版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022年廣西柳州市融安縣重點(diǎn)中學(xué)中考數(shù)學(xué)全真模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫(xiě)清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效;在草稿紙、試卷上答題無(wú)效。4.作圖可先使用鉛筆畫(huà)出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.關(guān)于x的一元二次方程x2+2x+k+1=0的兩個(gè)實(shí)根x1,x2,滿足x1+x2﹣x1x2<﹣1,則k的取值范圍在數(shù)軸上表示為()A. B.C. D.2.如圖,A、B、C是⊙O上的三點(diǎn),∠B=75°,則∠AOC的度數(shù)是()A.150° B.140° C.130° D.120°3.小明要去超市買(mǎi)甲、乙兩種糖果,然后混合成5千克混合糖果,已知甲種糖果的單價(jià)為a元/千克,乙種糖果的單價(jià)為b元/千克,且a>b.根據(jù)需要小明列出以下三種混合方案:(單位:千克)甲種糖果乙種糖果混合糖果方案1235方案2325方案32.52.55則最省錢(qián)的方案為()A.方案1 B.方案2C.方案3 D.三個(gè)方案費(fèi)用相同4.一個(gè)圓的內(nèi)接正六邊形的邊長(zhǎng)為2,則該圓的內(nèi)接正方形的邊長(zhǎng)為()A. B.2 C.2 D.45.如圖,點(diǎn)P(x,y)(x>0)是反比例函數(shù)y=(k>0)的圖象上的一個(gè)動(dòng)點(diǎn),以點(diǎn)P為圓心,OP為半徑的圓與x軸的正半軸交于點(diǎn)A,若△OPA的面積為S,則當(dāng)x增大時(shí),S的變化情況是()A.S的值增大 B.S的值減小C.S的值先增大,后減小 D.S的值不變6.如圖,是半圓的直徑,點(diǎn)、是半圓的三等分點(diǎn),弦.現(xiàn)將一飛鏢擲向該圖,則飛鏢落在陰影區(qū)域的概率為()A. B. C. D.7.已知拋物線y=(x﹣)(x﹣)(a為正整數(shù))與x軸交于Ma、Na兩點(diǎn),以MaNa表示這兩點(diǎn)間的距離,則M1N1+M2N2+…+M2018N2018的值是()A. B. C. D.8.二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,給出下列四個(gè)結(jié)論:①4ac﹣b2<0;②3b+2c<0;③4a+c<2b;④m(am+b)+b<a(m≠﹣1),其中結(jié)論正確的個(gè)數(shù)是()A.1 B.2 C.3 D.49.某小組7名同學(xué)在一周內(nèi)參加家務(wù)勞動(dòng)的時(shí)間如下表所示,關(guān)于“勞動(dòng)時(shí)間”的這組數(shù)據(jù),以下說(shuō)法正確的是()勞動(dòng)時(shí)間(小時(shí))33.544.5人數(shù)1132A.中位數(shù)是4,眾數(shù)是4 B.中位數(shù)是3.5,眾數(shù)是4C.平均數(shù)是3.5,眾數(shù)是4 D.平均數(shù)是4,眾數(shù)是3.510.?dāng)?shù)軸上有A,B,C,D四個(gè)點(diǎn),其中絕對(duì)值大于2的點(diǎn)是()A.點(diǎn)A B.點(diǎn)B C.點(diǎn)C D.點(diǎn)D11.如圖,在△ABC中,EF∥BC,AB=3AE,若S四邊形BCFE=16,則S△ABC=()A.16 B.18 C.20 D.2412.如圖,點(diǎn)D(0,3),O(0,0),C(4,0)在⊙A上,BD是⊙A的一條弦,則cos∠OBD=()A. B. C. D.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.如圖,中,∠,,的面積為,為邊上一動(dòng)點(diǎn)(不與,重合),將和分別沿直線,翻折得到和,那么△的面積的最小值為_(kāi)___.14.矩形ABCD中,AB=6,BC=8.點(diǎn)P在矩形ABCD的內(nèi)部,點(diǎn)E在邊BC上,滿足△PBE∽△DBC,若△APD是等腰三角形,則PE的長(zhǎng)為數(shù)___________.15.分解因式:3x2-6x+3=__.16.不等式組的解集為_(kāi)____.17.關(guān)于x的一元二次方程有兩個(gè)不相等的實(shí)數(shù)根,則k的取值范圍是▲.18.已知△ABC中,AB=6,AC=BC=5,將△ABC折疊,使點(diǎn)A落在BC邊上的點(diǎn)D處,折痕為EF(點(diǎn)E.F分別在邊AB、AC上).當(dāng)以B.E.D為頂點(diǎn)的三角形與△DEF相似時(shí),BE的長(zhǎng)為_(kāi)____.