統(tǒng)計(jì)專業(yè)英語(yǔ) Chapter-8-Hypothesis-Testing_第1頁(yè)
統(tǒng)計(jì)專業(yè)英語(yǔ) Chapter-8-Hypothesis-Testing_第2頁(yè)
統(tǒng)計(jì)專業(yè)英語(yǔ) Chapter-8-Hypothesis-Testing_第3頁(yè)
統(tǒng)計(jì)專業(yè)英語(yǔ) Chapter-8-Hypothesis-Testing_第4頁(yè)
統(tǒng)計(jì)專業(yè)英語(yǔ) Chapter-8-Hypothesis-Testing_第5頁(yè)
已閱讀5頁(yè),還剩37頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

statisticsinpracticeWithourcountrytakingpartinWTO,ourcompaniesarefacingextraordinarilyseriouschallenges,particularlyinAutomobileIndustry。Itisnotonlychallenge,butalsotheopportunity。Inordertoacceptthechallenges,nationalAutomobileIndustry,insuccession,takelotsofmeasurestoreplyit。AautogroupcarriedthroughaseriesofimprovementsonenginesystemonA1modelcar。Eventually,itincreasesthespeedofstartupandknocksdownthenoises,renamedbyA2。Duringthis,onemomentousissuethatcompanypaidattentiontoisenergyefficientofcars。Savinggasisbigsalepoint。TheA1carthatunimprovedcostrelativelyhighvolumegas,8。48literperonehundredkilometers。Thecompanywishthatimprovedcarscansavethegasthantheformercars,atleast,notcostmorethanbefore。Chapter8HypothesisTestingChapter8StatisticsinpracticeTherefore,takeout15A2autosrandomlytodoexperiment,getthestatisticsthat15carscostthevolumeofgasper100kilometers。Seethefollowingchart:(15autosconsumethevolumeofgasper100kilometers)unit:liter8.508.758.338.218.528.308.318.198.408.868.418.018.208.268.39Theaverageis8.377.accordingtothisstatistics,themanagerofTechnologyApartmentconfirmthatimprovedautoscansavethegas.ThemanagerofQualityApartmenthasdifferentideaaboutthisconclusion.Hethoughtthatthephenomenoncomefromtherandomsample.Itissoearlytoperoratethatimprovedautosincreasethemeanmiles-per-gallonratingandweshoulddoHypothesisTestingonstatistics.EngineerZhangwhohaspassedthepractitionerqualificationfromtheQualityApartmenthaslearntalotofstatisticsmethods.ThemanagerofQualityApartmentaskedEngineerZhangtosolvethisproblem.Throughsimplecalculation,theEngineerZhanggottheconclusionthatthepresentdatacannotfiguretheautosbeforeandafterimprovedhavenodistinctchangesinmiles-per-gallonrating.Therefore,howEngineerZhangtogetthisconclusion?Chapter8StatisticsinpracticeThekeystoneofchapter1、thebasictheoryofHypothesisTesting2、theformandkindofHypothesisTesting;3、typeIandtypeIIerror;4、IntervalTestingandmethodsofHypothesisTesting。Thedifficultiesofchapter1、thebasictheoryofHypothesisTesting;2、typeIandtypeIIerrorChapter8Statisticsinpractice8.1.1TestingresearchHypothesisTheformercasecanbeseenanexampleofTestingResearchhypothesesResearchhypothesis:thenewcarswillprovideameanmiles-per-gallonbelower,thatis,theaverageofcostinggasislower8.48literIngeneral,researchhypothesescanbeseenalternativeHypothesis,SowecansetupfollowingnullandalternativeHypothesisChapter8DevelopingnullandalternativeHypothesisExample:amanufacturerofsoftdrinkswhostatesthattwo-litercontainersofitsproductshaveanaverageofatleast67.6fluidounces.Asampleoftwo-litercontainerswillbeselected,andthecontentswillbemeasuredtotestthemanufacture'claim.Inthistypeofhypothesis-testingsituation,wegenerallybeginbyassumingthatthamanufacturer’sclaimistrue.Usingthisapproach,forthesoft-drinkexample,wewouldstatethenullandalternativehypothesesasfollows.Chapter8testingthevalidityofaclaim

8.1.3testinginDecision-MakingsituationsIngeneral,adecision-makermustchoosebetweennullandalternativehypothesis.Example:onthebasisofasampleofpartsfromshipmentthathasjustbeenreceived,aquality-controlinspectormustdecidewhethertoaccepttheentireshipmentortoreturntheshipmenttothesupplierbecauseitdoesnotmeetspecification.Assumethatspecificationforaparticularpartstatethatameanlengthoftwoinchesisdesired.Inthiscase,thenullandalternativehypotheseswouldbeformulatedasfollows.

