




版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
arXiv:2304.06488v1[cs.CY]4Apr2023
OneSmallStepforGenerativeAI,OneGiantLeapforAGI:ACompleteSurveyonChatGPTinAIGCEra
CHAONINGZHANG,KyungHeeUniversity,SouthKorea
CHENSHUANGZHANG,KAIST,SouthKorea
CHENGHAOLI,KAIST,SouthKorea
YUQIAO,KyungHeeUniversity,SouthKorea
SHENGZHENG,BeijingInstituteofTechnology,China
SUMITKUMARDAM,KyungHeeUniversity,SouthKorea
MENGCHUNZHANG,KAIST,SouthKorea
JUNGUKKIM,KyungHeeUniversity,SouthKorea
SEONGTAEKIM,KyungHeeUniversity,SouthKorea
JINWOOCHOI,KyungHeeUniversity,SouthKorea
GYEONG-MOONPARK,KyungHeeUniversity,SouthKorea
SUNG-HOBAE,KyungHeeUniversity,SouthKorea
LIK-HANGLEE,HongKongPolytechnicUniversity,HongKongSAR(China)
PANHUI,HongKongUniversityofScienceandTechnology(Guangzhou),China
INSOKWEON,KAIST,SouthKorea
CHOONGSEONHONG,KyungHeeUniversity,SouthKorea
OpenAIhasrecentlyreleasedGPT-4(a.k.a.ChatGPTplus),whichisdemonstratedtobeonesmallstepforgenerativeAI(GAI),butonegiantleapforartificialgeneralintelligence(AGI).SinceitsofficialreleaseinNovember2022,ChatGPThasquicklyattractednumeroususerswithextensivemediacoverage.SuchunprecedentedattentionhasalsomotivatednumerousresearcherstoinvestigateChatGPT
fromvariousaspects.AccordingtoGooglescholar,therearemorethan500articleswithChatGPTintheirtitlesormentioningitintheirabstracts.Consideringthis,areviewisurgentlyneeded,andourworkfillsthisgap.Overall,thisworkisthefirsttosurveyChatGPTwithacomprehensivereviewofitsunderlyingtechnology,applications,andchallenges.Moreover,wepresentanoutlookon
Authors’addresses:ChaoningZhang,KyungHeeUniversity,SouthKorea,chaoningzhang1990@;ChenshuangZhang,KAIST,SouthKorea,zcs15@kaist.ac.kr;ChenghaoLi,KAIST,SouthKorea,lc;YuQiao,KyungHeeUniversity,SouthKorea,qiaoyu@khu.ac.kr;ShengZheng,BeijingInstituteofTechnology,China,zszhx2021@;SumitKumarDam,KyungHeeUniversity,SouthKorea,skd160205@khu.ac.kr;MengchunZhang,KAIST,SouthKorea,zhangmengchun527@;JungUkKim,KyungHeeUniversity,SouthKorea,ju.kim@khu.ac.kr;SeongTaeKim,KyungHeeUniversity,SouthKorea,st.kim@khu.ac.kr;JinwooChoi,KyungHeeUniversity,SouthKorea,jinwoochoi@khu.ac.kr;Gyeong-MoonPark,KyungHeeUniversity,SouthKorea,gmpark@khu.ac.kr;Sung-HoBae,KyungHeeUniversity,SouthKorea,shbae@khu.ac.kr;Lik-HangLee,HongKongPolytechnicUniversity,HongKongSAR(China),lik-hang.lee@.hk;PanHui,HongKongUniversityofScienceandTechnology(Guangzhou),China,panhui@ust.hk;InSoKweon,KAIST,SouthKorea,iskweon77@kaist.ac.kr;ChoongSeonHong,KyungHeeUniversity,SouthKorea,cshong@khu.ac.kr.
