版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2023年高考數(shù)學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知雙曲線的漸近線方程為,且其右焦點為,則雙曲線的方程為()A. B. C. D.2.執(zhí)行如圖所示的程序框圖,若輸入,,則輸出的值為()A.0 B.1 C. D.3.已知,則()A. B. C. D.4.己知,,,則()A. B. C. D.5.某市政府決定派遣名干部(男女)分成兩個小組,到該市甲、乙兩個縣去檢查扶貧工作,若要求每組至少人,且女干部不能單獨成組,則不同的派遣方案共有()種A. B. C. D.6.某歌手大賽進行電視直播,比賽現(xiàn)場有名特約嘉賓給每位參賽選手評分,場內(nèi)外的觀眾可以通過網(wǎng)絡(luò)平臺給每位參賽選手評分.某選手參加比賽后,現(xiàn)場嘉賓的評分情況如下表,場內(nèi)外共有數(shù)萬名觀眾參與了評分,組織方將觀眾評分按照,,分組,繪成頻率分布直方圖如下:嘉賓評分嘉賓評分的平均數(shù)為,場內(nèi)外的觀眾評分的平均數(shù)為,所有嘉賓與場內(nèi)外的觀眾評分的平均數(shù)為,則下列選項正確的是()A. B. C. D.7.已知直線:與橢圓交于、兩點,與圓:交于、兩點.若存在,使得,則橢圓的離心率的取值范圍為()A. B. C. D.8.已知,,,則的大小關(guān)系為()A. B. C. D.9.已知拋物線:,點為上一點,過點作軸于點,又知點,則的最小值為()A. B. C.3 D.510.是虛數(shù)單位,復(fù)數(shù)在復(fù)平面上對應(yīng)的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限11.劉徽是我國魏晉時期偉大的數(shù)學家,他在《九章算術(shù)》中對勾股定理的證明如圖所示.“勾自乘為朱方,股自乘為青方,令出入相補,各從其類,因就其余不移動也.合成弦方之冪,開方除之,即弦也”.已知圖中網(wǎng)格紙上小正方形的邊長為1,其中“正方形為朱方,正方形為青方”,則在五邊形內(nèi)隨機取一個點,此點取自朱方的概率為()A. B. C. D.12.已知,則的值等于()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)命題:,,則:__________.14.函數(shù)在處的切線方程是____________.15.某城市為了解該市甲、乙兩個旅游景點的游客數(shù)量情況,隨機抽取了這兩個景點20天的游客人數(shù),得到如下莖葉圖:由此可估計,全年(按360天計算)中,游客人數(shù)在內(nèi)時,甲景點比乙景點多______天.16.春節(jié)期間新型冠狀病毒肺炎疫情在湖北爆發(fā),為了打贏疫情防控阻擊戰(zhàn),我省某醫(yī)院選派2名醫(yī)生,6名護士到湖北、兩地參加疫情防控工作,每地一名醫(yī)生,3名護士,其中甲乙兩名護士不到同一地,共有__________種選派方法.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,三棱柱的所有棱長均相等,在底面上的投影在棱上,且∥平面(Ⅰ)證明:平面平面;(Ⅱ)求直線與平面所成角的余弦值.18.(12分)已知函數(shù).(Ⅰ)解不等式;(Ⅱ)設(shè)其中為常數(shù).若方程在上恰有兩個不相等的實數(shù)根,求實數(shù)的取值范圍.19.(12分)如圖所示,在四棱錐中,平面,底面ABCD滿足AD∥BC,,,E為AD的中點,AC與BE的交點為O.(1)設(shè)H是線段BE上的動點,證明:三棱錐的體積是定值;(2)求四棱錐的體積;(3)求直線BC與平面PBD所成角的余弦值.20.(12分)已知動圓過定點,且與直線相切,動圓圓心的軌跡為,過作斜率為的直線與交于兩點,過分別作的切線,兩切線的交點為,直線與交于兩點.