Letdenotethespecificnumericalvaluebeingconsideredinthenullandalternativehypothesis.Ingeneral,ahypothesistestaboutthevaluesofapopulationmusttakeoneofthefollowingthreeforms:LefttailedtesttwotailedtestRighttailedtestSummaryofFormsfornullandAlternativeHypothesesChapter8TypeIandTypeTTerrorsTypeI:rejectthecorrectoriginalHypothesis,calledProducer'sRisk

TypeII:acceptthewrongoriginalHypothesis,calledConsumer’sRisk

PopulationconditionconclusionHotrueHatrueAcceptH0correcttypeTTerrorconclusionRejectH0TypeIerrorcorrectconclusionWedenotetheprobabilitiesofmakingthetwoerrorsasfollows:α——theprobabilityofmakingaTypeIerrorβ——theprobabilityofmakingaTypeTTerrorInpractice,thepersonconductingthehypothesistestspecifiesthemaximumallowableprobabilityofmakingaTypeIerror,calledthelevelofsignificanceforthetest。Commonchoicesforthelevelofsignificanceareα=0.05orα=0.01。Chapter8TypeIandTypeTTerrorsOne—tailedtestsaboutapopulationmean:Large—samplecaseExample:theFederalTradecommissionperiodicallyconductsstudiesdesignedtotesttheclaimsmanufacturersmakeabouttheirproducts.Forexample,thelabelonalargecanofHilltopcoffeestatesthatthecancontainsatleastthreepoundsofcoffee.Supposewewanttocheckthisclaimbyusinghypothesistesting.supposearandomsampleof36cansofcoffeeisselected.Steps:Thefirststepistodevelopthenullandalternativehypothesis.Notethatifthemeanfillingweightforthesampleof36cansislessthanthreepounds.thesampleresultswillbegintocastaboutonthenullhypothesis.ButhowmuchlessthanthreepoundsmustlessthanthreepoundsmustXbebeforewewouldbewillingtoriskmakingaTypeIerrorandfalselyaccusethecompanyofalabelviolation.ItalldependsontheattitudeofmanagersFirstweconsidertheconditionof,thefigurefollowedshowstheprobabilitythatsamplemeanislessthanthestandarddeviationof1.645timesofpopulationmeanis0.05.IftheFTCconsiderthatthe0.05probabilityofhappeningthetypeIerrorisacceptable,aslongasthevalueofstatistic-----zshowsthatthesamplemeanislessthanthestandarddeviationof1.645timesofpopulationmean,wecanrejectthenullhypotheses,thatisWhenn=36,thesamplemeanisinnormaldistribution,sowecanusethevalueofstatistictomeasurethedepartureofsamplemeanfrompopulationmean.rejectOne—tailedtestsaboutapopulationmean:

Large—samplecaseTheprobabilitythatsampleaverageismorethat1.645standarddeviationsThesampledistributionofOne—tailedtestsaboutapopulationmean:Large—samplecaseBeforegoingtesting,weshouldspecifythemaximumallowableprobabilityofatypeIerror,calledthelevelsignificanceforthetest.Inthehilltopcoffeestudy,thedirectoroftheFTC’stestingprogramhasmadethefollowingstatement:ifthecompanyismeetingitsweightspecificationsexactlyWewouldlikea99%chanceofnottakinganyactionagainstthecompany.whilewedonotwanttoaccusethecompanywronglyofunderfillingitsproducts,wearewillingtoriska1%chanceofmakingthiserror.Wecanconclude,Fromthenormaldistributiontable,wecangetthecriticalvalue2.33。One—tailedtestsaboutapopulationmean:Large—samplecaseAccordingtothesampleaverage,wecangetthattheZislessthan-2.33.thenwecanrejectthenullhypothesisandacceptthealternativehypothesis.Supposeasampleof36cansprovideameanofPoundsandweknowfrompreviousstudiesthatthepopulationdeviation