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.19.(6分)如圖,已知四邊形ABCD是矩形,把矩形沿直線AC折疊,點(diǎn)B落在點(diǎn)E處,連接DE.若DE:AC=3:5,求的值.20.(6分)如圖,正方形ABCD的邊長(zhǎng)為4,點(diǎn)E,F(xiàn)分別在邊AB,AD上,且∠ECF=45°,CF的延長(zhǎng)線交BA的延長(zhǎng)線于點(diǎn)G,CE的延長(zhǎng)線交DA的延長(zhǎng)線于點(diǎn)H,連接AC,EF.,GH.填空:∠AHC∠ACG;(填“>”或“<”或“=”)線段AC,AG,AH什么關(guān)系?請(qǐng)說(shuō)明理由;設(shè)AE=m,①△AGH的面積S有變化嗎?如果變化.請(qǐng)求出S與m的函數(shù)關(guān)系式;如果不變化,請(qǐng)求出定值.②請(qǐng)直接寫(xiě)出使△CGH是等腰三角形的m值.21.(6分)已知平行四邊形ABCD中,CE平分∠BCD且交AD于點(diǎn)E,AF∥CE,且交BC于點(diǎn)F.求證:△ABF≌△CDE;如圖,若∠1=65°,求∠B的大?。?2.(8分)如圖,在△ABC中,AB=AC,以AB為直徑的⊙O分別交BC,AC于點(diǎn)D,E,DG⊥AC于點(diǎn)G,交AB的延長(zhǎng)線于點(diǎn)F.(1)求證:直線FG是⊙O的切線;(2)若AC=10,cosA=2523.(8分)為看豐富學(xué)生課余文化生活,某中學(xué)組織學(xué)生進(jìn)行才藝比賽,每人只能從以下五個(gè)項(xiàng)目中選報(bào)一項(xiàng):.書(shū)法比賽,.繪畫(huà)比賽,.樂(lè)器比賽,.象棋比賽,.圍棋比賽根據(jù)學(xué)生報(bào)名的統(tǒng)計(jì)結(jié)果,繪制了如下尚不完整的統(tǒng)計(jì)圖:圖1各項(xiàng)報(bào)名人數(shù)扇形統(tǒng)計(jì)圖:圖2各項(xiàng)報(bào)名人數(shù)條形統(tǒng)計(jì)圖:根據(jù)以上信息解答下列問(wèn)題:(1)學(xué)生報(bào)名總?cè)藬?shù)為人;(2)如圖1項(xiàng)目D所在扇形的圓心角等于;(3)請(qǐng)將圖2的條形統(tǒng)計(jì)圖補(bǔ)充完整;(4)學(xué)校準(zhǔn)備從書(shū)法比賽一等獎(jiǎng)獲得者甲、乙、丙、丁四名同學(xué)中任意選取兩名同學(xué)去參加全市的書(shū)法比賽,求恰好選中甲、乙兩名同學(xué)的概率.24.(10分)“食品安全”受到全社會(huì)的廣泛關(guān)注,我區(qū)兼善中學(xué)對(duì)部分學(xué)生就食品安全知識(shí)的了解程度,采用隨機(jī)抽樣調(diào)查的方式,并根據(jù)收集到的信息進(jìn)行統(tǒng)計(jì),繪制了下面的兩幅尚不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)統(tǒng)計(jì)圖中所提供的信息解答下列問(wèn)題:(1)接受問(wèn)卷調(diào)查的學(xué)生共有人,扇形統(tǒng)計(jì)圖中“基本了解”部分所對(duì)應(yīng)扇形的圓心角為°;(2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;(3)若對(duì)食品安全知識(shí)達(dá)到“了解”程度的學(xué)生中,男、女生的比例恰為2:3,現(xiàn)從中隨機(jī)抽取2人參加食品安全知識(shí)競(jìng)賽,請(qǐng)用樹(shù)狀圖或列表法求出恰好抽到1個(gè)男生和1個(gè)女生的概率.25.(10分)如圖,AB為⊙O的直徑,點(diǎn)E在⊙O上,C為的中點(diǎn),過(guò)點(diǎn)C作直線CD⊥AE于D,連接AC、BC.(1)試判斷直線CD與⊙O的位置關(guān)系,并說(shuō)明理由;(2)若AD=2,AC=,求AB的長(zhǎng).26.(12分)平面直角坐標(biāo)系xOy中(如圖),已知拋物線y=ax2+bx+3與y軸相交于點(diǎn)C,與x軸正半軸相交于點(diǎn)A,OA=OC,與x軸的另一個(gè)交點(diǎn)為B,對(duì)稱(chēng)軸是直線x=1,頂點(diǎn)為P.(1)求這條拋物線的表達(dá)式和頂點(diǎn)P的坐標(biāo);(2)拋物線的對(duì)稱(chēng)軸與x軸相交于點(diǎn)M,求∠PMC的正切值;(3)點(diǎn)Q在y軸上,且△BCQ與△CMP相似,求點(diǎn)Q的坐標(biāo).27.(12分)已知:如圖.D是的邊上一點(diǎn),,交于點(diǎn)M,.(1)求證:;(2)若,試判斷四邊形的形狀,并說(shuō)明理由.