(1)證明:點始終在直線上且;(2)求四邊形的面積的最小值.21.(12分)如圖,在直角梯形中,,,,為的中點,沿將折起,使得點到點位置,且,為的中點,是上的動點(與點,不重合).(Ⅰ)證明:平面平面垂直;(Ⅱ)是否存在點,使得二面角的余弦值?若存在,確定點位置;若不存在,說明理由.22.(10分)已知函數(shù),.(1)若時,解不等式;(2)若關(guān)于的不等式在上有解,求實數(shù)的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】試題分析:由題意得,,所以,,所求雙曲線方程為.考點:雙曲線方程.2、A【解析】
根據(jù)輸入的值大小關(guān)系,代入程序框圖即可求解.【詳解】輸入,,因為,所以由程序框圖知,輸出的值為.故選:A【點睛】本題考查了對數(shù)式大小比較,條件程序框圖的簡單應(yīng)用,屬于基礎(chǔ)題.3、D【解析】
根據(jù)指數(shù)函數(shù)的單調(diào)性,即當?shù)讛?shù)大于1時單調(diào)遞增,當?shù)讛?shù)大于零小于1時單調(diào)遞減,對選項逐一驗證即可得到正確答案.【詳解】因為,所以,所以是減函數(shù),又因為,所以,,所以,,所以A,B兩項均錯;又,所以,所以C錯;對于D,,所以,故選D.【點睛】這個題目考查的是應(yīng)用不等式的性質(zhì)和指對函數(shù)的單調(diào)性比較大小,兩個式子比較大小的常用方法有:做差和0比,作商和1比,或者直接利用不等式的性質(zhì)得到大小關(guān)系,有時可以代入一些特殊的數(shù)據(jù)得到具體值,進而得到大小關(guān)系.4、B【解析】
先將三個數(shù)通過指數(shù),對數(shù)運算變形,再判斷.【詳解】因為,,所以,故選:B.【點睛】本題主要考查指數(shù)、對數(shù)的大小比較,還考查推理論證能力以及化歸與轉(zhuǎn)化思想,屬于中檔題.5、C【解析】
在所有兩組至少都是人的分組中減去名女干部單獨成一組的情況,再將這兩組分配,利用分步乘法計數(shù)原理可得出結(jié)果.【詳解】兩組至少都是人,則分組中兩組的人數(shù)分別為、或、,
又因為名女干部不能單獨成一組,則不同的派遣方案種數(shù)為.故選:C.【點睛】本題考查排列組合的綜合問題,涉及分組分配問題,考查計算能力,屬于中等題.6、C【解析】
計算出、,進而可得出結(jié)論.【詳解】由表格中的數(shù)據(jù)可知,,由頻率分布直方圖可知,,則,由于場外有數(shù)萬名觀眾,所以,.故選:B.【點睛】本題考查平均數(shù)的大小比較,涉及平均數(shù)公式以及頻率分布直方圖中平均數(shù)的計算,考查計算能力,屬于基礎(chǔ)題.7、A【解析】
由題意可知直線過定點即為圓心,由此得到坐標的關(guān)系,再根據(jù)點差法得到直線的斜率與坐標的關(guān)系,由此化簡并求解出離心率的取值范圍.【詳解】設(shè),且線過定點即為的圓心,因為,所以,又因為,所以,所以,所以,所以,所以,所以,所以.故選:A.【點睛】本題考查橢圓與圓的綜合應(yīng)用,著重考查了橢圓離心率求解以及點差法的運用,難度一般.通過運用點差法達到“設(shè)而不求”的目的,大大簡化運算.8、A【解析】
根據(jù)指數(shù)函數(shù)與對數(shù)函數(shù)的單調(diào)性,借助特殊值即可比較大小.【詳解】因為,所以.因為,所以,因為,為增函數(shù),所以所以,故選:A.【點睛】本題主要考查了指數(shù)函數(shù)、對數(shù)函數(shù)的單調(diào)性,利用單調(diào)性比較大小,屬于中檔題.9、C【解析】
由,再運用三點共線時和最小,即可求解.【詳解】.故選:C【點睛】本題考查拋物線的定義,合理轉(zhuǎn)化是本題的關(guān)鍵,注意拋物線的性質(zhì)的靈活運用,屬于中檔題.10、D【解析】