Permissiontomakedigitalorhardcopiesofallorpartofthisworkforpersonalorclassroomuseisgrantedwithoutfeeprovidedthatcopiesarenotmadeordistributedforprofitorcommercialadvantageandthatcopiesbearthisnoticeandthefullcitationonthefirstpage.Copyrightsforcomponents
ofthisworkownedbyothersthanACMmustbehonored.Abstractingwithcreditispermitted.Tocopyotherwise,orrepublish,topostonserversortoredistributetolists,requirespriorspecificpermissionand/orafee.Requestpermissionsfrompermissions@.
?2022AssociationforComputingMachinery.
ManuscriptsubmittedtoACM
ManuscriptsubmittedtoACM1
2Zhangetal.
howChatGPTmightevolvetorealizegeneral-purposeAIGC(a.k.a.AI-generatedcontent),whichwillbeasignificantmilestoneforthedevelopmentofAGI.
CCSConcepts:?Computingmethodologies→Computervisiontasks;Naturallanguagegeneration;Machinelearningapproaches.AdditionalKeyWordsandPhrases:Survey,ChatGPT,GPT-4,GenerativeAI,AGI,ArtificialGeneralIntelligence,AIGC
ACMReferenceFormat:
ChaoningZhang,ChenshuangZhang,ChenghaoLi,YuQiao,ShengZheng,SumitKumarDam,MengchunZhang,JungUkKim,SeongTaeKim,JinwooChoi,Gyeong-MoonPark,Sung-HoBae,Lik-HangLee,PanHui,InSoKweon,andChoongSeonHong.2022.
OneSmallStepforGenerativeAI,OneGiantLeapforAGI:ACompleteSurveyonChatGPTinAIGCEra.1,1(April2022),
29
pages.
.org/XXXXXXX.XXXXXXX
https://doi
Contents
Abstract
1
Contents
2
1Introduction
2
2OverviewofChatGPT
4
2.1OpenAI
4
2.2Capabilities
5
3TechnologybehindChatGPT
6
3.1Twocoretechniques
6
3.2Technologypath
7
4ApplicationsofChatGPT
10
4.1Scientificwriting
10
4.2Educationfield
13
4.3Medicalfield
14
4.4Otherfields
15
5Challenges
16
5.1Technicallimitations
16
5.2Misusecases
17
5.3Ethicalconcerns
18
5.4Regulationpolicy
19
6Outlook:TowardsAGI
20
6.1Technologyaspect
20
6.2Beyondtechnology
21
7Conclusion
22
References
22
1INTRODUCTION
ThepastfewyearshavewitnessedtheadventofnumerousgenerativeAI(AIGC,a.k.a.AI-generatedcontent)tools[
73
,
135
,
141
],suggestingAIhasenteredaneweraofcreatinginsteadofpurelyunderstandingcontent.Foracomplete
ManuscriptsubmittedtoACM
Fig.1.Structureoverviewofthissurvey.
OneSmallStepforGenerativeAI,OneGiantLeapforAGI:ACompleteSurveyonChatGPTinAIGCEra3
ManuscriptsubmittedtoACM
4Zhangetal.
surveyongenerativeAI(AIGC),thereaderscanreferto[
214
].AmongthoseAIGCtools,ChatGPT,whichwasreleasedinNovember2022,hascaughtunprecedentedattention.Itattractednumeroususers,andthenumberofactivemonthlyuserssurpassed100millionwithinonlytwomonths,breakingtheusergrowthrecordofothersocialproducts[
118
].ChatGPTwasdevelopedbyOpenAI,whichstartedasanon-profitresearchlaboratory,withamissionofbuildingsafeandbeneficialartificialgeneralintelligence(AGI).AfterannouncingGPT-3in2020,OpenAIhasgraduallybeenrecognizedasaworld-leadingAIlab.Veryrecently,IthasreleasedGPT-4,whichcanbeseenasonesmallstepforgenerativeAI,butonegiantstepforAGI.
Duetoitsimpressivecapabilitiesonlanguageunderstanding,numerousnewsarticlesprovideextensivecoverageandintroduction,tonameafew,BBCScienceFocus[
69
],BBCNews[
39
],CNNBusiness[
79
],BloombergNews[
157
].