參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、D【解析】試題分析:根據(jù)根的判別式和根與系數(shù)的關(guān)系列出不等式,求出解集.解:∵關(guān)于x的一元二次方程x2+2x+k+1=0有兩個(gè)實(shí)根,∴△≥0,∴4﹣4(k+1)≥0,解得k≤0,∵x1+x2=﹣2,x1?x2=k+1,∴﹣2﹣(k+1)<﹣1,解得k>﹣2,不等式組的解集為﹣2<k≤0,在數(shù)軸上表示為:,故選D.點(diǎn)評(píng):本題考查了根的判別式、根與系數(shù)的關(guān)系,在數(shù)軸上找到公共部分是解題的關(guān)鍵.2、A【解析】
直接根據(jù)圓周角定理即可得出結(jié)論.【詳解】∵A、B、C是⊙O上的三點(diǎn),∠B=75°,∴∠AOC=2∠B=150°.故選A.3、A【解析】
求出三種方案混合糖果的單價(jià),比較后即可得出結(jié)論.【詳解】方案1混合糖果的單價(jià)為,方案2混合糖果的單價(jià)為,方案3混合糖果的單價(jià)為.∵a>b,∴,∴方案1最省錢(qián).故選:A.【點(diǎn)睛】本題考查了加權(quán)平均數(shù),求出各方案混合糖果的單價(jià)是解題的關(guān)鍵.4、B【解析】
圓內(nèi)接正六邊形的邊長(zhǎng)是1,即圓的半徑是1,則圓的內(nèi)接正方形的對(duì)角線長(zhǎng)是2,進(jìn)而就可求解.【詳解】解:∵圓內(nèi)接正六邊形的邊長(zhǎng)是1,∴圓的半徑為1.那么直徑為2.圓的內(nèi)接正方形的對(duì)角線長(zhǎng)為圓的直徑,等于2.∴圓的內(nèi)接正方形的邊長(zhǎng)是1.故選B.【點(diǎn)睛】本題考查正多邊形與圓,關(guān)鍵是利用知識(shí)點(diǎn):圓內(nèi)接正六邊形的邊長(zhǎng)和圓的半徑相等;圓的內(nèi)接正方形的對(duì)角線長(zhǎng)為圓的直徑解答.5、D【解析】
作PB⊥OA于B,如圖,根據(jù)垂徑定理得到OB=AB,則S△POB=S△PAB,再根據(jù)反比例函數(shù)k的幾何意義得到S△POB=|k|,所以S=2k,為定值.【詳解】作PB⊥OA于B,如圖,則OB=AB,∴S△POB=S△PAB.∵S△POB=|k|,∴S=2k,∴S的值為定值.故選D.【點(diǎn)睛】本題考查了反比例函數(shù)系數(shù)k的幾何意義:在反比例函數(shù)y=圖象中任取一點(diǎn),過(guò)這一個(gè)點(diǎn)向x軸和y軸分別作垂線,與坐標(biāo)軸圍成的矩形的面積是定值|k|.6、D【解析】
連接OC、OD、BD,根據(jù)點(diǎn)C,D是半圓O的三等分點(diǎn),推導(dǎo)出OC∥BD且△BOD是等邊三角形,陰影部分面積轉(zhuǎn)化為扇形BOD的面積,分別計(jì)算出扇形BOD的面積和半圓的面積,然后根據(jù)概率公式即可得出答案.【詳解】解:如圖,連接OC、OD、BD,∵點(diǎn)C、D是半圓O的三等分點(diǎn),∴,∴∠AOC=∠COD=∠DOB=60°,∵OC=OD,∴△COD是等邊三角形,∴OC=OD=CD,∵,∴,∵OB=OD,∴△BOD是等邊三角形,則∠ODB=60°,∴∠ODB=∠COD=60°,∴OC∥BD,∴,∴S陰影=S扇形OBD,S半圓O,飛鏢落在陰影區(qū)域的概率,故選:D.【點(diǎn)睛】本題主要考查扇形面積的計(jì)算和幾何概率問(wèn)題:概率=相應(yīng)的面積與總面積之比,解題的關(guān)鍵是把求不規(guī)則圖形的面積轉(zhuǎn)化為求規(guī)則圖形的面積.7、C【解析】
