![高中數(shù)學(xué)總復(fù)習(xí)之基礎(chǔ)知識(shí)要點(diǎn)10-知識(shí)要點(diǎn):高三數(shù)總總復(fù)習(xí)-排列組合_第1頁](http://file4.renrendoc.com/view/acb6cac510f7eea7cbf47bd04f3ace2f/acb6cac510f7eea7cbf47bd04f3ace2f1.gif)
![高中數(shù)學(xué)總復(fù)習(xí)之基礎(chǔ)知識(shí)要點(diǎn)10-知識(shí)要點(diǎn):高三數(shù)總總復(fù)習(xí)-排列組合_第2頁](http://file4.renrendoc.com/view/acb6cac510f7eea7cbf47bd04f3ace2f/acb6cac510f7eea7cbf47bd04f3ace2f2.gif)
![高中數(shù)學(xué)總復(fù)習(xí)之基礎(chǔ)知識(shí)要點(diǎn)10-知識(shí)要點(diǎn):高三數(shù)總總復(fù)習(xí)-排列組合_第3頁](http://file4.renrendoc.com/view/acb6cac510f7eea7cbf47bd04f3ace2f/acb6cac510f7eea7cbf47bd04f3ace2f3.gif)
![高中數(shù)學(xué)總復(fù)習(xí)之基礎(chǔ)知識(shí)要點(diǎn)10-知識(shí)要點(diǎn):高三數(shù)總總復(fù)習(xí)-排列組合_第4頁](http://file4.renrendoc.com/view/acb6cac510f7eea7cbf47bd04f3ace2f/acb6cac510f7eea7cbf47bd04f3ace2f4.gif)
![高中數(shù)學(xué)總復(fù)習(xí)之基礎(chǔ)知識(shí)要點(diǎn)10-知識(shí)要點(diǎn):高三數(shù)總總復(fù)習(xí)-排列組合_第5頁](http://file4.renrendoc.com/view/acb6cac510f7eea7cbf47bd04f3ace2f/acb6cac510f7eea7cbf47bd04f3ace2f5.gif)
下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
高考復(fù)習(xí)科目:數(shù)學(xué)高中數(shù)學(xué)總復(fù)習(xí)(九)復(fù)習(xí)內(nèi)容:高中數(shù)學(xué)第十章-排列組合復(fù)習(xí)范圍:第十章編寫時(shí)間:修訂時(shí)間:總計(jì)第三次一、兩個(gè)原理.1.乘法原理、加法原理.2.可以有重復(fù)元素的排列.從m個(gè)不同元素中,每次取出n個(gè)元素,元素可以重復(fù)出現(xiàn),按照一定的順序排成一排,那么第一、第二……第n位上選取元素的方法都是m個(gè),所以從m個(gè)不同元素中,每次取出n個(gè)元素可重復(fù)排列數(shù)m·m·…m=mn..例如:n件物品放入m個(gè)抽屜中,不限放法,共有多少種不同放法?(解:種)二、排列.1.=1\*GB2⑴對(duì)排列定義的理解.定義:從n個(gè)不同的元素中任取m(m≤n)個(gè)元素,按照一定順序排成一列,叫做從n個(gè)不同元素中取出m個(gè)元素的一個(gè)排列.=2\*GB2⑵相同排列.如果;兩個(gè)排列相同,不僅這兩個(gè)排列的元素必須完全相同,而且排列的順序也必須完全相同.=3\*GB2⑶排列數(shù).從n個(gè)不同元素中取出m(m≤n)個(gè)元素排成一列,稱為從n個(gè)不同元素中取出m個(gè)元素的一個(gè)排列.從n個(gè)不同元素中取出m個(gè)元素的一個(gè)排列數(shù),用符號(hào)表示.=4\*GB2⑷排列數(shù)公式:注意:規(guī)定0!=1規(guī)定2.含有可重元素的排列問題.