2022年河南省鄭州楓楊外國(guó)語(yǔ)中學(xué)中考數(shù)學(xué)模擬試題含解析_第1頁(yè)
2022年河南省鄭州楓楊外國(guó)語(yǔ)中學(xué)中考數(shù)學(xué)模擬試題含解析_第2頁(yè)
2022年河南省鄭州楓楊外國(guó)語(yǔ)中學(xué)中考數(shù)學(xué)模擬試題含解析_第3頁(yè)
2022年河南省鄭州楓楊外國(guó)語(yǔ)中學(xué)中考數(shù)學(xué)模擬試題含解析_第4頁(yè)
2022年河南省鄭州楓楊外國(guó)語(yǔ)中學(xué)中考數(shù)學(xué)模擬試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩23頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022年河南省鄭州楓楊外國(guó)語(yǔ)中學(xué)中考數(shù)學(xué)模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫(xiě)在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫(xiě)姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無(wú)效。一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1.若||=-,則一定是()A.非正數(shù) B.正數(shù) C.非負(fù)數(shù) D.負(fù)數(shù)2.二元一次方程組的解為()A. B. C. D.3.如圖,AB是⊙O的切線,半徑OA=2,OB交⊙O于C,∠B=30°,則劣弧的長(zhǎng)是()A.π B. C.π D.π4.如圖,正六邊形ABCDEF內(nèi)接于⊙O,半徑為4,則這個(gè)正六邊形的邊心距OM和BC的長(zhǎng)分別為()A.2,π3 B.23,π C.3,2π3 D.235.如圖,在中,,將繞點(diǎn)逆時(shí)針旋轉(zhuǎn),使點(diǎn)落在線段上的點(diǎn)處,點(diǎn)落在點(diǎn)處,則兩點(diǎn)間的距離為()A. B. C. D.6.下列計(jì)算正確的是()A. B. C. D.7.為弘揚(yáng)傳統(tǒng)文化,某校初二年級(jí)舉辦傳統(tǒng)文化進(jìn)校園朗誦大賽,小明同學(xué)根據(jù)比賽中九位評(píng)委所給的某位參賽選手的分?jǐn)?shù),制作了一個(gè)表格,如果去掉一個(gè)最高分和一個(gè)最低分,則表中數(shù)據(jù)一定不發(fā)生變化的是()中位數(shù)眾數(shù)平均數(shù)方差9.29.39.10.3A.中位數(shù) B.眾數(shù) C.平均數(shù) D.方差8.如圖,矩形中,,,以為圓心,為半徑畫(huà)弧,交于點(diǎn),以為圓心,為半徑畫(huà)弧,交于點(diǎn),則的長(zhǎng)為()A.3 B.4 C. D.59.如圖是一次數(shù)學(xué)活動(dòng)課制作的一個(gè)轉(zhuǎn)盤(pán),盤(pán)面被等分成四個(gè)扇形區(qū)域,并分別標(biāo)有數(shù)字-1,0,1,2.若轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán)兩次,每次轉(zhuǎn)盤(pán)停止后記錄指針?biāo)竻^(qū)域的數(shù)字(當(dāng)指針恰好指在分界線上時(shí),不記,重轉(zhuǎn)),則記錄的兩個(gè)數(shù)字都是正數(shù)的概率為()A. B. C. D.10.如果將拋物線y=x2向右平移1個(gè)單位,那么所得的拋物線的表達(dá)式是(A.y=x2+1 B.y=x二、填空題(共7小題,每小題3分,滿分21分)11.如圖,點(diǎn)C在以AB為直徑的半圓上,AB=8,∠CBA=30°,點(diǎn)D在線段AB上運(yùn)動(dòng),點(diǎn)E與點(diǎn)D關(guān)于AC對(duì)稱(chēng),DF⊥DE于點(diǎn)D,并交EC的延長(zhǎng)線于點(diǎn)F.下列結(jié)論:①CE=CF;②線段EF的最小值為;③當(dāng)AD=2時(shí),EF與半圓相切;④若點(diǎn)F恰好落在BC上,則AD=;⑤當(dāng)點(diǎn)D從點(diǎn)A運(yùn)動(dòng)到點(diǎn)B時(shí),線段EF掃過(guò)的面積是.其中正確結(jié)論的序號(hào)是.12.方程的解是__________.13.若關(guān)于x的分式方程有增根,則m的值為_(kāi)____.14.如圖,直線y=2x+4與x,y軸分別交于A,B兩點(diǎn),以O(shè)B為邊在y軸右側(cè)作等邊三角形OBC,將點(diǎn)C向左平移,使其對(duì)應(yīng)點(diǎn)C′恰好落在直線AB上,則點(diǎn)C′的坐標(biāo)為.15.