代入y=0求出x的值,進(jìn)而可得出MaNa=-,將其代入M1N1+M2N2+…+M2018N2018中即可求出結(jié)論.【詳解】解:當(dāng)y=0時(shí),有(x-)(x-)=0,解得:x1=,x2=,∴MaNa=-,∴M1N1+M2N2+…+M2018N2018=1-+-+…+-=1-=.故選C.【點(diǎn)睛】本題考查了拋物線與x軸的交點(diǎn)坐標(biāo)、二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征以及規(guī)律型中數(shù)字的變化類(lèi),利用二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征求出MaNa的值是解題的關(guān)鍵.8、C【解析】
試題解析:∵圖象與x軸有兩個(gè)交點(diǎn),∴方程ax2+bx+c=0有兩個(gè)不相等的實(shí)數(shù)根,∴b2﹣4ac>0,∴4ac﹣b2<0,①正確;∵﹣=﹣1,∴b=2a,∵a+b+c<0,∴b+b+c<0,3b+2c<0,∴②是正確;∵當(dāng)x=﹣2時(shí),y>0,∴4a﹣2b+c>0,∴4a+c>2b,③錯(cuò)誤;∵由圖象可知x=﹣1時(shí)該二次函數(shù)取得最大值,∴a﹣b+c>am2+bm+c(m≠﹣1).∴m(am+b)<a﹣b.故④正確∴正確的有①②④三個(gè),故選C.考點(diǎn):二次函數(shù)圖象與系數(shù)的關(guān)系.【詳解】請(qǐng)?jiān)诖溯斎朐斀猓?、A【解析】
根據(jù)眾數(shù)和中位數(shù)的概念求解.【詳解】這組數(shù)據(jù)中4出現(xiàn)的次數(shù)最多,眾數(shù)為4,∵共有7個(gè)人,∴第4個(gè)人的勞動(dòng)時(shí)間為中位數(shù),所以中位數(shù)為4,故選A.【點(diǎn)睛】本題考查眾數(shù)與中位數(shù)的意義,一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)叫做眾數(shù);中位數(shù)是將一組數(shù)據(jù)從小到大(或從大到?。┲匦屡帕泻?,最中間的那個(gè)數(shù)(最中間兩個(gè)數(shù)的平均數(shù)),叫做這組數(shù)據(jù)的中位數(shù),如果中位數(shù)的概念掌握得不好,不把數(shù)據(jù)按要求重新排列,就會(huì)出錯(cuò).10、A【解析】
根據(jù)絕對(duì)值的含義和求法,判斷出絕對(duì)值等于2的數(shù)是﹣2和2,據(jù)此判斷出絕對(duì)值等于2的點(diǎn)是哪個(gè)點(diǎn)即可.【詳解】解:∵絕對(duì)值等于2的數(shù)是﹣2和2,∴絕對(duì)值等于2的點(diǎn)是點(diǎn)A.故選A.【點(diǎn)睛】此題主要考查了絕對(duì)值的含義和求法,要熟練掌握,解答此題的關(guān)鍵要明確:①互為相反數(shù)的兩個(gè)數(shù)絕對(duì)值相等;②絕對(duì)值等于一個(gè)正數(shù)的數(shù)有兩個(gè),絕對(duì)值等于0的數(shù)有一個(gè),沒(méi)有絕對(duì)值等于負(fù)數(shù)的數(shù).③有理數(shù)的絕對(duì)值都是非負(fù)數(shù).11、B【解析】【分析】由EF∥BC,可證明△AEF∽△ABC,利用相似三角形的性質(zhì)即可求出S△ABC的值.【詳解】∵EF∥BC,∴△AEF∽△ABC,∵AB=3AE,∴AE:AB=1:3,∴S△AEF:S△ABC=1:9,設(shè)S△AEF=x,∵S四邊形BCFE=16,∴,解得:x=2,∴S△ABC=18,故選B.【點(diǎn)睛】本題考查了相似三角形的判定與性質(zhì),熟練掌握相似三角形的面積比等于相似比的平方是解本題的關(guān)鍵.12、C【解析】