Google’smanagementhasissueda“codered"overthethreatofChatGPT,suggestingthatChatGPTposedasignificantdangertothecompany,especiallytoitssearchservice.ThisdangerseemsmoredifficulttoignoreafterMicrosoftadoptedChatGPTintheirBingsearchservice.ThestockpricechangealsoreflectsthebeliefthatChatGPTmighthelpBingcompetewithGooglesearch.SuchunprecedentedattentiononChatGPThasalsomotivatednumerousresearcherstoinvestigatethisintriguingAIGCtoolfromvariousaspects[
149
,
163
].Accordingtoourliteraturereview
ongooglescholar,nofewerthan500articlesincludeChatGPTintheirtitlesormentionthisviraltermintheirabstract.ItischallengingforreaderstograsptheprogressofChatGPTwithoutacompletesurvey.OurcomprehensivereviewprovidesafirstlookintoChatGPTinatimelymanner.
Sincethetopicofthissurveycanberegardedasacommercialtool,wefirstpresentabackgroundonthecompany,i.e.OpenAI,whichdevelopedChatGPT.Moreover,thissurveyalsopresentsadetaileddiscussionofthecapabilitiesofChatGPT.Followingthebackgroundintroduction,thisworksummarizesthetechnologybehindChatGPT.Specifically,
weintroduceitstwocoretechniques:Transformerarchitectureandautoregressivepertaining,basedonwhichwepresentthetechnologypathofthelargelanguagemodelGPTfromv1tov4[
18
,
122
,
136
,
137
].Accordingly,wehighlighttheprominentapplicationsandtherelatedchallenges,suchastechnicallimitations,misuse,ethicsandregulation.Finally,weconcludethissurveybyprovidinganoutlookonhowChatGPTmightevolveinthefuture
towardsgeneral-purposeAIGCforrealizingtheultimategoalofAGI.AstructuredoverviewofourworkisshowninFigure
1
.
2OVERVIEWOFCHATGPT
First,weprovideabackgroundofChatGPTandthecorrespondingorganization,i.e.,OpenAI,whichaimstobuildartificialgeneralintelligence(AGI).ItisexpectedthatAGIcansolvehuman-levelproblemsandbeyond,onthepremiseofbuildingsafe,trustworthysystemsthatarebeneficialtooursociety.
2.1OpenAI
OpenAIisaresearchlaboratorymadeupofagroupofresearchersandengineerscommittedtothecommissionofbuildingsafeandbeneficialAGI[
50
].ItwasfoundedonDecember11,2015,byagroupofhigh-profiletechexecutives,
includingTeslaCEOElonMusk,SpaceXPresidentGwynneShotwell,LinkedInco-founderReidHoffman,andventurecapitalistsPeterThielandSamAltman[
78
].Inthissubsection,wewilltalkabouttheearlydaysofOpenAI,howitbecameafor-profitorganization,anditscontributionstothefieldofAI.
Inthebeginning,OpenAIisanon-profitorganization[
24
],anditsresearchiscenteredondeeplearningandrein-forcementlearning,naturallanguageprocessing,robotics,andmore.Thecompanyquicklyestablishedareputationforitscutting-edgeresearchafterpublishingseveralinfluentialpapers[
123
]anddevelopingsomeofthemostsophisticated
ManuscriptsubmittedtoACM
OneSmallStepforGenerativeAI,OneGiantLeapforAGI:ACompleteSurveyonChatGPTinAIGCEra5
AImodels.However,tocreateAItechnologiesthatcouldbringinmoney,OpenAIwasreorganizedasafor-profitcompanyin2019[
31
].Despitethis,thecompanykeepsdevelopingethicalandsecureAIalongsidecreatingcommercialapplicationsforitstechnology.Additionally,OpenAIhasworkedwithseveraltoptechfirms,includingMicrosoft,Amazon,andIBM.Microsoftrevealedanewmultiyear,multibillion-dollarventurewithOpenAIearlierthisyear[
21
].