對(duì)于實(shí)數(shù)x,我們規(guī)定[x]表示不大于x的最大整數(shù),例如[1.1]=1,[3]=3,[﹣2.2]=﹣3,若[]=5,則x的取值范圍是_____.16.因式分解:_________________.17.如圖,在正方形ABCD中,△BPC是等邊三角形,BP、CP的延長(zhǎng)線分別交AD于點(diǎn)E、F,連結(jié)BD、DP,BD與CF相交于點(diǎn)H,給出下列結(jié)論:①△DFP~△BPH;②;③PD2=PH?CD;④,其中正確的是______(寫(xiě)出所有正確結(jié)論的序號(hào)).三、解答題(共7小題,滿分69分)18.(10分)如圖,AB、AC分別是⊙O的直徑和弦,OD⊥AC于點(diǎn)D.過(guò)點(diǎn)A作⊙O的切線與OD的延長(zhǎng)線交于點(diǎn)P,PC、AB的延長(zhǎng)線交于點(diǎn)F.(1)求證:PC是⊙O的切線;(2)若∠ABC=60°,AB=10,求線段CF的長(zhǎng).19.(5分)一件上衣,每件原價(jià)500元,第一次降價(jià)后,銷(xiāo)售甚慢,于是再次進(jìn)行大幅降價(jià),第二次降價(jià)的百分率是第一次降價(jià)的百分率的2倍,結(jié)果這批上衣以每件240元的價(jià)格迅速售出,求兩次降價(jià)的百分率各是多少.20.(8分)在△ABC中,AB=AC≠BC,點(diǎn)D和點(diǎn)A在直線BC的同側(cè),BD=BC,∠BAC=α,∠DBC=β,且α+β=110°,連接AD,求∠ADB的度數(shù).(不必解答)小聰先從特殊問(wèn)題開(kāi)始研究,當(dāng)α=90°,β=30°時(shí),利用軸對(duì)稱(chēng)知識(shí),以AB為對(duì)稱(chēng)軸構(gòu)造△ABD的軸對(duì)稱(chēng)圖形△ABD′,連接CD′(如圖1),然后利用α=90°,β=30°以及等邊三角形等相關(guān)知識(shí)便可解決這個(gè)問(wèn)題.請(qǐng)結(jié)合小聰研究問(wèn)題的過(guò)程和思路,在這種特殊情況下填空:△D′BC的形狀是三角形;∠ADB的度數(shù)為.在原問(wèn)題中,當(dāng)∠DBC<∠ABC(如圖1)時(shí),請(qǐng)計(jì)算∠ADB的度數(shù);在原問(wèn)題中,過(guò)點(diǎn)A作直線AE⊥BD,交直線BD于E,其他條件不變?nèi)鬊C=7,AD=1.請(qǐng)直接寫(xiě)出線段BE的長(zhǎng)為.21.(10分)如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),△AOB是等腰直角三角形,∠AOB=90°,點(diǎn)A(2,1).(1)求點(diǎn)B的坐標(biāo);(2)求經(jīng)過(guò)A、O、B三點(diǎn)的拋物線的函數(shù)表達(dá)式;(3)在(2)所求的拋物線上,是否存在一點(diǎn)P,使四邊形ABOP的面積最大?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.22.(10分)已知函數(shù)的圖象與函數(shù)的圖象交于點(diǎn).(1)若,求的值和點(diǎn)P的坐標(biāo);(2)當(dāng)時(shí),結(jié)合函數(shù)圖象,直接寫(xiě)出實(shí)數(shù)的取值范圍.23.(12分)如圖,直線l是線段MN的垂直平分線,交線段MN于點(diǎn)O,在MN下方的直線l上取一點(diǎn)P,連接PN,以線段PN為邊,在PN上方作正方形NPAB,射線MA交直線l于點(diǎn)C,連接BC.(1)設(shè)∠ONP=α,求∠AMN的度數(shù);(2)寫(xiě)出線段AM、BC之間的等量關(guān)系,并證明.24.(14分)如圖1,直角梯形OABC中,BC∥OA,OA=6,BC=2,∠BAO=45°.(1)OC的長(zhǎng)為;(2)D是OA上一點(diǎn),以BD為直徑作⊙M,⊙M交AB于點(diǎn)Q.當(dāng)⊙M與y軸相切時(shí),sin∠BOQ=;(3)如圖2,動(dòng)點(diǎn)P以每秒1個(gè)單位長(zhǎng)度的速度,從點(diǎn)O沿線段OA向點(diǎn)A運(yùn)動(dòng);同時(shí)動(dòng)點(diǎn)D以相同的速度,從點(diǎn)B沿折線B﹣C﹣O向點(diǎn)O運(yùn)動(dòng).當(dāng)點(diǎn)P到達(dá)點(diǎn)A時(shí),兩點(diǎn)同時(shí)停止運(yùn)動(dòng).過(guò)點(diǎn)P作直線PE∥OC,與折線O﹣B﹣A交于點(diǎn)E.設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為t(秒).求當(dāng)以B、D、E為頂點(diǎn)的三角形是直角三角形時(shí)點(diǎn)E的坐標(biāo).