根據(jù)圓的弦的性質(zhì),連接DC,計(jì)算CD的長(zhǎng),再根據(jù)直角三角形的三角函數(shù)計(jì)算即可.【詳解】∵D(0,3),C(4,0),∴OD=3,OC=4,∵∠COD=90°,∴CD==5,連接CD,如圖所示:∵∠OBD=∠OCD,∴cos∠OBD=cos∠OCD=.故選:C.【點(diǎn)睛】本題主要三角函數(shù)的計(jì)算,結(jié)合考查圓性質(zhì)的計(jì)算,關(guān)鍵在于利用等量替代原則.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、4.【解析】
過(guò)E作EG⊥AF,交FA的延長(zhǎng)線于G,由折疊可得∠EAG=30°,而當(dāng)AD⊥BC時(shí),AD最短,依據(jù)BC=7,△ABC的面積為14,即可得到當(dāng)AD⊥BC時(shí),AD=4=AE=AF,進(jìn)而得到△AEF的面積最小值為:AF×EG=×4×2=4.【詳解】解:如圖,過(guò)E作EG⊥AF,交FA的延長(zhǎng)線于G,
由折疊可得,AF=AE=AD,∠BAE=∠BAD,∠DAC=∠FAC,
∵∠BAC=75°,
∴∠EAF=150°,
∴∠EAG=30°,
∴EG=AE=AD,
當(dāng)AD⊥BC時(shí),AD最短,
∵BC=7,△ABC的面積為14,
∴當(dāng)AD⊥BC時(shí),,即:,∴.
∴△AEF的面積最小值為:
AF×EG=×4×2=4,故答案為:4.【點(diǎn)睛】本題主要考查了折疊問(wèn)題,解題的關(guān)鍵是利用對(duì)應(yīng)邊和對(duì)應(yīng)角相等.14、3或1.2【解析】【分析】由△PBE∽△DBC,可得∠PBE=∠DBC,繼而可確定點(diǎn)P在BD上,然后再根據(jù)△APD是等腰三角形,分DP=DA、AP=DP兩種情況進(jìn)行討論即可得.【詳解】∵四邊形ABCD是矩形,∴∠BAD=∠C=90°,CD=AB=6,∴BD=10,∵△PBE∽△DBC,∴∠PBE=∠DBC,∴點(diǎn)P在BD上,如圖1,當(dāng)DP=DA=8時(shí),BP=2,∵△PBE∽△DBC,∴PE:CD=PB:DB=2:10,∴PE:6=2:10,∴PE=1.2;如圖2,當(dāng)AP=DP時(shí),此時(shí)P為BD中點(diǎn),∵△PBE∽△DBC,∴PE:CD=PB:DB=1:2,∴PE:6=1:2,∴PE=3;綜上,PE的長(zhǎng)為1.2或3,故答案為:1.2或3.【點(diǎn)睛】本題考查了相似三角形的性質(zhì),等腰三角形的性質(zhì),矩形的性質(zhì)等,確定出點(diǎn)P在線段BD上是解題的關(guān)鍵.15、3(x-1)2【解析】
先提取公因式3,再對(duì)余下的多項(xiàng)式利用完全平方公式繼續(xù)分解.【詳解】.故答案是:3(x-1)2.【點(diǎn)睛】考查了用提公因式法和公式法進(jìn)行因式分解,一個(gè)多項(xiàng)式有公因式首先提取公因式,然后再用其他方法進(jìn)行因式分解,同時(shí)因式分解要徹底,直到不能分解為止.16、﹣2≤x<【解析】
根據(jù)解不等式的步驟從而得到答案.【詳解】,解不等式①可得:x≥-2,解不等式②可得:x<,故答案為-2≤x<.【點(diǎn)睛】本題主要考查了解不等式,解本題的要點(diǎn)在于分別求解①,②不等式,從而得到答案.17、k<且k≠1.【解析】根據(jù)一元二次方程kx2-x+1=1有兩個(gè)不相等的實(shí)數(shù)根,知△=b2-4ac>1,然后據(jù)此列出關(guān)于k的方程,解方程,結(jié)合一元二次方程的定義即可求解:∵有兩個(gè)不相等的實(shí)數(shù)根,∴△=1-4k>1,且k≠1,解得,k<且k≠1.18、3或【解析】