對(duì)含有相同元素求排列個(gè)數(shù)的方法是:設(shè)重集S有k個(gè)不同元素a1,a2,…...an其中限重復(fù)數(shù)為n1、n2……nk,且n=n1+n2+……nk,則S的排列個(gè)數(shù)等于.例如:已知數(shù)字3、2、2,求其排列個(gè)數(shù)又例如:數(shù)字5、5、5、求其排列個(gè)數(shù)?其排列個(gè)數(shù).三、組合.1.=1\*GB2⑴組合:從n個(gè)不同的元素中任取m(m≤n)個(gè)元素并成一組,叫做從n個(gè)不同元素中取出m個(gè)元素的一個(gè)組合.=2\*GB2⑵組合數(shù)公式:=3\*GB2⑶兩個(gè)公式:①②①從n個(gè)不同元素中取出m個(gè)元素后就剩下n-m個(gè)元素,因此從n個(gè)不同元素中取出n-m個(gè)元素的方法是一一對(duì)應(yīng)的,因此是一樣多的就是說從n個(gè)不同元素中取出n-m個(gè)元素的唯一的一個(gè)組合.(或者從n+1個(gè)編號(hào)不同的小球中,n個(gè)白球一個(gè)紅球,任取m個(gè)不同小球其不同選法,分二類,一類是含紅球選法有一類是不含紅球的選法有)②根據(jù)組合定義與加法原理得;在確定n+1個(gè)不同元素中取m個(gè)元素方法時(shí),對(duì)于某一元素,只存在取與不取兩種可能,如果取這一元素,則需從剩下的n個(gè)元素中再取m-1個(gè)元素,所以有C,如果不取這一元素,則需從剩余n個(gè)元素中取出m個(gè)元素,所以共有C種,依分類原理有.=4\*GB2⑷排列與組合的聯(lián)系與區(qū)別.聯(lián)系:都是從n個(gè)不同元素中取出m個(gè)元素.區(qū)別:前者是“排成一排”,后者是“并成一組”,前者有順序關(guān)系,后者無順序關(guān)系.=5\*GB2⑸=1\*GB3①幾個(gè)常用組合數(shù)公式=2\*GB3②常用的證明組合等式方法例.=1\*romani.裂項(xiàng)求和法.如:(利用)=2\*romanii.導(dǎo)數(shù)法.=3\*romaniii.數(shù)學(xué)歸納法.=4\*romaniv.倒序求和法.=5\*romanv.遞推法(即用遞推)如:.=6\*romanvi.構(gòu)造二項(xiàng)式.如:證明:這里構(gòu)造二項(xiàng)式其中的系數(shù),左邊為,而右邊四、排列、組合綜合.1.=1\*ROMANI.排列、組合問題幾大解題方法及題型:=1\*GB3①直接法.=2\*GB3②排除法.=3\*GB3③捆綁法:在特定要求的條件下,將幾個(gè)相關(guān)元素當(dāng)作一個(gè)元素來考慮,待整體排好之后再考慮它們“局部”的排列.它主要用于解決“元素相鄰問題”,例如,一般地,n個(gè)不同元素排成一列,要求其中某個(gè)元素必相鄰的排列有個(gè).其中是一個(gè)“整體排列”,而則是“局部排列”.又例如①有n個(gè)不同座位,A、B兩個(gè)不能相鄰,則有排列法種數(shù)為.②有n件不同商品,若其中A、B排在一起有.③有n件不同商品,若其中有二件要排在一起有.注:①③區(qū)別在于①是確定的座位,有種;而③的商品地位相同,是從n件不同商品任取的2個(gè),有不確定性.=4\*GB3④插空法:先把一般元素排列好,然后把待定元素插排在它們之間或兩端的空檔中,此法主要解決“元素不相鄰問題”.例如:n個(gè)元素全排列,其中m個(gè)元素互不相鄰,不同的排法種數(shù)為多少?(插空法),當(dāng)n–m+1≥m,即m≤時(shí)有意義.=5\*GB3⑤占位法:從元素的特殊性上講,對(duì)問題中的特殊元素應(yīng)優(yōu)先排列,然后再排其他一般元素;從位置的特殊性上講,對(duì)問題中的特殊位置應(yīng)優(yōu)先考慮,然后再排其他剩余位置.即采用“先特殊后一般”的解題原則.=6\*GB3⑥調(diào)序法:當(dāng)某些元素次序一定時(shí),可用此法.解題方法是:先將n個(gè)元素進(jìn)行全排列有種,個(gè)元素的全排列有種,由于要求m個(gè)元素次序一定,因此只能取其中的某一種排法,可以利用除法起到去調(diào)序的作用,即若n個(gè)元素排成一列,其中m個(gè)元素次序一定,共有種排列方法.