參考答案一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1、A【解析】

根據(jù)絕對(duì)值的性質(zhì)進(jìn)行求解即可得.【詳解】∵|-x|=-x,又|-x|≥1,∴-x≥1,即x≤1,即x是非正數(shù),故選A.【點(diǎn)睛】本題考查了絕對(duì)值的性質(zhì),熟練掌握絕對(duì)值的性質(zhì)是解題的關(guān)鍵.絕對(duì)值的性質(zhì):一個(gè)正數(shù)的絕對(duì)值是它本身;一個(gè)負(fù)數(shù)的絕對(duì)值是它的相反數(shù);1的絕對(duì)值是1.2、C【解析】

利用加減消元法解這個(gè)二元一次方程組.【詳解】解:①-②2,得:y=-2,將y=-2代入②,得:2x-2=4,解得,x=3,所以原方程組的解是.故選C.【點(diǎn)睛】本題考查了解二元一次方程組和解一元一次方程等知識(shí)點(diǎn),解此題的關(guān)鍵是把二元一次方程組轉(zhuǎn)化成一元一次方程,題目比較典型,難度適中.3、C【解析】

由切線的性質(zhì)定理得出∠OAB=90°,進(jìn)而求出∠AOB=60°,再利用弧長(zhǎng)公式求出即可.【詳解】∵AB是⊙O的切線,∴∠OAB=90°,∵半徑OA=2,OB交⊙O于C,∠B=30°,∴∠AOB=60°,∴劣弧AC?的長(zhǎng)是:=,故選:C.【點(diǎn)睛】本題考查了切線的性質(zhì),圓周角定理,弧長(zhǎng)的計(jì)算,解題的關(guān)鍵是先求出角度再用弧長(zhǎng)公式進(jìn)行計(jì)算.4、D【解析】試題分析:連接OB,∵OB=4,∴BM=2,∴OM=23,BC=故選D.考點(diǎn):1正多邊形和圓;2.弧長(zhǎng)的計(jì)算.5、A【解析】

先利用勾股定理計(jì)算出AB,再在Rt△BDE中,求出BD即可;【詳解】解:∵∠C=90°,AC=4,BC=3,

∴AB=5,

∵△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn),使點(diǎn)C落在線段AB上的點(diǎn)E處,點(diǎn)B落在點(diǎn)D處,

∴AE=AC=4,DE=BC=3,

∴BE=AB-AE=5-4=1,

在Rt△DBE中,BD=,故選A.【點(diǎn)睛】本題考查了旋轉(zhuǎn)的性質(zhì):對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等;對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;旋轉(zhuǎn)前、后的圖形全等.6、A【解析】

原式各項(xiàng)計(jì)算得到結(jié)果,即可做出判斷.【詳解】A、原式=,正確;

B、原式不能合并,錯(cuò)誤;

C、原式=,錯(cuò)誤;

D、原式=2,錯(cuò)誤.

故選A.【點(diǎn)睛】此題考查了實(shí)數(shù)的運(yùn)算,熟練掌握運(yùn)算法則是解本題的關(guān)鍵.7、A【解析】

根據(jù)中位數(shù):將一組數(shù)據(jù)按照從小到大(或從大到小)的順序排列,如果數(shù)據(jù)的個(gè)數(shù)是奇數(shù),則處于中間位置的數(shù)就是這組數(shù)據(jù)的中位數(shù);如果這組數(shù)據(jù)的個(gè)數(shù)是偶數(shù),則中間兩個(gè)數(shù)據(jù)的平均數(shù)就是這組數(shù)據(jù)的中位數(shù)可得答案.【詳解】如果去掉一個(gè)最高分和一個(gè)最低分,則表中數(shù)據(jù)一定不發(fā)生變化的是中位數(shù).故選A.點(diǎn)睛:本題主要考查了中位數(shù),關(guān)鍵是掌握中位數(shù)定義.8、B【解析】

連接DF,在中,利用勾股定理求出CF的長(zhǎng)度,則EF的長(zhǎng)度可求.【詳解】連接DF,∵四邊形ABCD是矩形∴在中,故選:B.【點(diǎn)睛】本題主要考查勾股定理,掌握勾股定理的內(nèi)容是解題的關(guān)鍵.9、C【解析】

列表得,

1

2

0

-1

1

(1,1)

(1,2)

(1,0)

(1,-1)

2

(2,1)

(2,2)

(2,0)

(2,-1)

0

(0,1)

(0,2)

(0,0)

(0,-1)

-1

(-1,1)

(-1,2)

(-1,0)

(-1,-1)

由表格可知,總共有16種結(jié)果,兩個(gè)數(shù)都為正數(shù)的結(jié)果有4種,所以?xún)蓚€(gè)數(shù)都為正數(shù)的概率為,故選C.考點(diǎn):用列表法(或樹(shù)形圖法)求概率.10、D【解析】

