(jù)等差數(shù)列和等比數(shù)列的定義可確定是以為首項,為公比的等比數(shù)列,根據(jù)等比數(shù)列通項公式,進而求得;由數(shù)列的單調(diào)性可知;分別在和兩種情況下討論可得的取值范圍.【詳解】由題意得:,,是以為首項,為公比的等比數(shù)列為遞增數(shù)列,即①當時,,,即只需即可滿足②當時,,,即只需即可滿足綜上所述:實數(shù)的取值范圍為故選:【點睛】本題考查根據(jù)數(shù)列的單調(diào)性求解參數(shù)范圍的問題,涉及到等差和等比數(shù)列定義的應用、等比數(shù)列通項公式的求解、對數(shù)運算法則的應用等知識;解題關鍵是能夠根據(jù)單調(diào)性得到關于變量和的關系式,進而通過分離變量的方式將問題轉(zhuǎn)化為變量與關于的式子的最值的大小關系問題.4、B【解析】由于從口袋中任取2個球有三個事件,恰有一個紅球,恰有兩個綠球,一紅球和一綠球.所以恰有一個紅球,恰有兩個綠球是互斥而不對立的兩個事件.因而應選B.5、B【解析】

根據(jù)兩個向量垂直的坐標表示列方程,解方程求得的值.【詳解】依題意,由于,所以,解得.故選B.【點睛】本小題主要考查兩個向量垂直的坐標表示,考查向量減法的坐標運算,屬于基礎題.6、D【解析】

先將化為,根據(jù)函數(shù)圖像的平移原則,即可得出結果.【詳解】因為,所以只需將的圖象向右平移個單位.【點睛】本題主要考查三角函數(shù)的平移,熟記函數(shù)平移原則即可,屬于基礎題型.7、B【解析】

過點作于點,過點作于點,在中由正弦定理求得,在中求得,從而求得燈塔的高度.【詳解】過點作于點,過點作于點,如圖所示,在中,由正弦定理得,,即,,在中,,又山高為,則燈塔的高度是.故選.【點睛】本題考查了解三角形的應用和正弦定理,考查了轉(zhuǎn)化思想,屬中檔題.8、D【解析】

根據(jù)幾何體的特征,小圓的圓心為,若四面體的體積取最大值,由于底面積不變,高最大時體積最大,可得與面垂直時體積最大,從而求出球的半徑,即可求出球的表面積.【詳解】根據(jù)題意知,、、三點均在球心的表面上,且,,,則的外接圓半徑為,的面積為,小圓的圓心為,若四面體的體積取最大值,由于底面積不變,高最大時體積最大,所以,當與面垂直時體積最大,最大值為,,設球的半徑為,則在直角中,,即,解得,因此,球的表面積為.故選:D.【點睛】本題考查的知識點是球內(nèi)接多面體,球的表面積,其中分析出何時四面體體積取最大值,是解答的關鍵.9、D【解析】

根據(jù)的圖像變換規(guī)律求解即可【詳解】設平移量為,則由,滿足:,故由向左平移個長度單位可得到故選:D【點睛】本題考查函數(shù)的圖像變換規(guī)律,屬于基礎題10、A【解析】

由奇函數(shù)的性質(zhì)可得:即可求出【詳解】因為是定義在上的奇函數(shù),所以又因為當時,,所以,所以,選A.【點睛】本題主要考查了函數(shù)的性質(zhì)中的奇偶性。其中奇函數(shù)主要有以下幾點性質(zhì):1、圖形關于原點對稱。2、在定義域上滿足。3、若定義域包含0,一定有。二、填空題:本大題共6小題,每小題5分,共30分。11、5【解析】設一部門抽取的員工人數(shù)為x,則.12、1【解析】

由兩向量共線的坐標關系計算即可.【詳解】由題可得2∵c//∴4λ-2=0故答案為1【點睛】本題主要考查向量的坐標運算,以及兩向量共線的坐標關系,屬于基礎題.13、1【解析】

根據(jù)即可得出,解出即可.【詳解】∵;∴;解得,故答案為1.【點睛】本題主要考查向量坐標的概念,以及平行向量的坐標關系,屬于基礎題.14、【解析】

直接利用長度型幾何概型求解即可.【詳解】因為區(qū)間總長度為,符合條件的區(qū)間長度為,所以,由幾何概型概率公式可得,在區(qū)間[-1,2]上隨機取一個數(shù)x,則x∈[0,1]的概率為,故答案為:.【點睛】解決幾何概型問題常見類型有:長度型、角度型、面積型、體積型,求與長度有關的幾何概型問題關鍵是計算問題的總長度以及事件的長度.15、-3【解析】試題分析:由兩直線平行可得:,經(jīng)檢驗可知時兩直線重合,所以.考點:直線平行的判定.16、51【解析】110011(2)三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(1)1【解析】

(1)運用函數(shù)的奇偶性的定義即可得證(1)由題意可得有且只有兩個相等的實根,可得判別式為0,解方程可得所求值.【詳解】(1)證明:由函數(shù),,可得定義域為,且,可得為奇函數(shù);(1)方程只有一個實數(shù)解,即為,即△,解得舍去),則的值為1.【點睛】本題考查函數(shù)的奇偶性的判斷和二次方程有解的條件,考查方程思想和定義法,屬于基礎題.18、(1)①當時,不等式的解集為;②當時,由,則不等式的解集為;③當時,由,則不等式的解集為;(2)【解析】

(1)不等式,可化為,分三種情況討論,分別利用一元二次不等式的解法求解即可;(2)不等可化為,根據(jù)1和4是方程的兩根,利用韋達定理列方程求解即可.【詳解】(1)不等式,可化為:.①當時,不等式的解集為;②當時,由,則不等式的解集為;③當時,由,則不等式的解集為;(2)不等可化為:.由不等式的解集為可知,1和4是方程的兩根.故有,解得.由時方程為的根為1或4,則實數(shù)的值為1.【點睛】本題主要考查一元二次不等式的解法以及分類討論思想的應用,屬于中檔題..分類討論思想的常見類型

,⑴問題中的變量或含有需討論的參數(shù)的,要進行分類討論的;

⑵問題中的條件是分類給出的;

⑶解題過程不能統(tǒng)一敘述,必須分類討論的;

⑷涉及幾何問題時,由幾何元素的形狀、位置的變化需要分類討論的.19、(1)或;(2).【解析】

(1)由正弦定理將邊化為對應角的正弦值,即可求出結果;(2)由余弦定理和三角形的面積公式聯(lián)立,即可求出結果.【詳解】(I)由正弦定理得,,即又,或.(II),由余弦定理得,即,而的面積為.的周長為5+.【點睛】本題主要考查正弦定理和余弦定理解三角形,屬于基礎題型.20、(1);(2)【解析】

(1)利用等差數(shù)列的通項公式和等比數(shù)列的性質(zhì),可得,則可得通項公式.(2)根據(jù)(1)的結論可得,然后利用裂項相消求和,可得結果.【詳解】(1)因為各項均不相等,所以公差由等差數(shù)列通項公式且,所以,又成等比數(shù)列,所以,則,化簡得

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論