圓周率的歷史資料800字_第1頁
圓周率的歷史資料800字_第2頁
圓周率的歷史資料800字_第3頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

第圓周率的歷史資料800字圓周率的歷史資料800字之圓周率的概述

圓周率(Pi)是圓的周長(zhǎng)與直徑的比值,一般用希臘字母π表示,是一個(gè)在數(shù)學(xué)及物理學(xué)中普遍存在的數(shù)學(xué)常數(shù)。π也等于圓形之面積與半徑平方之比。是精確計(jì)算圓周長(zhǎng)、圓面積、球體積等幾何形狀的關(guān)鍵值。在分析學(xué)里,π可以嚴(yán)格地定義為滿足sin某=0的最小正實(shí)數(shù)某。

圓周率用字母(讀作pài)表示,是一個(gè)常數(shù)(約等于3.),是代表圓周長(zhǎng)和直徑的比值。它是一個(gè)無理數(shù),即無限不循環(huán)小數(shù)。在日常生活中,通常都用3.14代表圓周率去進(jìn)行近似計(jì)算。而用十位小數(shù)3.便足以應(yīng)付一般計(jì)算。即使是工程師或物理學(xué)家要進(jìn)行較精密的計(jì)算,充其量也只需取值至小數(shù)點(diǎn)后幾百個(gè)位。

1965年,英國數(shù)學(xué)家約翰·沃利斯(JohnWallis)出版了一本數(shù)學(xué)專著,其中他推導(dǎo)出一個(gè)公式,發(fā)現(xiàn)圓周率等于無窮個(gè)分?jǐn)?shù)相乘的積。2022年,羅切斯特大學(xué)的科學(xué)家們?cè)跉湓幽芗?jí)的量子力學(xué)計(jì)算中發(fā)現(xiàn)了圓周率相同的公式。

是第十六個(gè)希臘字母的小寫。這個(gè)符號(hào),亦是希臘語περιφρεια(表示周邊,地域,圓周等意思)的首字母。1706年英國數(shù)學(xué)家威廉·瓊斯(WilliamJones,1675-1749)最先使用“π”來表示圓周率。1736年,瑞士大數(shù)學(xué)家歐拉也開始用表示圓周率。從此,便成了圓周率的代名詞。

要注意不可把和其大寫Π混用,后者是指連乘的意思。

圓周率()一般定義為一個(gè)圓形的周長(zhǎng)()與直徑()之比:。

由相似圖形的性質(zhì)可知,對(duì)于任何圓形,的值都是一樣。這樣就定義出常數(shù)。

第二個(gè)做法是,以圓形半徑為邊長(zhǎng)作一正方形,然後把圓形面積和此正方形面積的比例訂為,即圓形之面積與半徑平方之比。

定義圓周率不一定要用到幾何概念,比如,我們可以定義為滿足的最小正實(shí)數(shù)。

這里的正弦函數(shù)定義為冪級(jí)數(shù)

圓周率的歷史資料800字之幾何法時(shí)期

古希臘作為古代幾何王國對(duì)圓周率的貢獻(xiàn)尤為突出。古希臘大數(shù)學(xué)家阿基米德(公元前287–212年)開創(chuàng)了人類歷史上通過理論計(jì)算圓周率近似值的先河。阿基米德從單位圓出發(fā),先用內(nèi)接正六邊形求出圓周率的下界為3,再用外接正六邊形并借助勾股定理求出圓周率的上界小于4。接著,他對(duì)內(nèi)接正六邊形和外接正六邊形的邊數(shù)分別加倍,將它們分別變成內(nèi)接正12邊形和外接正12邊形,再借助勾股定理改進(jìn)圓周率的下界和上界。他逐步對(duì)內(nèi)接正多邊形和外接正多邊形的邊數(shù)加倍,直到內(nèi)接正96邊形和外接正96邊形為止。最后,他求出圓周率的下界和上界分別為223/71和22/7,并取它們的平均值3.為圓周率的近似值。阿基米德用到了迭代算法和兩側(cè)數(shù)值逼近的概念,稱得上是“計(jì)算數(shù)學(xué)”的鼻祖。

中國古算書《周髀算經(jīng)》(約公元前2世紀(jì))的中有“徑一而周三”的記載,意即取。漢朝時(shí),張衡得出,即(約為3.162)。這個(gè)值不太準(zhǔn)確,但它簡(jiǎn)單易理解。

公元263年,中國數(shù)學(xué)家劉徽用“割圓術(shù)”計(jì)算圓周率,他先從圓內(nèi)接正六邊形,逐次分割一直算到圓內(nèi)接正192邊形。他說“割之彌細(xì),所失彌少,割之又割,以至于不可割,則與圓周合體而無所失矣?!?,包含了求極限的思想。劉徽給出π=3.的圓周率近似值,劉徽在得圓周率=3.14之后,將這個(gè)數(shù)值和晉武庫中漢王莽時(shí)代制造的銅制體積度量衡標(biāo)準(zhǔn)嘉量斛的直徑和容積檢驗(yàn),發(fā)現(xiàn)3.14這個(gè)數(shù)值還是偏小。于是繼續(xù)割圓到1536邊形,求出3072邊形的面積,得到令自己滿意的圓周率。

公元480年左右,南北朝時(shí)期的數(shù)學(xué)家祖沖之進(jìn)一步得出精確到小數(shù)點(diǎn)后7位的結(jié)果,給出不足近似值3.和過剩近似值3.,還得到兩個(gè)近似分?jǐn)?shù)值,密率和約率。密率是個(gè)很好的分?jǐn)?shù)近似值,要取到才能得出比略準(zhǔn)確的近似。(參見丟番圖逼近)

在之后的800年里祖沖之計(jì)算出的π值都是最準(zhǔn)確的。其中的密率在西方直到1573年才由德國人奧托(ValentinusOtho)得到,1625年發(fā)表于荷蘭工程師安托尼斯(Metius)的著作中,歐洲稱之為Metius'number。

約在公元530年,印度數(shù)學(xué)大師阿耶波多算出圓周率約為。婆羅摩笈多采用另一套方法,推論出圓周率等于10的算術(shù)平方根。

阿拉伯?dāng)?shù)學(xué)家卡西在15世紀(jì)初求得圓周率17位精確小數(shù)值,打破祖沖之保持近千年的紀(jì)錄。

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論