ThoughMicrosoftdidnotgiveaprecisesumofinvestment,SemaforclaimedthatMicrosoftwasindiscussionstospendupto$10billion[
101
].AccordingtotheWallStreetJournal,OpenAIisworthroughly$29billion[
13
].
Fig.2.OpenAIproductstimeline.
Fromlargelanguagemodelstoopen-sourcesoftware,OpenAIhassignificantlyadvancedthefieldofAI.Tobeginwith,OpenAIhasdevelopedsomeofthemostpotentlanguagemodelstodate,includingGPT-3[
95
],whichhasgainedwidespreadpraiseforitsabilitytoproducecohesiveandrealistictextinnumerouscontexts.OpenAIalsocarriesoutresearchinreinforcementlearning,abranchofartificialintelligencethataimstotrainrobotstobasetheirchoicesonrewardsandpunishments.ProximalPolicyOptimization(PPO)[
71
],SoftActor-Critic(SAC)[
189
],andTrustArea
PolicyOptimization(TRPO)[
181
]arejustafewofthereinforcementlearningalgorithmsthatOpenAIhascreatedsofar.Thesealgorithmshavebeenemployedtotrainagentsforvarioustasks,includingplayinggamesandcontrollingrobots.OpenAIhascreatedmanysoftwaretoolsuptothispointtoassistwithitsresearchendeavors,includingtheOpenAIGym[
76
],atoolsetforcreatingandcontrastingreinforcementlearningalgorithms.Intermsofhardware,OpenAIhasinvestedinseveralhigh-performanceprocessingsystems,includingtheDGX-1andDGX-2systemsfromNVIDIA[
150
].ThesesystemswerecreatedwithdeeplearninginmindandarecapableofofferingtheprocessingpowerneededtobuildsophisticatedAImodels.ExceptforChatGPT,otherpopulartoolsdevelopedbyOpenAIincludeDALL-E[
141
]
andWhisper[
135
],Codex[
25
].AsummarizationoftheOpenAIproductpipelineisshowninFigure
2
.
2.2Capabilities
ChatGPTusesinteractiveformstoprovidedetailedandhuman-likeresponsestoquestionsraisedbyusers[
1
].ChatGPTiscapableofproducinghigh-qualitytextoutputsbasedonthepromptinputtext.GPT-4-basedChatGPTpluscanadditionallytakeimagesastheinput.Exceptforthebasicroleofachatbot,ChatGPTcansuccessfullyhandlevarioustext-to-texttasks,suchastextsummarization[
45
],textcompletion,textclassification[
86
],sentiment[
221
]analysis[
112
],paraphrasing[
104
],translation[
35
],etc.
ChatGPThasbecomeapowerfulcompetitorinsearchengines.Asmentionedinourintroductorysection,Google,whichsuppliesthemostexcellentsearchengineintheworld,considersChatGPTasachallengetoitsmonopoly[
188
].
ManuscriptsubmittedtoACM
6Zhangetal.
Notably,MicrosofthasintegratedChatGPTintoitsBingsearchengine,allowinguserstoreceivemorecreativereplies[
174
].WeseeanobviousdistinctionbetweensearchenginesandChatGPT.Thatis,searchenginesassistusersinfindingtheinformationtheywant,whileChatGPTdevelopsrepliesinatwo-wayconversation,providinguserswithabetterexperience.
Othercompaniesaredevelopingsimilarchatbotproducts,suchasLamMDAfromGoogleandBlenderBotfromMeta.