以B.E.D為頂點(diǎn)的三角形與△DEF相似分兩種情形畫(huà)圖分別求解即可.【詳解】如圖作CM⊥AB當(dāng)∠FED=∠EDB時(shí),∵∠B=∠EAF=∠EDF∴△EDF~△DBE∴EF∥CB,設(shè)EF交AD于點(diǎn)O∵AO=OD,OE∥BD∴AE=EB=3當(dāng)∠FED=∠DEB時(shí)則∠FED=∠FEA=∠DEB=60°此時(shí)△FED~△DEB,設(shè)AE=ED=x,作DN⊥AB于N,則EN=,DN=,∵DN∥CM,∴∴∴x∴BE=6-x=故答案為3或【點(diǎn)睛】本題考察學(xué)生對(duì)相似三角形性質(zhì)定理的掌握和應(yīng)用,熟練掌握相似三角形性質(zhì)定理是解答本題的關(guān)鍵,本題計(jì)算量比較大,計(jì)算能力也很關(guān)鍵.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.19、【解析】
根據(jù)翻折的性質(zhì)可得∠BAC=∠EAC,再根據(jù)矩形的對(duì)邊平行可得AB∥CD,根據(jù)兩直線平行,內(nèi)錯(cuò)角相等可得∠DCA=∠BAC,從而得到∠EAC=∠DCA,設(shè)AE與CD相交于F,根據(jù)等角對(duì)等邊的性質(zhì)可得AF=CF,再求出DF=EF,從而得到△ACF和△EDF相似,根據(jù)相似三角形得出對(duì)應(yīng)邊成比,設(shè)DF=3x,F(xiàn)C=5x,在Rt△ADF中,利用勾股定理列式求出AD,再根據(jù)矩形的對(duì)邊相等求出AB,然后代入進(jìn)行計(jì)算即可得解.【詳解】解:∵矩形沿直線AC折疊,點(diǎn)B落在點(diǎn)E處,∴CE=BC,∠BAC=∠CAE,∵矩形對(duì)邊AD=BC,∴AD=CE,設(shè)AE、CD相交于點(diǎn)F,在△ADF和△CEF中,,∴△ADF≌△CEF(AAS),∴EF=DF,∵AB∥CD,∴∠BAC=∠ACF,又∵∠BAC=∠CAE,∴∠ACF=∠CAE,∴AF=CF,∴AC∥DE,∴△ACF∽△DEF,∴,設(shè)EF=3k,CF=5k,由勾股定理得CE=,∴AD=BC=CE=4k,又∵CD=DF+CF=3k+5k=8k,∴AB=CD=8k,∴AD:AB=(4k):(8k)=.【點(diǎn)睛】本題考查了翻折變換的性質(zhì),全等三角形的判定與性質(zhì),相似三角形的判定與性質(zhì),勾股定理,綜合題難度較大,求出△ACF和△DEF相似是解題的關(guān)鍵,也是本題的難點(diǎn).20、(1)=;(2)結(jié)論:AC2=AG?AH.理由見(jiàn)解析;(3)①△AGH的面積不變.②m的值為或2或8﹣4..【解析】
(1)證明∠DAC=∠AHC+∠ACH=43°,∠ACH+∠ACG=43°,即可推出∠AHC=∠ACG;(2)結(jié)論:AC2=AG?AH.只要證明△AHC∽△ACG即可解決問(wèn)題;(3)①△AGH的面積不變.理由三角形的面積公式計(jì)算即可;②分三種情形分別求解即可解決問(wèn)題.【詳解】(1)∵四邊形ABCD是正方形,∴AB=CB=CD=DA=4,∠D=∠DAB=90°∠DAC=∠BAC=43°,∴AC=,∵∠DAC=∠AHC+∠ACH=43°,∠ACH+∠ACG=43°,∴∠AHC=∠ACG.故答案為=.(2)結(jié)論:AC2=AG?AH.理由:∵∠AHC=∠ACG,∠CAH=∠CAG=133°,∴△AHC∽△ACG,∴,∴AC2=AG?AH.(3)①△AGH的面積不變.理由:∵S△AGH=?AH?AG=AC2=×(4)2=1.∴△AGH的面積為1.②如圖1中,當(dāng)GC=GH時(shí),易證△AHG≌△BGC,可得AG=BC=4,AH=BG=8,∵BC∥AH,∴,∴AE=AB=.如圖2中,當(dāng)CH=HG時(shí),易證AH=BC=4,∵BC∥AH,∴=1,∴AE=BE=2.如圖3中,當(dāng)CG=CH時(shí),易證∠ECB=∠DCF=22.3.在BC上取一點(diǎn)M,使得BM=BE,∴∠BME=∠BEM=43°,∵∠BME=∠MCE+∠MEC,∴∠MCE=∠MEC=22.3°,∴CM=EM,設(shè)BM=BE=m,則CM=EMm,∴m+m=4,∴m=4(﹣1),∴AE=4﹣4(﹣1)=8﹣4,綜上所述,滿足條件的m的值為或2或8﹣4.