求出復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點的坐標,即可得出結(jié)論.【詳解】復(fù)數(shù)在復(fù)平面上對應(yīng)的點的坐標為,該點位于第四象限.故選:D.【點睛】本題考查復(fù)數(shù)對應(yīng)的點的位置的判斷,屬于基礎(chǔ)題.11、C【解析】
首先明確這是一個幾何概型面積類型,然后求得總事件的面積和所研究事件的面積,代入概率公式求解.【詳解】因為正方形為朱方,其面積為9,五邊形的面積為,所以此點取自朱方的概率為.故選:C【點睛】本題主要考查了幾何概型的概率求法,還考查了數(shù)形結(jié)合的思想和運算求解的能力,屬于基礎(chǔ)題.12、A【解析】
由余弦公式的二倍角可得,,再由誘導公式有,所以【詳解】∵∴由余弦公式的二倍角展開式有又∵∴故選:A【點睛】本題考查了學生對二倍角公式的應(yīng)用,要求學生熟練掌握三角函數(shù)中的誘導公式,屬于簡單題二、填空題:本題共4小題,每小題5分,共20分。13、,【解析】
存在符號改任意符號,結(jié)論變相反.【詳解】命題是特稱命題,則為全稱命題,故將“”改為“”,將“”改為“”,故:,.故答案為:,.【點睛】本題考查全(特)稱命題.對全(特)稱命題進行否定的方法:(1)改寫量詞:全稱量詞改寫為存在量詞,存在量詞改寫為全稱量詞;(2)否定結(jié)論:對于一般命題的否定只需直接否定結(jié)論即可.14、【解析】
求出和的值,利用點斜式可得出所求切線的方程.【詳解】,則,,.因此,函數(shù)在處的切線方程是,即.故答案為:.【點睛】本題考查利用導數(shù)求函數(shù)的切線方程,考查計算能力,屬于基礎(chǔ)題.15、72【解析】
根據(jù)給定的莖葉圖,得到游客人數(shù)在內(nèi)時,甲景點共有7天,乙景點共有3天,進而求得全年中,甲景點比乙景點多的天數(shù),得到答案.【詳解】由題意,根據(jù)給定的莖葉圖可得,在隨機抽取了這兩個景點20天的游客人數(shù)中,游客人數(shù)在內(nèi)時,甲景點共有7天,乙景點共有3天,所以在全年)中,游客人數(shù)在內(nèi)時,甲景點比乙景點多天.故答案為:.【點睛】本題主要考查了莖葉圖的應(yīng)用,其中解答中熟記莖葉圖的基本知識,合理推算是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.16、24【解析】
先求出每地一名醫(yī)生,3名護士的選派方法的種數(shù),再減去甲乙兩名護士到同一地的種數(shù)即可.【詳解】解:每地一名醫(yī)生,3名護士的選派方法的種數(shù)有,若甲乙兩名護士到同一地的種數(shù)有,則甲乙兩名護士不到同一地的種數(shù)有.故答案為:.【點睛】本題考查利用間接法求排列組合問題,正難則反,是基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ)見解析(Ⅱ)【解析】
(Ⅰ)連接交于點,連接,由于平面,得出,根據(jù)線線位置關(guān)系得出,利用線面垂直的判定和性質(zhì)得出,結(jié)合條件以及面面垂直的判定,即可證出平面平面;(Ⅱ)根據(jù)題意,建立空間直角坐標系,利用空間向量法分別求出和平面的法向量,利用空間向量線面角公式,即可求出直線與平面所成角的余弦值.【詳解】解:(Ⅰ)證明:連接交于點,連接,則平面平面,平面,,為的中點,為的中點,平面,,平面,平面,平面平面(Ⅱ)建立如圖所示空間直角坐標系,設(shè)則,,,,,設(shè)平面的法向量為,則,取得,設(shè)直線與平面所成角為,直線與平面所成角的余弦值為.【點睛】本題考查面面垂直的判定以及利用空間向量法求線面角的余弦值,考查空間想象能力和推理能力.18、(Ⅰ);(Ⅱ).【解析】
