




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
新人教版八年級(jí)上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)總結(jié)歸納1第十一章三角形第12章全等三角形第13章軸對(duì)稱第14章整式乘法和因式分解第15章分式第十一章三角形1、三角形的概念由不在同意直線上的三條線段首尾順次相接所組成的圖形叫做三角形。組成三角形的線段叫做三角形的邊;相鄰兩邊的公共端點(diǎn)叫做三角形的頂點(diǎn);相鄰兩邊所組成的角叫做三角形的內(nèi)角,簡(jiǎn)稱三角形的角。2、三角形中的主要線段(1)三角形的一個(gè)角的平分線與這個(gè)角的對(duì)邊相交,這個(gè)角的頂點(diǎn)和交點(diǎn)間的線段叫做三角形的角平分線。(2)在三角形中,連接一個(gè)頂點(diǎn)和它對(duì)邊的中點(diǎn)的線段叫做三角形的中線。
(3)從三角形一個(gè)頂點(diǎn)向它的對(duì)邊做垂線,頂點(diǎn)和垂足之間的線段叫做三角形的高線(簡(jiǎn)稱三角形的高)。三角形的形狀是固定的,三角形的這個(gè)性質(zhì)叫做三角形的穩(wěn)定性。三角形的這個(gè)性質(zhì)在生產(chǎn)生活中應(yīng)用很廣,需要穩(wěn)定的東西一般都制成三角形的形狀。4、三角形的特性與表示三角形有下面三個(gè)特性:5、三角形的分類(lèi)三角形按邊的關(guān)系分類(lèi)如下:不等邊三角形三角形底和腰不相等的等腰三角形三角形按角的關(guān)系分類(lèi)如下:三角形斜三角形鈍角三角形(有一個(gè)角為鈍角的三角形)把邊和角聯(lián)系在一起,我們又有一種特殊的三角形:等腰直角三角形。它是兩條直角邊相等的直角三角形。6、三角形的三邊關(guān)系定理及推論(1)三角形三邊關(guān)系定理:三角形的兩邊之和大于第三邊。推論:三角形的兩邊之差小于第三邊。(2)三角形三邊關(guān)系定理及推論的作用:①判斷三條已知線段能否組成三角形②當(dāng)已知兩邊時(shí),可確定第三邊的范圍。③證明線段不等關(guān)系。②三角形的一個(gè)外角等于和它不相鄰的來(lái)兩個(gè)內(nèi)角的和。③三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角。注:在同一個(gè)三角形中:等角對(duì)等邊;等邊對(duì)等角;大角對(duì)大邊;大邊對(duì)大角。8、三角形的面積=分類(lèi)2:1、n邊形的內(nèi)角和等于180°(n-2)。只用一種正多邊形:3、4、6/。1、多邊形的定義:在平面內(nèi),由一些線段首尾順次相接組成的圖形叫做多邊形.(1)多邊形的一些要素:邊:組成多邊形的公共端點(diǎn)叫做多邊形的頂點(diǎn).內(nèi)角,一個(gè)n邊形有n個(gè)內(nèi)角。各條線段叫做多邊形的邊.頂點(diǎn):每相鄰兩條邊的內(nèi)角:多邊形相鄰兩邊組成的角叫多邊形的外角:多邊形的邊與它的鄰邊的延長(zhǎng)線組成的角叫做多邊形的外角。(2)在定義中應(yīng)注意:①一些線段(多邊形的邊數(shù)是大于等于3的正整數(shù));②首尾順次相連,二者缺一不可;③理解時(shí)要特別注意“在同一平面內(nèi)”這個(gè)條件,其目的是為了排除幾個(gè)點(diǎn)不共面的情況,即空間多邊形.2、多邊形的分類(lèi):(1)多邊形可分為凸多邊形和凹多邊形,畫(huà)出多邊形的任何一條邊所在的直線,如果整個(gè)多邊形都在這條直線的同一側(cè),則此多邊形為凸多邊形,反之為凹多邊形(見(jiàn)圖1).