UnlikeChatGPT,theLaMDA,developedbyGooglein2021,activelyparticipatesinconversationswithusers,resultinginracist,sexist,andotherformsofbiasinoutputtext[
119
].BlenderBotisMeta’schatbot,andthefeedbackfromusersisrelativelydullbecausethedeveloperhassettighterconstraintsonitsoutputmaterial[
130
].ChatGPTappearsto
havebalancedthehuman-likeoutputandbiastosomelevel,allowingformoreexcitingresponses.Significantly,inadditiontobeingmoreefficientandhavingahighermaximumtokenlimitthanvanillaChatGPT,ChatGPTpoweredbyGPT-4cancreatemultipledialectlanguagesandemotionalreactions,aswellasreduceundesirableresults,therebydecreasingbias[
169
].Itisnotedin[
96
]thatthemodelingcapacityofChatGPTcanbefurtherimprovedbyusingmulti-tasklearningandenhancingthequalityoftrainingdata.
3TECHNOLOGYBEHINDCHATGPT
3.1Twocoretechniques
Backbonearchitecture:Transformer.BeforetheadventofTransformer[
182
],RNNwasadominantbackbonearchitectureforlanguageunderstanding,andattentionwasfoundtobeacriticalcomponentofthemodelperformance.
Incontrasttopriorworksthatonlyuseattentionasasupportivecomponent,theGoogleteammadeaclaimintheirworktitle:“AttentionisAllYouNeed"[
182
]claimedthatsinceGooglereleasedapaper,namely“AttentionisAllYouNeed"[
182
]in2017,researchanduseoftheTransformerbackbonestructurehasexperiencedexplosivegrowthinthedeeplearningcommunity.Therefore,wepresentasummaryofhowtheTransformerworks,withafocusonitscorecomponentcalledself-attention.
Theunderlyingprincipleofself-attentionpositsthatgivenaninputtext,themechanismiscapableofallocatingdistinctweightstoindividualwords,therebyfacilitatingthecaptureofdependenciesandcontextualrelationshipswithinthesequence.Eachelementwithinthesequencepossessesitsuniquerepresentation.Tocalculatetherelationshipofeachelementtootherswithinthesequence,onecomputestheQ(query),K(key),andV(value)matricesoftheinputsequence.Thesematricesarederivedfromthelineartransformationsoftheinputsequence.Typically,thequerymatrixcorrespondstothecurrentelement,thekeymatrixrepresentsotherelements,andthevaluematrixencapsulatesinformationtobeaggregated.Theassociationweightbetweenthecurrentelementandotherelementsisdeterminedbycalculatingthesimilaritybetweenthequeryandkeymatrices.Thisisgenerallyachievedthroughadotproductoperation.Subsequently,thesimilarityisnormalizedtoensurethatthesumofallassociationsequals1,whichiscommonlyexecutedviathesoftmaxfunction.Thenormalizedweightsarethenappliedtothecorrespondingvalues,followedbytheaggregationoftheseweightedvalues.Thisprocessresultsinanovelrepresentationthatencompassestheassociationinformationbetweenthecurrentwordandotherwordsinthetext.Theaforementionedprocesscanbeformallyexpressedasfollows:
Attention(Q,K,V)=Softmax()V.(1)
Transformertechniqueshavebecomeanessentialfoundationfortherecentdevelopmentoflargelanguagemodels,suchasBERT[
41
]andGPT[
18
,
122
,
136
,
137
]seriesarealsomodelsbasedonTransformertechniques.Thereisalsoa
ManuscriptsubmittedtoACM
OneSmallStepforGenerativeAI,OneGiantLeapforAGI:ACompleteSurveyonChatGPTinAIGCEra7
lineofworksextendingTransformerfromlanguagetovisuals,i.e.,computervision[
42
,
63
,
100
],whichsuggeststhat
TransformerhasbecomeaunifiedbackbonearchitectureforbothNLPandcomputervision.
Generativepretraining:Autoregressive.Formodelpertaining[
64
,
212
,
216
–
218
],therearemultiplepopulargenerativemodelingmethods,includingenergy-basedmodels[
56
,
159
,
160
,
186
],variationalautoencoder[
5
,
84
,
124
],GAN[
17
,
54
,
198
],diffusionmodel[
20
,
33
,
213
,
215
,
220
],etc.Here,wemainlysummarizeautoregressivemodelingmethods[
11
,
90
,
90
,
177
,
178
]astheyarethefoundationofGPTmodels[
18
,
122
,
136
,
137
].