(I)零點分段法,分,,討論即可;(II),分,,三種情況討論.【詳解】原不等式即.當時,化簡得.解得;當時,化簡得.此時無解;當時,化簡得.解得.綜上,原不等式的解集為由題意,設(shè)方程兩根為.當時,方程等價于方程.易知當,方程在上有兩個不相等的實數(shù)根.此時方程在上無解.滿足條件.當時,方程等價于方程,此時方程在上顯然沒有兩個不相等的實數(shù)根.當時,易知當,方程在上有且只有一個實數(shù)根.此時方程在上也有一個實數(shù)根.滿足條件.綜上,實數(shù)的取值范圍為.【點睛】本題考查解絕對值不等式以及方程根的個數(shù)求參數(shù)范圍,考查學生的運算能力,是一道中檔題.19、(1)證明見解析(2)(3)【解析】
(1)因為底面ABCD為梯形,且,所以四邊形BCDE為平行四邊形,則BE∥CD,又平面,平面,所以平面,又因為H為線段BE上的動點,的面積是定值,從而三棱錐的體積是定值.(2)因為平面,所以,結(jié)合BE∥CD,所以,又因為,,且E為AD的中點,所以四邊形ABCE為正方形,所以,結(jié)合,則平面,連接,則,因為平面,所以,因為,所以是等腰直角三角形,O為斜邊AC上的中點,所以,且,所以平面,所以PO是四棱錐的高,又因為梯形ABCD的面積為,在中,,所以.(3)以O(shè)為坐標原點,建立空間直角坐標系,如圖所示,則B(,0,0),C(0,,0),D(,,0),P(0,0,),則,設(shè)平面PBD的法向量為,則即則,令,得到,設(shè)BC與平面PBD所成的角為,則,所以,所以直線BC與平面PBD所成角的余弦值為.20、(1)見解析(2)最小值為1.【解析】
(1)根據(jù)拋物線的定義,判斷出的軌跡為拋物線,并由此求得軌跡的方程.設(shè)出兩點的坐標,利用導數(shù)求得切線的方程,由此求得點的坐標.寫出直線的方程,聯(lián)立直線的方程和曲線的方程,根據(jù)韋達定理求得點的坐標,并由此判斷出始終在直線上,且.(2)設(shè)直線的傾斜角為,求得的表達式,求得的表達式,由此求得四邊形的面積的表達式進而求得四邊形的面積的最小值.【詳解】(1)∵動圓過定點,且與直線相切,∴動圓圓心到定點和定直線的距離相等,∴動圓圓心的軌跡是以為焦點的拋物線,∴軌跡的方程為:,設(shè),∴直線的方程為:,即:①,同理,直線的方程為:②,由①②可得:,直線方程為:,聯(lián)立可得:,,∴點始終在直線上且;(2)設(shè)直線的傾斜角為,由(1)可得:,,∴四邊形的面積為:,當且僅當或,即時取等號,∴四邊形的面積的最小值為1.【點睛】本小題主要考查動點軌跡方
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度木材行業(yè)知識產(chǎn)權(quán)保護合同8篇
- 2025年度智慧城市建設(shè)大數(shù)據(jù)分析與應(yīng)用合同4篇
- 2025年度新型商業(yè)空間商鋪租賃及商業(yè)活動策劃合同3篇
- 2025年淘寶模特肖像權(quán)使用與形象授權(quán)合同
- 2025年度戶外運動面料定制供應(yīng)合同
- 二零二五版清風法意民商調(diào)研專欄:生物制藥研發(fā)與生產(chǎn)合同2篇
- 二零二五年度短視頻廣告創(chuàng)意設(shè)計與投放合同
- 2025年度智能道閘系統(tǒng)全面維護與升級合同
- 二零二五年度臨時運輸司機健康體檢及防疫合同4篇
- 二零二五年度事業(yè)單位聘用合同解除與員工再就業(yè)服務(wù)協(xié)議
- 數(shù)學-山東省2025年1月濟南市高三期末學習質(zhì)量檢測濟南期末試題和答案
- 中儲糧黑龍江分公司社招2025年學習資料
- 湖南省長沙市2024-2025學年高一數(shù)學上學期期末考試試卷
- 船舶行業(yè)維修保養(yǎng)合同
- 2024年林地使用權(quán)轉(zhuǎn)讓協(xié)議書
- 春節(jié)期間化工企業(yè)安全生產(chǎn)注意安全生產(chǎn)
- 數(shù)字的秘密生活:最有趣的50個數(shù)學故事
- 移動商務(wù)內(nèi)容運營(吳洪貴)任務(wù)一 移動商務(wù)內(nèi)容運營關(guān)鍵要素分解
- 基于ADAMS的汽車懸架系統(tǒng)建模與優(yōu)化
- 當前中國個人極端暴力犯罪個案研究
- 中國象棋比賽規(guī)則
評論
0/150
提交評論