本章所講的多邊形都是指凸多邊形.凸多邊形圖1(2)多邊形通常還以邊數(shù)命名,多邊形有n條邊就叫做n邊形.三角形、四邊形都各個(gè)角都相等、各個(gè)邊都相等的多邊形叫做正多邊形。如正三角形、正方形、正五邊形等。正三角形正方形正五邊形正六邊形正十二邊形要點(diǎn)詮釋?zhuān)焊鹘窍嗟?、各邊也相等是正多邊形的必備條件,二者缺一不可.如四條邊都相等的四邊形不一定是正方形,四個(gè)角都相等的四邊形也不一定是正方形,只有滿足四邊都相等且四個(gè)角也都相等的四邊形才是正方形多邊形的對(duì)角線:連接多邊形不相鄰的兩個(gè)頂點(diǎn)的線段,叫做多邊形的對(duì)角線.如圖2,BD為四邊形ABCD的一(1)從n邊形一個(gè)頂點(diǎn)可以引(n-3)條對(duì)角線,將多邊形分成(n-2)個(gè)三角形。條對(duì)角線。證明:過(guò)一個(gè)頂點(diǎn)有n-3條對(duì)角線(n≥3的正整數(shù)),又∵共有n個(gè)頂點(diǎn),∴共有條對(duì)角線,但過(guò)兩個(gè)不相鄰頂點(diǎn)的對(duì)角線重復(fù)了一次,∴凸n邊形,共有條對(duì)角線。知識(shí)點(diǎn)四:多邊形的內(nèi)角和公式證法1:在個(gè)三角形的內(nèi)角和為,再減去一個(gè)周角,即得到邊形的內(nèi)角和為證法2:從邊形一個(gè)頂點(diǎn)作對(duì)角線,可以作條對(duì)角線,并且邊形被分成邊形的內(nèi)角和,等于.證法3:在邊形內(nèi)角和等于這(1)注意:以上各推導(dǎo)方法體現(xiàn)出將多邊形問(wèn)題轉(zhuǎn)化為三角形問(wèn)題來(lái)解決的基礎(chǔ)思想。(2)內(nèi)角和定理的應(yīng)用:1.公式:多邊形的外角和等于360°.2.多邊形外角和公式的證明:多邊形的每個(gè)內(nèi)角和與它相鄰的外角都是鄰補(bǔ)角,所以.注意:n邊形的外角和恒等于360°,它與邊數(shù)的多少無(wú)關(guān)。①n邊形的內(nèi)角和等于(n-2)·180°(n≥3,n是正整數(shù)),可見(jiàn)多邊形內(nèi)角和與邊數(shù)n有關(guān),每增加1條邊,內(nèi)角和增加180°。1、定義:用一些不重疊擺放的多邊形把平面的一部分完全覆蓋,通常把這類(lèi)問(wèn)題叫做用多邊形覆蓋平面(或平面鑲嵌)。相同。這里的多邊形可以形狀相同,也可以形狀不2、實(shí)現(xiàn)鑲嵌的條件:拼接在同一點(diǎn)的各個(gè)角的和恰好等于360°;相鄰的多邊形有公共邊。3、常見(jiàn)的一些正多邊形的鑲嵌問(wèn)題:(1)用正多邊形實(shí)現(xiàn)鑲嵌的條件:邊長(zhǎng)相等;頂點(diǎn)公用;在一個(gè)頂點(diǎn)處各正多邊形的內(nèi)角之和為360°。對(duì)于給定的某種正多邊形,怎樣判斷它能否拼成一個(gè)平面圖形,且不留一點(diǎn)空隙?解決問(wèn)題的關(guān)鍵在于正多邊形的內(nèi)角特點(diǎn)。當(dāng)圍繞一點(diǎn)拼在一起的幾個(gè)正多邊形的內(nèi)角加在一起恰好組成一個(gè)周角360°時(shí),就能鋪成一個(gè)平面圖形。,要求k個(gè)正n邊形各有一個(gè)內(nèi)角拼于一點(diǎn),恰好覆蓋地面,這樣360°=,而k是正整數(shù),所以n只能取3,4,6。因而,用相同的正多邊形地磚鋪地面,只有正三角形、正方形、正六邊形的地磚可以用。于360°。所以用一注意:批形狀、大小完全相同但不規(guī)則的四邊形地磚也可以鋪成無(wú)空隙的地板,用任意相同的三角形也可以鋪滿地面。