版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023年中考數(shù)學(xué)模擬試卷請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫(xiě)在答題紙相應(yīng)的答題區(qū)內(nèi)。寫(xiě)在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1.如圖,△ABC中,∠B=55°,∠C=30°,分別以點(diǎn)A和點(diǎn)C為圓心,大于AC的長(zhǎng)為半徑畫(huà)弧,兩弧相交于點(diǎn)M,N作直線MN,交BC于點(diǎn)D,連結(jié)AD,則∠BAD的度數(shù)為()A.65° B.60°C.55° D.45°2.如圖,在熱氣球C處測(cè)得地面A、B兩點(diǎn)的俯角分別為30°、45°,熱氣球C的高度CD為100米,點(diǎn)A、D、B在同一直線上,則AB兩點(diǎn)的距離是()A.200米 B.200米 C.220米 D.100米3.計(jì)算-4-|-3|的結(jié)果是()A.-1B.-5C.1D.54.如圖,O為坐標(biāo)原點(diǎn),四邊彤OACB是菱形,OB在x軸的正半軸上,sin∠AOB=45,反比例函數(shù)yA.10B.9C.8D.65.某美術(shù)社團(tuán)為練習(xí)素描,他們第一次用120元買了若干本相同的畫(huà)冊(cè),第二次用240元在同一家商店買與上一次相同的畫(huà)冊(cè),這次商家每本優(yōu)惠4元,結(jié)果比上次多買了20本.求第一次買了多少本畫(huà)冊(cè)?設(shè)第一次買了x本畫(huà)冊(cè),列方程正確的是()A. B.C. D.6.中國(guó)在第二十三屆冬奧會(huì)閉幕式上奉獻(xiàn)了《2022相約北京》的文藝表演,會(huì)后表演視頻在網(wǎng)絡(luò)上推出,即刻轉(zhuǎn)發(fā)量就超過(guò)810000這個(gè)數(shù)用科學(xué)記數(shù)法表示為()A.8.1×106 B.8.1×105 C.81×105 D.81×1047.的相反數(shù)是A.4 B. C. D.8.“龜兔賽跑”是同學(xué)們熟悉的寓言故事.如圖所示,表示了寓言中的龜、兔的路程S和時(shí)間t的關(guān)系(其中直線段表示烏龜,折線段表示兔子).下列敘述正確的是()A.賽跑中,兔子共休息了50分鐘B.烏龜在這次比賽中的平均速度是0.1米/分鐘C.兔子比烏龜早到達(dá)終點(diǎn)10分鐘D.烏龜追上兔子用了20分鐘9.在體育課上,甲,乙兩名同學(xué)分別進(jìn)行了5次跳遠(yuǎn)測(cè)試,經(jīng)計(jì)算他們的平均成績(jī)相同.若要比較這兩名同學(xué)的成績(jī)哪一個(gè)更為穩(wěn)定,通常需要比較他們成績(jī)的()A.眾數(shù) B.平均數(shù) C.中位數(shù) D.方差10.如圖,在Rt△ABC中,∠ACB=90°,BC=12,AC=5,分別以點(diǎn)A,B為圓心,大于線段AB長(zhǎng)度的一半為半徑作弧,相交于點(diǎn)E,F(xiàn),過(guò)點(diǎn)E,F(xiàn)作直線EF,交AB于點(diǎn)D,連接CD,則△ACD的周長(zhǎng)為()A.13 B.17 C.18 D.25二、填空題(共7小題,每小題3分,滿分21分)11.某?!鞍僮兡Х健鄙鐖F(tuán)為組織同學(xué)們參加學(xué)校科技節(jié)的“最強(qiáng)大腦”大賽,準(zhǔn)備購(gòu)買A,B兩款魔方.社長(zhǎng)發(fā)現(xiàn)若購(gòu)買2個(gè)A款魔方和6個(gè)B款魔方共需170元,購(gòu)買3個(gè)A款魔方和購(gòu)買8個(gè)B款魔方所需費(fèi)用相同.求每款魔方的單價(jià).設(shè)A款魔方的單價(jià)為x元,B款魔方的單價(jià)為y元,依題意可列方程組為_(kāi)______.12.