本題主要考查二次函數(shù)的解析式【詳解】解:根據(jù)二次函數(shù)的解析式形式可得,設(shè)頂點(diǎn)坐標(biāo)為(h,k),則二次函數(shù)的解析式為y=a(x-故選D.【點(diǎn)睛】本題主要考查二次函數(shù)的頂點(diǎn)式,根據(jù)頂點(diǎn)的平移可得到二次函數(shù)平移后的解析式.二、填空題(共7小題,每小題3分,滿分21分)11、①③⑤.【解析】試題分析:①連接CD,如圖1所示,∵點(diǎn)E與點(diǎn)D關(guān)于AC對(duì)稱(chēng),∴CE=CD,∴∠E=∠CDE,∵DF⊥DE,∴∠EDF=90°,∴∠E+∠F=90°,∠CDE+∠CDF=90°,∴∠F=∠CDF,∴CD=CF,∴CE=CD=CF,∴結(jié)論“CE=CF”正確;②當(dāng)CD⊥AB時(shí),如圖2所示,∵AB是半圓的直徑,∴∠ACB=90°,∵AB=8,∠CBA=30°,∴∠CAB=60°,AC=4,BC=.∵CD⊥AB,∠CBA=30°,∴CD=BC=.根據(jù)“點(diǎn)到直線之間,垂線段最短”可得:點(diǎn)D在線段AB上運(yùn)動(dòng)時(shí),CD的最小值為.∵CE=CD=CF,∴EF=2CD.∴線段EF的最小值為.∴結(jié)論“線段EF的最小值為”錯(cuò)誤;③當(dāng)AD=2時(shí),連接OC,如圖3所示,∵OA=OC,∠CAB=60°,∴△OAC是等邊三角形,∴CA=CO,∠ACO=60°,∵AO=4,AD=2,∴DO=2,∴AD=DO,∴∠ACD=∠OCD=30°,∵點(diǎn)E與點(diǎn)D關(guān)于AC對(duì)稱(chēng),∴∠ECA=∠DCA,∴∠ECA=30°,∴∠ECO=90°,∴OC⊥EF,∵EF經(jīng)過(guò)半徑OC的外端,且OC⊥EF,∴EF與半圓相切,∴結(jié)論“EF與半圓相切”正確;④當(dāng)點(diǎn)F恰好落在上時(shí),連接FB、AF,如圖4所示,∵點(diǎn)E與點(diǎn)D關(guān)于AC對(duì)稱(chēng),∴ED⊥AC,∴∠AGD=90°,∴∠AGD=∠ACB,∴ED∥BC,∴△FHC∽△FDE,∴FH:FD=FC:FE,∵FC=EF,∴FH=FD,∴FH=DH,∵DE∥BC,∴∠FHC=∠FDE=90°,∴BF=BD,∴∠FBH=∠DBH=30°,∴∠FBD=60°,∵AB是半圓的直徑,∴∠AFB=90°,∴∠FAB=30°,∴FB=AB=4,∴DB=4,∴AD=AB﹣DB=4,∴結(jié)論“AD=”錯(cuò)誤;⑤∵點(diǎn)D與點(diǎn)E關(guān)于AC對(duì)稱(chēng),點(diǎn)D與點(diǎn)F關(guān)于BC對(duì)稱(chēng),∴當(dāng)點(diǎn)D從點(diǎn)A運(yùn)動(dòng)到點(diǎn)B時(shí),點(diǎn)E的運(yùn)動(dòng)路徑AM與AB關(guān)于AC對(duì)稱(chēng),點(diǎn)F的運(yùn)動(dòng)路徑NB與AB關(guān)于BC對(duì)稱(chēng),∴EF掃過(guò)的圖形就是圖5中陰影部分,∴S陰影=2S△ABC=2×AC?BC=AC?BC=4×=,∴EF掃過(guò)的面積為,∴結(jié)論“EF掃過(guò)的面積為”正確.故答案為①③⑤.考點(diǎn):1.圓的綜合題;2.等邊三角形的判定與性質(zhì);3.切線的判定;4.相似三角形的判定與性質(zhì).12、x=1【解析】

將方程兩邊平方后求解,注意檢驗(yàn).【詳解】將方程兩邊平方得x-3=4,移項(xiàng)得:x=1,代入原方程得=2,原方程成立,故方程=2的解是x=1.故本題答案為:x=1.【點(diǎn)睛】在解無(wú)理方程是最常用的方法是兩邊平方法及換元法,解得答案時(shí)一定要注意代入原方程檢驗(yàn).13、±【解析】