Z<-2.33rejectedareaIt’sintherejectionregion,sowecanrejectnullhypotheses.One—tailedtestsaboutapopulationmean:Large—samplecaseif,thenthevalueofstatistic

if,theprobabilityoftypeIerrorislessthanthetypeIIerror.Theprobabilitythatthevalueofteststatisticisintherejectionregionisevensmaller.so,togetthecriticalvalueoftest,weonlyneedtoassumeIt’sintherejectionregion,sowecannotrejectnullhypotheses.One—tailedtestsaboutapopulationmean:Large—samplecaseChapter8One-tailedtestsaboutapopulationmeansummary:inlargecase,whetherteststatisticisknownornot,thesampleaverageobeythenominaldistributionThegeneralformofalower-taillefttest.1)setupnullandalternativehypothesis:2)Ensuretheteststatisticandcalculateit:3)Accordingtothepreviouslevelofsignificance,checkthenominaldistributioncharttofindcriticalvalueRejectionruleatalevelofsignificance

orreject

Asthesame,inlargecase,Thegeneralformofalower-tailrighttestis:1)setupnullandalternativehypothesis:2)Ensuretheteststatisticandcalculateit:3)Accordingtothepreviouslevelofsignificance,checkthenominaldistributioncharttofindcriticalvalue.4)RejectionruleatalevelofsignificancerejectorChapter8One-tailedtestsaboutapopulationmeanCase:Onecompanyproducedanewtypeoftire.Itsdesignstandardwastohavetheabilitytorunatleast28000kilometersperhour.30tireswerepickedoutaccidentallyassamplesforexperiment,asaresult,thesamplemeanwas27500kilometersperhour,andthesamplestandarddeviationwas1000kilometersperhour.thelevelofsignificanceis0.05,testifthereisenoughprooftobeagainsttherepresentthattheaveragedistanceperhourisatleast28000kilometers.Solution:weknowthat1,setthenullandalternativehypothesesChapter8One-tailedtestsaboutapopulationmean2.Gettheteststatistic,andcalculateitsvalue3.4.Rejectsowecannotacceptthecompany’srepresentaboutthetireExercise:P272,T14Chapter8One-tailedtestsaboutapopulationmeanChapter8TheUseofP-valueThevalueofPistheprobabilitythatthesamplemeanislessthanorequaltotheobservedvalue.Anditcanalsobecalledtheobservedlevelofsignificance.SetthecaseofHillCo.’scoffeeproblemforexampletocalculateP-valueofthesamplemeanWehavetheteststatisticz=-2.67,andintheformofnormaldistribution,wecangettheareabetweenmeanandz=-2.67is0.4962.sowegettheprobabilitythatthesamplemeanislessthanorequaltotheobservedvalueis0.5000-0.4962=0.0038,andP-valueis0.0038.P-valuecanbeusedtomakedecisionofHypothesisTesting,ifP-valueislessthanlevelofsignificance,thevalueofteststatisticwillbeinrejectionregion,ifit’smorethanlevelofsignificance,thevalueofteststatisticwillbeinacceptedregion.Intheexampleabove,P=0.0038,nullhypothesesshouldberejectedTheP-valuestandardoftesthypothesesnullhypothesesshouldberejectedChapter8TheUseofP-valueChapter8Two-TailedTestsinlarge-SamplecaseCase:AstheruleofAmericanGolfClub,onlythegolfballwhoseaveragevalueofrangeandtherollingdistanceis280meterscanbeusedinthegame.Assumeacompanydevelopedaadvancedproducingtechnology,whichcanmakegolfballswhoseaveragevalueofrangeandtherollingdistanceare280meters.Nowwepickout36golfballsasrandomsamplestotestifthecompany’srepresentistrue.Thedataisasfollowed.(Supposeit’sproceededontheobservedlevelofsignificancewhichis0.05.269301296275282276284272263300295265282263286260285264268288271260270293299293273278278279266269274277281291Thisisanexampleoftwo-tailedtests.First,setupthenullandalternativehypothesisasfollows:Inlargecase,westillusestatisticvalueZWhat’sdifferenttoone-tailedtestistherejectionregionisdistributedonbothsidesofnormaldistributioncurve,thecorrespondingprobabilitybothare.Whenyoulookuptheform,youshouldfindout’scorrespondingcriticalvalueChapter8Two-TailedTestsinlarge-SamplecaseIntheexampleabove,wecangetfromthedataintheform,

SothevalueofstatisticisAsthegivenlevelofobservationInthetable,It’sintheacceptedregion,andwecannotrejectnullhypothesesChapter8Two-TailedTestsinlarge-SamplecaseIntheexampleabove,wecangetfromthedataintheform,1,setupnullandreservationhypotheses2,Gettheteststatistic,andcalculateitsvalue3,asthelevelofobservation,lookupthecriticalvaluefromthenormaldistributiontable.4,theruleofrejection:ororrejectChapter8Two-TailedTestsinlarge-SamplecaseAbouttheexampleofgolfabove,wehaveknownthecorrespondingsamplemean’sZ-valueis-0.75,fromthenormaldistributiontable,theareabetweenmeanandz-value-0.75is0.2734.Asaresult,theleftareais0.2266,andtheareaofleftrejectionregionis=0.025.0.2266>0.025,thestatisticisnotintherejectionregion,sowecannotrejectnullhypotheses,anditisnotagainstthehypothesesabove.