如圖,在2×4的正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)均為1,每個(gè)小正方形的頂點(diǎn)叫做格點(diǎn),△ABC的頂點(diǎn)都在格點(diǎn)上,將△ABC繞著點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn)一定角度后,得到△A'B'C',點(diǎn)A'、B'在格點(diǎn)上,則點(diǎn)A走過(guò)的路徑長(zhǎng)為_(kāi)____(結(jié)果保留π)13.如圖,在正方形ABCD中,O是對(duì)角線AC、BD的交點(diǎn),過(guò)O點(diǎn)作OE⊥OF,OE、OF分別交AB、BC于點(diǎn)E、點(diǎn)F,AE=3,F(xiàn)C=2,則EF的長(zhǎng)為_(kāi)____.14.如圖是一本折扇,其中平面圖是一個(gè)扇形,扇面ABDC的寬度AC是管柄長(zhǎng)OA的一半,已知OA=30cm,∠AOB=120°,則扇面ABDC的周長(zhǎng)為_(kāi)____cm15.在一個(gè)不透明的袋子里裝有一個(gè)黑球和兩個(gè)白球,它們除顏色外都相同,隨機(jī)從中摸出一個(gè)球,記下顏色后放回袋子中,充分搖勻后,再隨機(jī)摸出一個(gè)球,兩次都摸到黑球的概率是__________.16.如圖,在邊長(zhǎng)為9的正三角形ABC中,BD=3,∠ADE=60°,則AE的長(zhǎng)為.17.計(jì)算:的結(jié)果是_____.三、解答題(共7小題,滿分69分)18.(10分)小明在熱氣球A上看到正前方橫跨河流兩岸的大橋BC,并測(cè)得B、C兩點(diǎn)的俯角分別為45°、35°.已知大橋BC與地面在同一水平面上,其長(zhǎng)度為100m,求熱氣球離地面的高度.(結(jié)果保留整數(shù))(參考數(shù)據(jù):sin35°=0.57,cos35°=0.82,tan35°=0.70)19.(5分)在△ABC中,∠BAC=90°,AB=AC,點(diǎn)D為直線BC上一動(dòng)點(diǎn)(點(diǎn)D不與點(diǎn)B、C重合),以AD為直角邊在AD右側(cè)作等腰三角形ADE,使∠DAE=90°,連接CE.探究:如圖①,當(dāng)點(diǎn)D在線段BC上時(shí),證明BC=CE+CD.應(yīng)用:在探究的條件下,若AB=,CD=1,則△DCE的周長(zhǎng)為.拓展:(1)如圖②,當(dāng)點(diǎn)D在線段CB的延長(zhǎng)線上時(shí),BC、CD、CE之間的數(shù)量關(guān)系為.(2)如圖③,當(dāng)點(diǎn)D在線段BC的延長(zhǎng)線上時(shí),BC、CD、CE之間的數(shù)量關(guān)系為.20.(8分)如圖,一枚運(yùn)載火箭從距雷達(dá)站C處5km的地面O處發(fā)射,當(dāng)火箭到達(dá)點(diǎn)A,B時(shí),在雷達(dá)站C處測(cè)得點(diǎn)A,B的仰角分別為34°,45°,其中點(diǎn)O,A,B在同一條直線上.求AC和AB的長(zhǎng)(結(jié)果保留小數(shù)點(diǎn)后一位)(參考數(shù)據(jù):sin34°≈0.56;cos34°≈0.83;tan34°≈0.67)21.(10分)如圖拋物線y=ax2+bx,過(guò)點(diǎn)A(4,0)和點(diǎn)B(6,2),四邊形OCBA是平行四邊形,點(diǎn)M(t,0)為x軸正半軸上的點(diǎn),點(diǎn)N為射線AB上的點(diǎn),且AN=OM,點(diǎn)D為拋物線的頂點(diǎn).(1)求拋物線的解析式,并直接寫(xiě)出點(diǎn)D的坐標(biāo);(2)當(dāng)△AMN的周長(zhǎng)最小時(shí),求t的值;(3)如圖②,過(guò)點(diǎn)M作ME⊥x軸,交拋物線y=ax2+bx于點(diǎn)E,連接EM,AE,當(dāng)△AME與△DOC相似時(shí).請(qǐng)直接寫(xiě)出所有符合條件的點(diǎn)M坐標(biāo).22.(10分)某經(jīng)銷商從市場(chǎng)得知如下信息:A品牌手表B品牌手表進(jìn)價(jià)(元/塊)700100售價(jià)(元/塊)900160他計(jì)劃用4萬(wàn)元資金一次性購(gòu)進(jìn)這兩種品牌手表共100塊,設(shè)該經(jīng)銷商購(gòu)進(jìn)A品牌手表x塊,這兩種品牌手表全部銷售完后獲得利潤(rùn)為y元.