增根是分式方程化為整式方程后產(chǎn)生的使分式方程的分母為0的根.有增根,最簡(jiǎn)公分母x-3=0,所以增根是x=3,把增根代入化為整式方程的方程即可求出m的值.【詳解】方程兩邊都乘x-3,得x-2(x-3)=m2,∵原方程增根為x=3,∴把x=3代入整式方程,得m=±.【點(diǎn)睛】解決增根問(wèn)題的步驟:①確定增根的值;②化分式方程為整式方程;③把增根代入整式方程即可求得相關(guān)字母的值.14、(﹣2,2)【解析】試題分析:∵直線y=2x+4與y軸交于B點(diǎn),∴x=0時(shí),得y=4,∴B(0,4).∵以O(shè)B為邊在y軸右側(cè)作等邊三角形OBC,∴C在線段OB的垂直平分線上,∴C點(diǎn)縱坐標(biāo)為2.將y=2代入y=2x+4,得2=2x+4,解得x=﹣2.所以C′的坐標(biāo)為(﹣2,2).考點(diǎn):2.一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征;2.等邊三角形的性質(zhì);3.坐標(biāo)與圖形變化-平移.15、11≤x<1【解析】

根據(jù)對(duì)于實(shí)數(shù)x我們規(guī)定[x]不大于x最大整數(shù),可得答案.【詳解】由[]=5,得:,解得11≤x<1,故答案是:11≤x<1.【點(diǎn)睛】考查了解一元一次不等式組,利用[x]不大于x最大整數(shù)得出不等式組是解題關(guān)鍵.16、【解析】

提公因式法和應(yīng)用公式法因式分解.【詳解】解:.故答案為:【點(diǎn)睛】本題考查因式分解,要將一個(gè)多項(xiàng)式分解因式的一般步驟是首先看各項(xiàng)有沒(méi)有公因式,若有公因式,則把它提取出來(lái),之后再觀察是否是完全平方式或平方差式,若是就考慮用公式法繼續(xù)分解因式.17、①②③【解析】

依據(jù)∠FDP=∠PBD,∠DFP=∠BPC=60°,即可得到△DFP∽△BPH;依據(jù)△DFP∽△BPH,可得,再根據(jù)BP=CP=CD,即可得到;判定△DPH∽△CPD,可得,即PD2=PH?CP,再根據(jù)CP=CD,即可得出PD2=PH?CD;根據(jù)三角形面積計(jì)算公式,結(jié)合圖形得到△BPD的面積=△BCP的面積+△CDP面積﹣△BCD的面積,即可得出.【詳解】∵PC=CD,∠PCD=30°,∴∠PDC=75°,∴∠FDP=15°,∵∠DBA=45°,∴∠PBD=15°,∴∠FDP=∠PBD,∵∠DFP=∠BPC=60°,∴△DFP∽△BPH,故①正確;∵∠DCF=90°﹣60°=30°,∴tan∠DCF=,∵△DFP∽△BPH,∴,∵BP=CP=CD,∴,故②正確;∵PC=DC,∠DCP=30°,∴∠CDP=75°,又∵∠DHP=∠DCH+∠CDH=75°,∴∠DHP=∠CDP,而∠DPH=∠CPD,∴△DPH∽△CPD,∴,即PD2=PH?CP,又∵CP=CD,∴PD2=PH?CD,故③正確;如圖,過(guò)P作PM⊥CD,PN⊥BC,設(shè)正方形ABCD的邊長(zhǎng)是4,△BPC為正三角形,則正方形ABCD的面積為16,∴∠PBC=∠PCB=60°,PB=PC=BC=CD=4,∴∠PCD=30°∴PN=PB?sin60°=4×=2,PM=PC?sin30°=2,∵S△BPD=S四邊形PBCD﹣S△BCD=S△PBC+S△PDC﹣S△BCD=×4×2+×2×4﹣×4×4=4+4﹣8=4﹣4,∴,故④錯(cuò)誤,故答案為:①②③.【點(diǎn)睛】本題考查了正方形的性質(zhì)、相似三角形的判定與性質(zhì)、解直角三角形等知識(shí),正確添加輔助線、靈活運(yùn)用相關(guān)的性質(zhì)定理與判定定理是解題的關(guān)鍵.三、解答題(共7小題,滿分69分)18、(1)證明見(jiàn)解析(2)1【解析】

(1)連接OC,可以證得△OAP≌△OCP,利用全等三角形的對(duì)應(yīng)角相等,以及切線的性質(zhì)定理可以得到:∠OCP=90°,即OC⊥PC,即可證得;(2)先證△OBC是等邊三角形得∠COB=60°,再由(1)中所證切線可得∠OCF=90°,結(jié)合半徑OC=1可得答案.【詳解】(1)連接OC.∵OD⊥AC,OD經(jīng)過(guò)圓心O,∴AD=CD,∴PA=PC.在△OAP和△OCP中,∵,∴△OAP≌△OCP(SSS),∴∠OCP=∠OAP.∵PA是半⊙O的切線,∴∠OAP=90°,∴∠OCP=90°,即OC⊥PC,∴PC是⊙O的切線.(2)∵OB=OC,∠OBC=60°,∴△OBC是等邊三角形,∴∠COB=60°.∵AB=10,∴OC=1.由(1)知∠OCF=90°,∴CF=OC?tan∠COB=1.【點(diǎn)睛】本題考查了切線的性質(zhì)定理以及判定定理,以及直角三角形三角函數(shù)的應(yīng)用,證明圓的切線的問(wèn)題常用的思路是根據(jù)切線的判定定理轉(zhuǎn)化成證明垂直的問(wèn)題.19、40%【解析】