RejectthenullhypothesesChapter8Two-TailedTestsinlarge-SamplecaseInlargecase,thegivenconfidencelevelconfidenceintervalofpopulationmeanis:Whenthehypothesestestisgoing,weshouldmakehypothesesforpopulationparameter:Two-tailedtestAstheruleofrejection,wecangetthattheareaofnon-rejectionsamplemeanH0includesallsamplemeanwhichisbetweenstandarddeviationof‘s

and(1)Chapter8Two-TailedTestsinlarge-SamplecaseAsaresult,thenon-rejectionregionofthetwo-tailedhypothesestest’ssamplemeancanbegivenasfollows:Therelationshipbetweenthenon-rejectionregionoftwo-tailedhypothesestestandtheconfidenceregion:IsgivenIsnotgiven(2)Iftheisinthenon-rejectionregiondefinedin(2),supposetheisintheconfidenceregiondefinedin(1).Totheopposite,iftheisintheconfidenceregiondefinedin(1),thesamplemeanwillbeinthehypothesestestnon-rejectionregiondefinedin(2).Chapter8Two-TailedTestsinlarge-SamplecaseSowecangetthestepofhypothesestestcalculatingtheconfidenceregion:Theformofhypotheses:(1)pickoutaconfidenceregionofpopulationmeanwhichisbuiltbysimplerandomsamplefrompopulation:(2)iftheconfidenceregionincludehypothesesvalueof,don’trejectnullhypotheses,otherwise,reject.IsgivenIsnotgivenChapter8Two-TailedTestsinlarge-SamplecaseExample:westillusetheexampleofgolftwo-tailedtest:Fromthesampledatawecanget:TothegivenconfidencelevelWecangettheconfidenceregionwhosepopulationmeanis95%:Thevalueofpopulationhypothesesisintheregion,sowecannotrejectthenullhypotheses.As274.58~282.42Chapter8Two-TailedTestsinlarge-SamplecaseChapter8Testsaboutapopulationmean:small-samplecaseWe’veknownfromtheintervalestimate,whenpopulationobeynormaldistributionandthepopulationvarianceisunknown,thestatisticinthesmall-samplecaseAtthistime,thetestofpopulationmeanshouldbedonebystatistic.Example:iftheaveragescoreofpopulationqualitylevelofairportisequaltoormorethan7,wecanconsidertheservicegivenbytheairportisexcellent.Nowwepickup12passengersrandomlyassample,gettingthequalitylevelscoreofoneairportinLondonasfollows:7、8、10、8、6、9、6、7、7、8、9、8.Assumethelevelofpopulationobeythestandardnormaldistribution,canweconsidertheairportservicequalityexcellent,withthesignificantlevel0.05?1.Establishnullandalternativehypotheses2.Choosestatistict,andcalculateWecanget3.

4.Fromthet-distributiontablewecangetIt’sintherejectionregion,soreject.Andweconsidertheservicesuppliedbytheairportisexcellent.Chapter8Testsaboutapopulationmean:small-samplecaseAttention:insmall-samplecase,thestepsoftestandestimaterulearealmostthesameasinlarge-samplecase,theonlydifferenceissmall-samplecasecorrespondt-distribution,whilelarge-samplecasecorrespondnormaldistribution.Besides,insmall-samplecasewecanestimatebyP-value.Butfort-distributiontableisnotdetailedenough,wecannotgettheexactP-valuefromthetable,buttheprincipleofestimationisthesameasabove.Exercises:P282,T34Ifrejectnullhypotheses.Chapter8Testsaboutapopulationmean:small-samplecaseWesetforpopulationpercentage,referstosomegivenhypothesesvalueofpopulationpercentage,thehypothesestestofpopulationpercentagehasformsasfollows:LefttailedtesttwotailedtestRighttailedtestChapter8Testsaboutapopulationmean:small-samplecaseWeonlyconsidertheconditionof----thehypothesestestwhensamplepercentageobeypopulationpercentageinnormaldistribution.Becausethepercentageisspecialmean,thestepsoftesting

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論