【點(diǎn)睛】本題屬于四邊形綜合題,考查了正方形的性質(zhì),全等三角形的判定和性質(zhì),相似三角形的判定和性質(zhì)等知識(shí),解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識(shí)解決問(wèn)題.21、(1)證明見(jiàn)解析;(2)50°.【解析】試題分析:(1)由平行四邊形的性質(zhì)得出AB=CD,AD∥BC,∠B=∠D,得出∠1=∠DCE,證出∠AFB=∠1,由AAS證明△ABF≌△CDE即可;(2)由(1)得∠1=∠DCE=65°,由平行四邊形的性質(zhì)和三角形內(nèi)角和定理即可得出結(jié)果.試題解析:(1)∵四邊形ABCD是平行四邊形,∴AB=CD,AD∥BC,∠B=∠D,∴∠1=∠DCE,∵AF∥CE,∴∠AFB=∠ECB,∵CE平分∠BCD,∴∠DCE=∠ECB,∴∠AFB=∠1,在△ABF和△CDE中,,∴△ABF≌△CDE(AAS);(2)由(1)得:∠1=∠ECB,∠DCE=∠ECB,∴∠1=∠DCE=65°,∴∠B=∠D=180°﹣2×65°=50°.考點(diǎn):(1)平行四邊形的性質(zhì);(2)全等三角形的判定與性質(zhì).22、(3)證明見(jiàn)試題解析;(3)3.【解析】試題分析:(3)先得出OD∥AC,有∠ODG=∠DGC,再由DG⊥AC,得到∠DGC=90°,∠ODG=90°,得出OD⊥FG,即可得出直線FG是⊙O的切線.(3)先得出△ODF∽△AGF,再由cosA=25,得出cos∠DOF=2試題解析:(3)如圖3,連接OD,∵AB=AC,∴∠C=∠ABC,∵OD=OB,∴∠ABC=∠ODB,∴∠ODB=∠C,∴OD∥AC,∴∠ODG=∠DGC,∵DG⊥AC,∴∠DGC=90°,∴∠ODG=90°,∴OD⊥FG,∵OD是⊙O的半徑,∴直線FG是⊙O的切線;(3)如圖3,∵AB=AC=30,AB是⊙O的直徑,∴OA=OD=30÷3=5,由(3),可得:OD⊥FG,OD∥AC,∴∠ODF=90°,∠DOF=∠A,在△ODF和△AGF中,∵∠DOF=∠A,∠F=∠F,∴△ODF∽△AGF,∴ODAG=OFAF,∵cosA=25,∴cos∠DOF=25,∴OF=ODcos∠DOF=52考點(diǎn):3.切線的判定;3.相似三角形的判定與性質(zhì);3.綜合題.23、(1)200;(2)54°;(3)見(jiàn)解析;(4)【解析】
(1)根據(jù)A的人數(shù)及所占的百分比即可求出總?cè)藬?shù);(2)用D的人數(shù)除以總?cè)藬?shù)再乘360°即可得出答案;(3)用總?cè)藬?shù)減去A,B,D,E的人數(shù)即為C對(duì)應(yīng)的人數(shù),然后即可把條形統(tǒng)計(jì)圖補(bǔ)充完整;(4)用樹(shù)狀圖列出所有的情況,找出恰好選中甲、乙兩名同學(xué)的情況數(shù),利用概率公式求解即可.【詳解】解:(1)學(xué)生報(bào)名總?cè)藬?shù)為(人),故答案為:200;(2)項(xiàng)目所在扇形的圓心角等于,故答案為:54°;(3)項(xiàng)目的人數(shù)為,補(bǔ)全圖形如下:(4)畫(huà)樹(shù)狀圖得:所有出現(xiàn)的等可能性結(jié)果共有12種,其中滿足條件的結(jié)果有2種.恰好選中甲、乙兩名同學(xué)的概率為.【點(diǎn)睛】本題主要考查扇形統(tǒng)計(jì)圖與條形統(tǒng)計(jì)圖的結(jié)合,能夠從圖表中獲取有用信息,掌握概率公式是解題的關(guān)鍵.24、(1)60,1°.(2)補(bǔ)圖見(jiàn)解析;(3)【解析】