先設(shè)第次降價(jià)的百分率是x,則第一次降價(jià)后的價(jià)格為500(1-x)元,第二次降價(jià)后的價(jià)格為500(1-2x),根據(jù)兩次降價(jià)后的價(jià)格是240元建立方程,求出其解即可.【詳解】第一次降價(jià)的百分率為x,則第二次降價(jià)的百分率為2x,根據(jù)題意得:500(1﹣x)(1﹣2x)=240,解得x1=0.2=20%,x2=1.3=130%.則第一次降價(jià)的百分率為20%,第二次降價(jià)的百分率為40%.【點(diǎn)睛】本題考查了一元二次方程解實(shí)際問(wèn)題,讀懂題意,找出題目中的等量關(guān)系,列出方程,求出符合題的解即可.20、(1)①△D′BC是等邊三角形,②∠ADB=30°(1)∠ADB=30°;(3)7+或7﹣【解析】

(1)①如圖1中,作∠ABD′=∠ABD,BD′=BD,連接CD′,AD′,由△ABD≌△ABD′,推出△D′BC是等邊三角形;②借助①的結(jié)論,再判斷出△AD′B≌△AD′C,得∠AD′B=∠AD′C,由此即可解決問(wèn)題.(1)當(dāng)60°<α≤110°時(shí),如圖3中,作∠AB

D′=∠ABD,B

D′=BD,連接CD′,AD′,證明方法類(lèi)似(1).(3)第①種情況:當(dāng)60°<α≤110°時(shí),如圖3中,作∠AB

D′=∠ABD,B

D′=BD,連接CD′,AD′,證明方法類(lèi)似(1),最后利用含30度角的直角三角形求出DE,即可得出結(jié)論;第②種情況:當(dāng)0°<α<60°時(shí),如圖4中,作∠ABD′=∠ABD,BD′=BD,連接CD′,AD′.證明方法類(lèi)似(1),最后利用含30度角的直角三角形的性質(zhì)即可得出結(jié)論.【詳解】(1)①如圖1中,作∠ABD′=∠ABD,BD′=BD,連接CD′,AD′,∵AB=AC,∠BAC=90°,∴∠ABC=45°,∵∠DBC=30°,∴∠ABD=∠ABC﹣∠DBC=15°,在△ABD和△ABD′中,∴△ABD≌△ABD′,∴∠ABD=∠ABD′=15°,∠ADB=∠AD′B,∴∠D′BC=∠ABD′+∠ABC=60°,∵BD=BD′,BD=BC,∴BD′=BC,∴△D′BC是等邊三角形,②∵△D′BC是等邊三角形,∴D′B=D′C,∠BD′C=60°,在△AD′B和△AD′C中,∴△AD′B≌△AD′C,∴∠AD′B=∠AD′C,∴∠AD′B=∠BD′C=30°,∴∠ADB=30°.(1)∵∠DBC<∠ABC,∴60°<α≤110°,如圖3中,作∠ABD′=∠ABD,BD′=BD,連接CD′,AD′,∵AB=AC,∴∠ABC=∠ACB,∵∠BAC=α,∴∠ABC=(180°﹣α)=90°﹣α,∴∠ABD=∠ABC﹣∠DBC=90°﹣α﹣β,同(1)①可證△ABD≌△ABD′,∴∠ABD=∠ABD′=90°﹣α﹣β,BD=BD′,∠ADB=∠AD′B∴∠D′BC=∠ABD′+∠ABC=90°﹣α﹣β+90°﹣α=180°﹣(α+β),∵α+β=110°,∴∠D′BC=60°,由(1)②可知,△AD′B≌△AD′C,∴∠AD′B=∠AD′C,∴∠AD′B=∠BD′C=30°,∴∠ADB=30°.(3)第①情況:當(dāng)60°<α<110°時(shí),如圖3﹣1,由(1)知,∠ADB=30°,作AE⊥BD,在Rt△ADE中,∠ADB=30°,AD=1,∴DE=,∵△BCD'是等邊三角形,∴BD'=BC=7,∴BD=BD'=7,∴BE=BD﹣DE=7﹣;第②情況:當(dāng)0°<α<60°時(shí),如圖4中,作∠ABD′=∠ABD,BD′=BD,連接CD′,AD′.同理可得:∠ABC=(180°﹣α)=90°﹣α,∴∠ABD=∠DBC﹣∠ABC=β﹣(90°﹣α),同(1)①可證△ABD≌△ABD′,∴∠ABD=∠ABD′=β﹣(90°﹣α),BD=BD′,∠ADB=∠AD′B,∴∠D′BC=∠ABC﹣∠ABD′=90°﹣α﹣[β﹣(90°﹣α)]=180°﹣(α+β),∴D′B=D′C,∠BD′C=60°.同(1)②可證△AD′B≌△AD′C,∴∠AD′B=∠AD′C,∵∠AD′B+∠AD′C+∠BD′C=360°,∴∠ADB=∠AD′B=150°,在Rt△ADE中,∠ADE=30°,AD=1,∴DE=,∴BE=BD+DE=7+,故答案為:7+或7﹣.【點(diǎn)睛】此題是三角形綜合題,主要考查全等三角形的判定和性質(zhì).等邊三角形的性質(zhì)、等腰三角形的性質(zhì)等知識(shí),解題的關(guān)鍵是學(xué)會(huì)添加常用輔助線,構(gòu)造全等三角形解決問(wèn)題,屬于中考??碱}型.21、(1)B(-1.2);(2)y=;(3)見(jiàn)解析.【解析】