試寫(xiě)出y與x之間的函數(shù)關(guān)系式;若要求全部銷售完后獲得的利潤(rùn)不少于1.26萬(wàn)元,該經(jīng)銷商有哪幾種進(jìn)貨方案;選擇哪種進(jìn)貨方案,該經(jīng)銷商可獲利最大;最大利潤(rùn)是多少元.23.(12分)如圖,一次函數(shù)y=k1x+b(k1≠0)與反比例函數(shù)的圖象交于點(diǎn)A(-1,2),B(m,-1).(1)求一次函數(shù)與反比例函數(shù)的解析式;(2)在x軸上是否存在點(diǎn)P(n,0),使△ABP為等腰三角形,請(qǐng)你直接寫(xiě)出P點(diǎn)的坐標(biāo).24.(14分)某學(xué)校要開(kāi)展校園文化藝術(shù)節(jié)活動(dòng),為了合理編排節(jié)目,對(duì)學(xué)生最喜愛(ài)的歌曲、舞蹈、小品、相聲四類節(jié)目進(jìn)行了一次隨機(jī)抽樣調(diào)查(每名學(xué)生必須選擇且只能選擇一類),并將調(diào)查結(jié)果繪制成如下不完整的統(tǒng)計(jì)圖.請(qǐng)你根據(jù)圖中信息,回答下列問(wèn)題:(1)求本次調(diào)查的學(xué)生人數(shù),并補(bǔ)全條形統(tǒng)計(jì)圖;(2)在扇形統(tǒng)計(jì)圖中,求“歌曲”所在扇形的圓心角的度數(shù);(3)九年一班和九年二班各有2名學(xué)生擅長(zhǎng)舞蹈,學(xué)校準(zhǔn)備從這4名學(xué)生中隨機(jī)抽取2名學(xué)生參加舞蹈節(jié)目的編排,那么抽取的2名學(xué)生恰好來(lái)自同一個(gè)班級(jí)的概率是多少?
參考答案一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1、A【解析】
根據(jù)線段垂直平分線的性質(zhì)得到AD=DC,根據(jù)等腰三角形的性質(zhì)得到∠C=∠DAC,求得∠DAC=30°,根據(jù)三角形的內(nèi)角和得到∠BAC=95°,即可得到結(jié)論.【詳解】由題意可得:MN是AC的垂直平分線,則AD=DC,故∠C=∠DAC,∵∠C=30°,∴∠DAC=30°,∵∠B=55°,∴∠BAC=95°,∴∠BAD=∠BAC-∠CAD=65°,故選A.【點(diǎn)睛】此題主要考查了線段垂直平分線的性質(zhì),三角形的內(nèi)角和,正確掌握線段垂直平分線的性質(zhì)是解題關(guān)鍵.2、D【解析】
在熱氣球C處測(cè)得地面B點(diǎn)的俯角分別為45°,BD=CD=100米,再在Rt△ACD中求出AD的長(zhǎng),據(jù)此即可求出AB的長(zhǎng).【詳解】∵在熱氣球C處測(cè)得地面B點(diǎn)的俯角分別為45°,∴BD=CD=100米,∵在熱氣球C處測(cè)得地面A點(diǎn)的俯角分別為30°,∴AC=2×100=200米,∴AD==100米,∴AB=AD+BD=100+100=100(1+)米,故選D.【點(diǎn)睛】本題考查了解直角三角形的應(yīng)用--仰角、俯角問(wèn)題,要求學(xué)生能借助仰角構(gòu)造直角三角形并解直角三角形.3、B【解析】
原式利用算術(shù)平方根定義,以及絕對(duì)值的代數(shù)意義計(jì)算即可求出值.【詳解】原式=-2-3=-5,故選:B.【點(diǎn)睛】此題考查了實(shí)數(shù)的運(yùn)算,熟練掌握運(yùn)算法則是解本題的關(guān)鍵.4、A【解析】過(guò)點(diǎn)A作AM⊥x軸于點(diǎn)M,過(guò)點(diǎn)F作FN⊥x軸于點(diǎn)N,設(shè)OA=a,BF=b,通過(guò)解直角三角形分別找出點(diǎn)A、F的坐標(biāo),結(jié)合反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征即可求出a、b的值,通過(guò)分割圖形求面積,最終找出△AOF的面積等于梯形AMNF的面積,利用梯形的面積公式即可得出結(jié)論.解:過(guò)點(diǎn)A作AM⊥x軸于點(diǎn)M,過(guò)點(diǎn)F作FN⊥x軸于點(diǎn)N,如圖所示.