(1)根據(jù)了解很少的人數(shù)和所占的百分百求出抽查的總?cè)藬?shù),再用“基本了解”所占的百分比乘以360°,即可求出“基本了解”部分所對(duì)應(yīng)扇形的圓心角的度數(shù);(2)用調(diào)查的總?cè)藬?shù)減去“基本了解”“了解很少”和“基本了解”的人數(shù),求出了解的人數(shù),從而補(bǔ)全統(tǒng)計(jì)圖;(3)根據(jù)題意先畫(huà)出樹(shù)狀圖,再根據(jù)概率公式即可得出答案.【詳解】(1)接受問(wèn)卷調(diào)查的學(xué)生共有30÷50%=60(人),扇形統(tǒng)計(jì)圖中“基本了解”部分所對(duì)應(yīng)扇形的圓心角為360°×=1°,故答案為60,1.(2)了解的人數(shù)有:60﹣15﹣30﹣10=5(人),補(bǔ)圖如下:(3)畫(huà)樹(shù)狀圖得:?∵共有20種等可能的結(jié)果,恰好抽到1個(gè)男生和1個(gè)女生的有12種情況,∴恰好抽到1個(gè)男生和1個(gè)女生的概率為=.【點(diǎn)睛】此題考查了條形統(tǒng)計(jì)圖、扇形統(tǒng)計(jì)圖以及用列表法或樹(shù)狀圖法求概率,讀懂題意,根據(jù)題意求出總?cè)藬?shù)是解題的關(guān)鍵;概率=所求情況數(shù)與總情況數(shù)之比.25、(1)證明見(jiàn)解析(2)3【解析】
(1)連接,由為的中點(diǎn),得到,等量代換得到,根據(jù)平行線的性質(zhì)得到,即可得到結(jié)論;(2)連接,由勾股定理得到,根據(jù)切割線定理得到,根據(jù)勾股定理得到,由
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025裝修工程責(zé)任合同模板
- 2025-2030年(全新版)中國(guó)水性上光油市場(chǎng)發(fā)展趨勢(shì)展望與投資策略分析報(bào)告
- 2025年涂料原料采購(gòu)及加工勞務(wù)分包合同范本2篇
- 2025年度金融科技項(xiàng)目臨時(shí)風(fēng)險(xiǎn)控制師聘用合同4篇
- 2025-2030年中國(guó)防靜電產(chǎn)品行業(yè)發(fā)展趨勢(shì)展望與投資策略分析報(bào)告新版
- 2025-2030年中國(guó)鋼纖維混凝土市場(chǎng)規(guī)模調(diào)研及投資潛力分析報(bào)告新版
- 2025-2030年中國(guó)速凍米面食品行業(yè)規(guī)模分析及投資前景規(guī)劃研究報(bào)告
- 2025-2030年中國(guó)輕工行業(yè)市場(chǎng)運(yùn)營(yíng)狀況與發(fā)展?jié)摿Ψ治鰣?bào)告
- 2025-2030年中國(guó)蒸發(fā)器、冷凝器行業(yè)發(fā)展規(guī)模及前景趨勢(shì)預(yù)測(cè)報(bào)告
- 2025-2030年中國(guó)脫水蒜粉行業(yè)市場(chǎng)現(xiàn)狀分析及發(fā)展前景規(guī)劃研究報(bào)告
- (正式版)QC∕T 1206.1-2024 電動(dòng)汽車(chē)動(dòng)力蓄電池?zé)峁芾硐到y(tǒng) 第1部分:通 用要求
- 《煤礦地質(zhì)工作細(xì)則》礦安﹝2024﹞192號(hào)
- 平面向量及其應(yīng)用試題及答案
- 2024高考復(fù)習(xí)必背英語(yǔ)詞匯3500單詞
- 消防控制室值班服務(wù)人員培訓(xùn)方案
- 《貴州旅游介紹》課件2
- 2024年中職單招(護(hù)理)專(zhuān)業(yè)綜合知識(shí)考試題庫(kù)(含答案)
- 無(wú)人機(jī)應(yīng)用平臺(tái)實(shí)施方案
- 挪用公款還款協(xié)議書(shū)范本
- 事業(yè)單位工作人員年度考核登記表(醫(yī)生個(gè)人總結(jié))
- 盾構(gòu)隧道施工數(shù)字化與智能化系統(tǒng)集成
評(píng)論
0/150
提交評(píng)論