(1)過(guò)A作AC⊥x軸于點(diǎn)C,過(guò)B作BD⊥x軸于點(diǎn)D,則可證明△ACO≌△ODB,則可求得OD和BD的長(zhǎng),可求得B點(diǎn)坐標(biāo);(2)根據(jù)A、B、O三點(diǎn)的坐標(biāo),利用待定系數(shù)法可求得拋物線解析式;(3)由四邊形ABOP可知點(diǎn)P在線段AO的下方,過(guò)P作PE∥y軸交線段OA于點(diǎn)E,可求得直線OA解析式,設(shè)出P點(diǎn)坐標(biāo),則可表示出E點(diǎn)坐標(biāo),可表示出PE的長(zhǎng),進(jìn)一步表示出△POA的面積,則可得到四邊形ABOP的面積,再利用二次函數(shù)的性質(zhì)可求得其面積最大時(shí)P點(diǎn)的坐標(biāo).【詳解】(1)如圖1,過(guò)A作AC⊥x軸于點(diǎn)C,過(guò)B作BD⊥x軸于點(diǎn)D,∵△AOB為等腰三角形,∴AO=BO,∵∠AOB=90°,∴∠AOC+∠DOB=∠DOB+∠OBD=90°,∴∠AOC=∠OBD,在△ACO和△ODB中∴△ACO≌△ODB(AAS),∵A(2,1),∴OD=AC=1,BD=OC=2,∴B(-1,2);(2)∵拋物線過(guò)O點(diǎn),∴可設(shè)拋物線解析式為y=ax2+bx,把A、B兩點(diǎn)坐標(biāo)代入可得,解得,∴經(jīng)過(guò)A、B、O原點(diǎn)的拋物線解析式為y=x2-x;(3)∵四邊形ABOP,∴可知點(diǎn)P在線段OA的下方,過(guò)P作PE∥y軸交AO于點(diǎn)E,如圖2,設(shè)直線AO解析式為y=kx,∵A(2,1),∴k=,∴直線AO解析式為y=x,設(shè)P點(diǎn)坐標(biāo)為(t,t2-t),則E(t,t),∴PE=t-(t2-t)=-t2+t=-(t-1)2+,∴S△AOP=PE×2=PE═-(t-1)2+,由A(2,1)可求得OA=OB=,∴S△AOB=AO?BO=,∴S四邊形ABOP=S△AOB+S△AOP=-(t-1)2++=,∵-<0,∴當(dāng)t=1時(shí),四邊形ABOP的面積最大,此時(shí)P點(diǎn)坐標(biāo)為(1,-),綜上可知存在使四邊形ABOP的面積最大的點(diǎn)P,其坐標(biāo)為(1,-).【點(diǎn)睛】本題為二次函數(shù)的綜合應(yīng)用,主要涉及待定系數(shù)法、等腰直角三角形的性質(zhì)、全等三角形的判定和性質(zhì)、三角形的面積以及方程思想等知識(shí).在(1)中構(gòu)造三角形全等是解題的關(guān)鍵,在(2)中注意待定系數(shù)法的應(yīng)用,在(3)中用t表示出四邊形ABOP的面積是解題的關(guān)鍵.本題考查知識(shí)點(diǎn)較多,綜合性較強(qiáng),難度適中.22、(1),,或;(2).【解析】【分析】(1)將P(m,n)代入y=kx,再結(jié)合m=2n即可求得k的值,聯(lián)立y=與y=kx組成方程組,解方程組即可求得點(diǎn)P的坐標(biāo);(2)畫(huà)出兩個(gè)函數(shù)的圖象,觀察函數(shù)的圖象即可得.【詳解】(1)∵函數(shù)的圖象交于點(diǎn),∴n=mk,∵m=2n,∴n=2nk,∴k=,∴直線解析式為:y=x,解方程組,得,,∴交點(diǎn)P的坐標(biāo)為:(,)或(-,-);(2)由題意畫(huà)出函數(shù)的圖象與函數(shù)的圖象如圖所示,∵函數(shù)的圖象與函數(shù)的交點(diǎn)P的坐標(biāo)為(m,n),∴當(dāng)k=1時(shí),P的坐標(biāo)為(1,1)或(-1,-1),此時(shí)|m|=|n|,當(dāng)k>1時(shí),結(jié)合圖象可知此時(shí)|m|<|n|,∴當(dāng)時(shí),≥1.【點(diǎn)睛】本題考查了反比例函數(shù)與正比例函數(shù)的交點(diǎn),待定系數(shù)法等,運(yùn)用數(shù)形結(jié)合思想解題是關(guān)鍵.23、(1)45°(2),理由見(jiàn)解析【解析】