(3)用兩種或兩種以上的正多邊形鑲嵌地面用兩種或兩種以上邊長(zhǎng)相等的正多邊形組合成平面圖形關(guān)正多邊形“交接處各角之和”的問(wèn)題。例如,用正與正方形、正三角形與正六邊形與正十二邊形與正八邊形都可以作平面鑲嵌,見(jiàn)下圖:能否拼成一個(gè)周角又如,用一個(gè)正三角形、兩個(gè)正方形、一個(gè)正六邊形結(jié)合在一起恰好能夠鋪滿地面,因?yàn)樗鼈兊慕唤犹幐鹘侵颓『脼橐粋€(gè)周角360°。規(guī)律方法指導(dǎo)1.內(nèi)角和與邊數(shù)成正比:邊數(shù)增加,內(nèi)角和增加;邊數(shù)減少,內(nèi)角和減少.每增加一條邊,內(nèi)角的和就增加180°(反過(guò)來(lái)也成立),且多邊形的內(nèi)角和必須是180°的整數(shù)倍.2.多邊形外角和恒等于360°,與邊數(shù)的多少無(wú)關(guān).3.多邊形最多有三個(gè)內(nèi)角為銳角,最少?zèng)]有銳角(如矩形);多邊形的外角中最4.在運(yùn)用多邊形的內(nèi)角和公式與外角的性質(zhì)求值時(shí),常與方程思想相結(jié)合,運(yùn)用方程思想是解決本節(jié)問(wèn)題的常用方法.5.在是一研究復(fù)雜圖形的基礎(chǔ),同時(shí)注意轉(zhuǎn)化思想在數(shù)學(xué)中的應(yīng)用.經(jīng)典例題透析1.一個(gè)多邊形的內(nèi)角和等于它的外角和的5倍,它是幾邊形?總結(jié)升華:本題是多邊形的內(nèi)角和定理和外角和定理的綜合運(yùn)用.只要設(shè)出邊數(shù)的值即可,這是一種常用的解題思路.舉一反三:【變式1】若一個(gè)多邊形的內(nèi)角和與外角和的總度數(shù)為1800°,求這個(gè)多邊形的邊數(shù).【2750°,求這個(gè)多邊形的,這個(gè)內(nèi)角為【變式3】一個(gè)多邊形的內(nèi)角和與某一個(gè)外角的度數(shù)總和為1350°,求這個(gè)多邊形的邊數(shù)。類(lèi)型二:多邊形對(duì)角線公式的運(yùn)用【變式1】一個(gè)多邊形共有20條對(duì)角線,則多邊形的邊數(shù)是().A.6B.7C.8D.9【變式2】一個(gè)十二邊形有幾條對(duì)角線。總結(jié)升華:對(duì)于一個(gè)n邊形的對(duì)角線的條數(shù),我們可以總結(jié)出規(guī)律條,牢記這個(gè)公式,以后只要用相應(yīng)的n的值代入即可求出對(duì)角線的條數(shù),要記住【變式1】如圖所示,∠1+∠2+∠3+∠4+∠5+∠6=__________.【變式2】如圖所示,求∠A+∠B+∠C+∠D+∠E+∠F的度數(shù)。4.如圖,一輛小汽車(chē)從P市出發(fā),先到B市,再到C市,再到A市,最后返回P思路點(diǎn)撥:根據(jù)多邊形的外角和定理解決.舉一反三:【變式1】如圖所示,小亮從A點(diǎn)出發(fā)前進(jìn)10m,向右轉(zhuǎn)15°,再前進(jìn)10m,又向右轉(zhuǎn)15°,…,這樣一直走下去,當(dāng)他第一次回到出發(fā)點(diǎn)時(shí),一共走了__________m.【變式2】小華從點(diǎn)A出發(fā)向前走10米,向右轉(zhuǎn)走10米,再36°,然后繼續(xù)向前向右轉(zhuǎn)36°,他以同樣的方法繼續(xù)走下去,他能回到點(diǎn)A嗎?若能,當(dāng)他走回點(diǎn)A【變式3】如圖所示是某廠生產(chǎn)的一塊模板,已知該模板的邊AB∥CF,CD∥AE.按規(guī)定AB、CD的延長(zhǎng)線相交成上,不便測(cè)量.