Autoregressivemodelsconstituteaprominentapproachforhandlingtimeseriesdatainstatisticalanalysis.Thesemodelsspecifythattheoutputvariableislinearlydependentonitsprecedingvalues.Inthecontextoflanguagemodeling[
18
,
122
,
136
,
137
],autoregressivemodelspredictthesubsequentwordgiventhepreviousword,orthelastprobablewordgiventhefollowingwords.Themodelslearnajointdistributionofsequencedata,employingprevioustimestepsasinputstoforecasteachvariableinthesequence.Theautoregressivemodelpositsthatthejointdistribution
pe(x)canbefactorizedintoaproductofconditionaldistributions,asdemonstratedbelow:
pe(x)=pe(x1)pe(x2|x1) pe(xn|x1,x2,...,xn?1).(
2)
Whilebothrelyonprevioustimesteps,autoregressivemodelsdivergefromrecurrentneuralnetwork(RNN)
architecturesinthesensethattheformerutilizesprevioustimestepsasinputinsteadofthehiddenstatefoundinRNNs.Inessence,autoregressivemodelscanbeconceptualizedasafeed-forwardnetworkthatincorporatesallprecedingtime-stepvariablesasinputs.
Earlyworksmodeleddiscretedataemployingdistinctfunctionstoestimatetheconditionaldistribution,suchaslogisticregressioninFullyVisibleSigmoidBeliefNetwork(FVSBN)[
51
]andonehiddenlayerneuralnetworksinNeuralAutoregressiveDistributionEstimation(NADE)[
90
].Subsequentresearchexpandedtomodelcontinuousvariables[
177
,
178
].Autoregressivemethodshavebeenextensivelyappliedtootherfieldswithrepresentativeworks:PixelCNN[
180
]andPixelCNN++[
153
]),audiogeneration(WaveNet[
179
]).
3.2Technologypath
ThedevelopmentofChatGPTisbasedonaseriesofGPTmodels,whichconstituteasubstantialachievementforthefieldofNLP.AnoverviewofthisdevelopmentissummarizedinFigure
6
.Inthefollowing,wesummarizethekeycomponentsofGPTaswellasthemajorchangesintheupdatedGPTs.
Table1.ComparisonbetweenGPTandBERT.
Category
Description
Similarities
Backbone
BothGPTandBERTuseattention-basedTransformer.
LearningParadigm
BothG
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年數(shù)據(jù)治理考試試題及答案
- 2025年值班工作考試試題及答案
- 2025年國(guó)粹麻將考試題及答案
- 2025年古詩(shī)詞語(yǔ)文試題及答案
- 2025年數(shù)字測(cè)繪考試試題及答案
- 2025年采油考試題庫(kù)及答案
- 2025年奧鵬教育測(cè)試題及答案
- 2025年電商推廣面試題及答案
- 2025年盒馬生鮮考試題及答案
- 2025年發(fā)展社區(qū)文化面試題及答案
- 貴州區(qū)域地質(zhì)地史概述
- Aptitude態(tài)度的重要性
- 《推薦》500kV輸電線路應(yīng)急處置預(yù)案6個(gè)
- 麗聲北極星分級(jí)繪本第三級(jí)下 The Class Trip 課件
- 放射性元素的衰變
- 第一課想聽(tīng)聽(tīng)我的忠告嗎
- 高英Lesson3 Pub Talk and the King27s English
- 防洪堤防工程堤頂高程的計(jì)算表
- 古詩(shī)詞常見(jiàn)題材之思鄉(xiāng)懷人詩(shī)鑒賞
- 《平方差公式(1)》導(dǎo)學(xué)案
- 等保三級(jí)基線要求判分標(biāo)準(zhǔn)v10
評(píng)論
0/150
提交評(píng)論