(1)由線段的垂直平分線的性質(zhì)可得PM=PN,PO⊥MN,由等腰三角形的性質(zhì)可得∠PMN=∠PNM=α,由正方形的性質(zhì)可得AP=PN,∠APN=90°,可得∠APO=α,由三角形內(nèi)角和定理可求∠AMN的度數(shù);(2)由等腰直角三角形的性質(zhì)和正方形的性質(zhì)可得,,∠MNC=∠ANB=45°,可證△CBN∽△MAN,可得.【詳解】解:(1)如圖,連接MP,∵直線l是線段MN的垂直平分線,∴PM=PN,PO⊥MN∴∠PMN=∠PNM=α∴∠MPO=∠NPO=90°-α,∵四邊形ABNP是正方形∴AP=PN,∠APN=90°∴AP=MP,∠APO=90°-(90°-α)=α∴∠APM=∠MPO-∠APO=(90°-α)-α=90°-2α,∵AP=PM∴,∴∠AMN=∠AMP-∠PMN=45°+α-α=45°(2)理由如下:如圖,連接AN,CN,∵直線l是線段MN的垂直平分線,∴CM=CN,∴∠CMN=∠CNM=45°,∴∠MCN=90°∴,∵四邊形APNB是正方形∴∠ANB=∠BAN=45°∴,∠MNC=∠ANB=45°∴∠ANM=∠BNC又∵∴△CBN∽△MAN∴∴【點(diǎn)睛】本題考查了正方形的性質(zhì),線段垂直平分線的性質(zhì),相似三角形的判定和性質(zhì),添加恰當(dāng)輔助線構(gòu)造相似三角形是本題的關(guān)鍵.24、(4)4;(2);(4)點(diǎn)E的坐標(biāo)為(4,2)、(,)、(4,2).【解析】分析:(4)過(guò)點(diǎn)B作BH⊥OA于H,如圖4(4),易證四邊形OCBH是矩形,從而有OC=BH,只需在△AHB中運(yùn)用三角函數(shù)求出BH即可.(2)過(guò)點(diǎn)B作BH⊥OA于H,過(guò)點(diǎn)G作GF⊥OA于F,過(guò)點(diǎn)B作BR⊥OG于R,連接MN、DG,如圖4(2),則有OH=2,BH=4,MN⊥OC.設(shè)圓的半徑為r,則MN=MB=MD=r.在Rt△BHD中運(yùn)用勾股定理可求出r=2,從而得到點(diǎn)D與點(diǎn)H重合.易證△AFG∽△ADB,從而可求出AF、GF、OF、OG、OB、AB、BG.設(shè)OR=x,利用BR2=OB2﹣OR2=BG2﹣RG2可求出x,進(jìn)而可求出BR.在Rt△ORB中運(yùn)用三角函數(shù)就可解決問(wèn)題.(4)由于△BDE的直角不確定,故需分情況討論,可分三種情況(①∠BDE=90°,②∠BED=90°,③∠DBE=90°)討論,然后運(yùn)用相似三角形的性質(zhì)及三角函數(shù)等知識(shí)建立關(guān)于t的方程就可解決問(wèn)題.詳解:(4)過(guò)點(diǎn)B作BH⊥OA于H,如圖4(4),則有∠BHA=90°=∠COA,∴OC∥BH.∵BC∥OA,∴四邊形OCBH是矩形,∴OC=BH,BC=OH.∵OA=6,BC=2,∴AH=0A﹣OH=OA﹣BC=6﹣2=4.∵∠BHA=90°,∠BAO=45°,∴tan∠BAH==4,∴BH=HA=4,∴OC=BH=4.故答案為4.(2)過(guò)點(diǎn)B作BH⊥OA于H,過(guò)點(diǎn)G作GF⊥OA于F,過(guò)點(diǎn)B作BR⊥OG于R,連接MN、DG,

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論