這時(shí)師傅告道AB、CD的延長(zhǎng)線的夾角是80°角,因交點(diǎn)不在模板思路點(diǎn)撥:本題中將AB、CD延長(zhǎng)后會(huì)得到一個(gè)五邊形,根據(jù)五邊形內(nèi)角和為540°,又由AB∥CF,CD∥AE,可知∠BAE+∠AEF+∠EFC=360°,從540°中減去80°再減去360°,剩下∠C的度數(shù)為100°,所以只需測(cè)∠C的度數(shù)即可,同理還可直接測(cè)∠A的度數(shù).總結(jié)升華:本題實(shí)際上是多邊形內(nèi)角和的逆運(yùn)算,關(guān)鍵在于正確添加輔助線.5.分別畫(huà)出用相同邊長(zhǎng)的下列正多邊形組合鋪滿地面的設(shè)計(jì)圖。(1)正方形和正八邊形;(2)正三角形和正十二邊形;(3)正三角形、正方形和正六邊形。思路點(diǎn)撥:只要在拼接處各多邊形的內(nèi)角的和能構(gòu)成一個(gè)周角,那么這些多邊形就能作平面鑲嵌。解析:正三角形、正方形、正六邊形、正八邊形、正十二邊形的每一個(gè)內(nèi)角分別是60°、90°、120°、135°、150°。(1)因?yàn)?0+2×135=360,所以一個(gè)頂點(diǎn)處有1個(gè)正方形、2個(gè)正八邊形,如圖(1)所示。(2)因?yàn)?0+2×150=360,所以一個(gè)頂點(diǎn)處有1個(gè)正三角形、2個(gè)正十二邊形,如圖(2)所示。(3)因?yàn)?0+2×90+120=360,所以一個(gè)頂點(diǎn)處有1個(gè)正三角形、1個(gè)正六邊形和2個(gè)正方形,如圖(3)所示??偨Y(jié)升華:用兩種以上邊長(zhǎng)相等的正多邊形組合成平面圖形,實(shí)質(zhì)上是相關(guān)正多邊形“交接處各角之和能否拼成一個(gè)周角”的問(wèn)題。舉一反三:【變式1】分別用形狀、大小完全相同的①三角形木板;②四邊形木板;③正五邊形木板;④正六邊形木板作平面鑲嵌,其中不能鑲嵌成地板的是()A、①B、②
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 付國(guó)外傭金合同范本
- 化妝品廣告合同范本
- 豐田汽車(chē)合同范本
- 光伏運(yùn)營(yíng)合作合同范本
- 農(nóng)戶辣椒種植合同范本
- 優(yōu)惠倉(cāng)庫(kù)租賃服務(wù)合同范本
- 冷凍海鮮銷(xiāo)售合同范本
- 農(nóng)村購(gòu)買(mǎi)墳地合同范本
- 中石油員工業(yè)績(jī)合同范本
- 會(huì)務(wù)定金合同范本
- 《幼兒教育政策與法規(guī)》教案-單元1 幼兒教育政策與法規(guī)
- 【語(yǔ)文】第23課《“蛟龍”探?!氛n件 2024-2025學(xué)年統(tǒng)編版語(yǔ)文七年級(jí)下冊(cè)
- 2024年決戰(zhàn)行測(cè)5000題言語(yǔ)理解與表達(dá)(培優(yōu)b卷)
- 《現(xiàn)代企業(yè)管理學(xué)》本科教材
- 《中國(guó)人民站起來(lái)了》課件+2024-2025學(xué)年統(tǒng)編版高中語(yǔ)文選擇性必修上冊(cè)
- 初中語(yǔ)文現(xiàn)代文閱讀訓(xùn)練及答案二十篇
- 單值-移動(dòng)極差控制圖(自動(dòng)版)
- 公司副經(jīng)理安全生產(chǎn)先進(jìn)個(gè)人事跡材料
- (完整版)Brownbear繪本
- 經(jīng)濟(jì)管理學(xué)院吳明圣高?!扒嗨{(lán)工程”優(yōu)秀青年骨干教師
- 幼兒園和小學(xué)入園(入學(xué))新生結(jié)核病調(diào)查表
評(píng)論
0/150
提交評(píng)論