例如:n個(gè)元素全排列,其中m個(gè)元素順序不變,共有多少種不同的排法?解法一:(逐步插空法)(m+1)(m+2)…n=n!/m!;解法二:(比例分配法).=7\*GB3⑦平均法:若把kn個(gè)不同元素平均分成k組,每組n個(gè),共有.例如:從1,2,3,4中任取2個(gè)元素將其平均分成2組有幾種分法?有(平均分組就用不著管組與組之間的順序問題了)又例如將200名運(yùn)動(dòng)員平均分成兩組,其中兩名種子選手必在一組的概率是多少?()注意:分組與插空綜合.例如:n個(gè)元素全排列,其中某m個(gè)元素互不相鄰且順序不變,共有多少種排法?有,當(dāng)n–m+1≥m,即m≤時(shí)有意義.=8\*GB3⑧隔板法:常用于解正整數(shù)解組數(shù)的問題.例如:的正整數(shù)解的組數(shù)就可建立組合模型將12個(gè)完全相同的球排成一列,在它們之間形成11個(gè)空隙中任選三個(gè)插入3塊摸板,把球分成4個(gè)組.每一種方法所得球的數(shù)目依次為顯然,故()是方程的一組解.反之,方程的任何一組解,對(duì)應(yīng)著惟一的一種在12個(gè)球之間插入隔板的方式(如圖所示)故方程的解和插板的方法一一對(duì)應(yīng).即方程的解的組數(shù)等于插隔板的方法數(shù).注意:若為非負(fù)數(shù)解的x個(gè)數(shù),即用中等于,有,進(jìn)而轉(zhuǎn)化為求a的正整數(shù)解的個(gè)數(shù)為.⑨定位問題:從n個(gè)不同元素中每次取出k個(gè)不同元素作排列規(guī)定某r個(gè)元素都包含在內(nèi),并且都排在某r個(gè)指定位置則有.例如:從n個(gè)不同元素中,每次取出m個(gè)元素的排列,其中某個(gè)元素必須固定在(或不固定在)某一位置上,共有多少種排法?固定在某一位置上:;不在某一位置上:或(一類是不取出特殊元素a,有,一類是取特殊元素a,有從m-1個(gè)位置取一個(gè)位置,然后再從n-1個(gè)元素中取m-1,這與用插空法解決是一樣的)=10\*GB3⑩指定元素排列組合問題.=1\*romani.從n個(gè)不同元素中每次取出k個(gè)不同的元素作排列(或組合),規(guī)定某r個(gè)元素都包含在內(nèi)。先C后A策略,排列;組合.=2\*romanii.從n個(gè)不同元素中每次取出k個(gè)不同元素作排列(或組合),規(guī)定某r個(gè)元素都不包含在內(nèi)。先C后A策略,排列;組合.=3\*romaniii從n個(gè)不同元素中每次取出k個(gè)不同元素作排列(或組合),規(guī)定每個(gè)排列(或組合)都只包含某r個(gè)元素中的s個(gè)元素。先C后A策略,排列;組合.=2\*ROMANII.排列組合常見解題策略:=1\*GB3①特殊元素優(yōu)先安排策略;=2\*GB3②合理分類與準(zhǔn)確分步策略;=3\*GB3③排列、組合混合問題先選后排的策略(處理排列組合綜合性問題一般是先選元素,后排列);=4\*GB3④正難則反,等價(jià)轉(zhuǎn)化策略;=5\*GB3⑤相鄰問題插空處理策略;=6\*GB3⑥不相鄰問題插空處理策略;=7\*GB3⑦定序問題除法處理策略;=8\*GB3⑧分排問題直排處理的策略;=9\*GB3⑨“小集團(tuán)”排列問題中先整體后局部的策略;=10\*GB3⑩構(gòu)造模型的策略.2.組合問題中分組問題和分配問題.①均勻不編號(hào)分組:將n個(gè)不同元素分成不編號(hào)的m組,假定其中r組元素個(gè)數(shù)相等,不管是否分盡,其分法種數(shù)為(其中A為非均勻不編號(hào)分組中分法數(shù)).如果再有K組均勻分組應(yīng)再除以.例:10人分成三組,各組元素個(gè)數(shù)為2、4、4,其分法種數(shù)為.若分成六組,各組人數(shù)分別為1、1、2、2、2、2,其分法種數(shù)為②非均勻編號(hào)分組:n個(gè)不同元素分組,各組元素?cái)?shù)目均不相等,且考慮各組間的順序,其分法種數(shù)為例:10人分成三組,各組人數(shù)分別為2、3、5,去參加不同的勞動(dòng),其安排方法為:種.