設(shè)OA=a,BF=b,在Rt△OAM中,∠AMO=90°,OA=a,sin∠AOB=45∴AM=OA?sin∠AOB=45a,OM=OA2∴點(diǎn)A的坐標(biāo)為(35a,4∵點(diǎn)A在反比例函數(shù)y=12x∴35a×45a=1225解得:a=5,或a=﹣5(舍去).∴AM=8,OM=1.∵四邊形OACB是菱形,∴OA=OB=10,BC∥OA,∴∠FBN=∠AOB.在Rt△BNF中,BF=b,sin∠FBN=45∴FN=BF?sin∠FBN=45b,BN=BF2∴點(diǎn)F的坐標(biāo)為(10+35b,4∵點(diǎn)F在反比例函數(shù)y=12x∴(10+35b)×4S△AOF=S△AOM+S梯形AMNF﹣S△OFN=S梯形AMNF=10故選A.“點(diǎn)睛”本題主要考查了菱形的性質(zhì)、解直角三角形以及反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征,解題的關(guān)鍵是找出S△AOF=12S菱形OBCA5、A【解析】分析:由設(shè)第一次買了x本資料,則設(shè)第二次買了(x+20)本資料,由等量關(guān)系:第二次比第一次每本優(yōu)惠4元,即可得到方程.詳解:設(shè)他上月買了x本筆記本,則這次買了(x+20)本,根據(jù)題意得:.故選A.點(diǎn)睛:本題考查了分式方程的應(yīng)用,解答本題的關(guān)鍵是讀懂題意,設(shè)出未知數(shù),找出合適的等量關(guān)系,列方程解答即可.6、B【解析】
科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時(shí),要看把原數(shù)變成a時(shí),小數(shù)點(diǎn)移動(dòng)了多少位,n的絕對(duì)值與小數(shù)點(diǎn)移動(dòng)的位數(shù)相同.當(dāng)原數(shù)絕對(duì)值>1時(shí),n是正數(shù);當(dāng)原數(shù)的絕對(duì)值<1時(shí),n是負(fù)數(shù).【詳解】810000=8.1×1.
故選B.【點(diǎn)睛】本題考查了科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時(shí)關(guān)鍵要正確確定a的值以及n的值.7、A【解析】
直接利用相反數(shù)的定義結(jié)合絕對(duì)值的定義分析得出答案.【詳解】-1的相反數(shù)為1,則1的絕對(duì)值是1.故選A.【點(diǎn)睛】本題考查了絕對(duì)值和相反數(shù),正確把握相關(guān)定義是解題的關(guān)鍵.8、D【解析】分析:根據(jù)圖象得出相關(guān)信息,并對(duì)各選項(xiàng)一一進(jìn)行判斷即可.詳解:由圖象可知,在賽跑中,兔子共休息了:50-10=40(分鐘),故A選項(xiàng)錯(cuò)誤;烏龜跑500米用了50分鐘,平均速度為:(米/分鐘),故B選項(xiàng)錯(cuò)誤;兔子是用60分鐘到達(dá)終點(diǎn),烏龜是用50分鐘到達(dá)終點(diǎn),兔子比烏龜晚到達(dá)終點(diǎn)10分鐘,故C選項(xiàng)錯(cuò)誤;在比賽20分鐘時(shí),烏龜和兔子都距起點(diǎn)200米,即烏龜追上兔子用了20分鐘,故D選項(xiàng)正確.故選D.點(diǎn)睛:本題考查了從圖象中獲取信息的能力.正確識(shí)別圖象、獲取信息并進(jìn)行判斷是解題的關(guān)鍵.9、D【解析】
方差是反映一組數(shù)據(jù)的波動(dòng)大小的一個(gè)量.方差越大,則各數(shù)據(jù)與其平均值的離散程度越大,穩(wěn)定性也越?。环粗?,則各數(shù)據(jù)與其平均值的離散程度越小,穩(wěn)定性越好?!驹斀狻坑捎诜讲钅芊从硵?shù)據(jù)的穩(wěn)定性,需要比較這兩名學(xué)生立定跳遠(yuǎn)成績(jī)的方差.故選D.10、C【解析】在Rt△ABC中,∠ACB=90°,BC=12,AC=5,根據(jù)勾股定理求得AB=13.