若從10人中選9人分成三組,人數(shù)分別為2、3、4,參加不同的勞動(dòng),則安排方法有種③均勻編號(hào)分組:n個(gè)不同元素分成m組,其中r組元素個(gè)數(shù)相同且考慮各組間的順序,其分法種數(shù)為.例:10人分成三組,人數(shù)分別為2、4、4,參加三種不同勞動(dòng),分法種數(shù)為=4\*GB3④非均勻不編號(hào)分組:將n個(gè)不同元素分成不編號(hào)的m組,每組元素?cái)?shù)目均不相同,且不考慮各組間順序,不管是否分盡,其分法種數(shù)為…例:10人分成三組,每組人數(shù)分別為2、3、5,其分法種數(shù)為若從10人中選出6人分成三組,各組人數(shù)分別為1、2、3,其分法種數(shù)為.五、二項(xiàng)式定理.1.=1\*GB2⑴二項(xiàng)式定理:.展開式具有以下特點(diǎn):項(xiàng)數(shù):共有項(xiàng);系數(shù):依次為組合數(shù)每一項(xiàng)的次數(shù)是一樣的,即為n次,展開式依a的降幕排列,b的升幕排列展開.=2\*GB2⑵二項(xiàng)展開式的通項(xiàng).展開式中的第項(xiàng)為:.=3\*GB2⑶二項(xiàng)式系數(shù)的性質(zhì).①在二項(xiàng)展開式中與首未兩項(xiàng)“等距離”的兩項(xiàng)的二項(xiàng)式系數(shù)相等;②二項(xiàng)展開式的中間項(xiàng)二項(xiàng)式系數(shù)最大.=1\*ROMANI.當(dāng)n是偶數(shù)時(shí),中間項(xiàng)是第項(xiàng),它的二項(xiàng)式系數(shù)最大;=2\*ROMANII.當(dāng)n是奇數(shù)時(shí),中間項(xiàng)為兩項(xiàng),即第項(xiàng)和第項(xiàng),它們的二項(xiàng)式系數(shù)最大.=3\*GB3③系數(shù)和:附:一般來說為常
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年中國光纖光柵式溫度在線監(jiān)測(cè)系統(tǒng)市場(chǎng)調(diào)查研究報(bào)告
- 2025至2031年中國非可視對(duì)講門鈴行業(yè)投資前景及策略咨詢研究報(bào)告
- 2025至2031年中國退菌特可濕性粉劑行業(yè)投資前景及策略咨詢研究報(bào)告
- 2025至2031年中國羊毛球拋光輪行業(yè)投資前景及策略咨詢研究報(bào)告
- 2025至2031年中國電鍍粘合劑行業(yè)投資前景及策略咨詢研究報(bào)告
- 2025年汽車斷油氣缸裝置項(xiàng)目可行性研究報(bào)告
- 2025年日用玻璃制品項(xiàng)目可行性研究報(bào)告
- 2025年投幣按摩椅項(xiàng)目可行性研究報(bào)告
- 2025年大規(guī)格圓塊孔石墨換熱器項(xiàng)目可行性研究報(bào)告
- 2025年卡通保溫袋項(xiàng)目可行性研究報(bào)告
- 春天古詩包含內(nèi)容模板
- 應(yīng)征公民政治考核表(含各種附表)
- 北工商《概率論與數(shù)理統(tǒng)計(jì)》試題庫
- 2024年湖南環(huán)境生物職業(yè)技術(shù)學(xué)院?jiǎn)握新殬I(yè)適應(yīng)性測(cè)試題庫含答案
- (高清版)JTG D50-2017 公路瀝青路面設(shè)計(jì)規(guī)范
- 20以內(nèi)的加減法練習(xí)題1000道
- 2024協(xié)調(diào)費(fèi)協(xié)議書的格式
- 19J102-1 19G613混凝土小型空心砌塊墻體建筑與結(jié)構(gòu)構(gòu)造
- 新蘇教版三年級(jí)下冊(cè)科學(xué)全冊(cè)知識(shí)點(diǎn)(背誦用)
- 【良心出品】架空輸電線路巡視內(nèi)容
- 《我家漂亮的尺子》課件-定稿
評(píng)論
0/150
提交評(píng)論