根據(jù)題意可知,EF為線段AB的垂直平分線,在Rt△ABC中,根據(jù)直角三角形斜邊的中線等于斜邊的一半可得CD=AD=AB,所以△ACD的周長(zhǎng)為AC+CD+AD=AC+AB=5+13=18.故選C.二、填空題(共7小題,每小題3分,滿分21分)11、【解析】分析:設(shè)A款魔方的單價(jià)為x元,B魔方單價(jià)為y元,根據(jù)“購(gòu)買兩個(gè)A款魔方和6個(gè)B款魔方共需170元,購(gòu)買3個(gè)A款魔方和購(gòu)買8個(gè)B款魔方所需費(fèi)用相同”,即可得出關(guān)于x,y的二元一次方程組,此題得解.解:設(shè)A魔方的單價(jià)為x元,B款魔方的單價(jià)為y元,根據(jù)題意得:故答案為點(diǎn)睛:本題考查了二元一次方程組的應(yīng)用,找準(zhǔn)等量關(guān)系,正確列出二元一次方程組是解題的關(guān)鍵.12、【解析】分析:連接AA′,根據(jù)勾股定理求出AC=AC′,及AA′的長(zhǎng),然后根據(jù)勾股定理的逆定理得出△ACA′為等腰直角三角形,然后根據(jù)弧長(zhǎng)公式求解即可.詳解:連接AA′,如圖所示.∵AC=A′C=,AA′=,∴AC2+A′C2=AA′2,∴△ACA′為等腰直角三角形,∴∠ACA′=90°,∴點(diǎn)A走過(guò)的路徑長(zhǎng)=×2πAC=π.故答案為:π.點(diǎn)睛:本題主要考查了幾何變換的類型以及勾股定理及逆定理的運(yùn)用,弧長(zhǎng)公式,解題時(shí)注意:在旋轉(zhuǎn)變換下,對(duì)應(yīng)線段相等.解決問(wèn)題的關(guān)鍵是找出變換的規(guī)律,根據(jù)弧長(zhǎng)公式求解.13、【解析】
由△BOF≌△AOE,得到BE=FC=2,在直角△BEF中,從而求得EF的值.【詳解】∵正方形ABCD中,OB=OC,∠BOC=∠EOF=90°,∴∠EOB=∠FOC,在△BOE和△COF中,,∴△BOE≌△COF(ASA)∴BE=FC=2,同理BF=AE=3,在Rt△BEF中,BF=3,BE=2,∴EF==.故答案為【點(diǎn)睛】本題考查了正方形的性質(zhì)、三角形全等的性質(zhì)和判定、勾股定理,在四邊形中常利用三角形全等的性質(zhì)和勾股定理計(jì)算線段的長(zhǎng).14、1π+1.【解析】分析:根據(jù)題意求出OC,根據(jù)弧長(zhǎng)公式分別求出AB、CD的弧長(zhǎng),根據(jù)扇形周長(zhǎng)公式計(jì)算.詳解:由題意得,OC=AC=OA=15,的長(zhǎng)==20π,的長(zhǎng)==10π,∴扇面ABDC的周長(zhǎng)=20π+10π+15+15=1π+1(cm),故答案為1π+1.點(diǎn)睛:本題考查的是弧長(zhǎng)的計(jì)算,掌握弧長(zhǎng)公式:是解題的關(guān)鍵.15、1【解析】
首先根據(jù)題意列表,由列表求得所有等可能的結(jié)果與兩次都摸到黑球的情況,然后利用概率公式求解即可求得答案.注意此題屬于放回實(shí)驗(yàn).【詳解】列表得:第一次第二次黑白白黑黑,黑白,黑白,黑白黑,白白,白白,白白黑,白白,白白,白∵共有9種等可能的結(jié)果,兩次都摸到黑球的只有1種情況,∴兩次都摸到黑球的概率是19故答案為:19【點(diǎn)睛】考查概率的計(jì)算,掌握概率等于所求情況數(shù)與總情況數(shù)之比是解題的關(guān)鍵.16、7【解析】試題分析:∵△ABC是等邊三角形,∴∠B=∠C=60°,AB=BC.∴CD=BC-BD=9-3=6,;∠BAD+∠ADB=120°.∵∠ADE=60°,∴∠ADB+∠EDC=120°.∴∠DAB=∠EDC.又∵∠B=∠C=60°,∴△ABD∽△DCE.∴,即.∴.17、【解析】試題分析:先進(jìn)行二次根式的化簡(jiǎn),然后合并同類二次根式即可,考點(diǎn):二次根式的加減三、解答題(共7小題,滿分69分)18、熱氣球離地面的高度約為1米.【解析】
作AD⊥BC交CB的延長(zhǎng)線于D,設(shè)AD為x,表示出DB和DC,根據(jù)正切的概念求出x的值即可.【詳解】解:作AD⊥BC交CB的延長(zhǎng)線于D,設(shè)AD為x,由題意得,∠ABD=45°,∠ACD=35°,在Rt△ADB中,∠ABD=45°,∴DB=x,在Rt△ADC中,∠ACD=35°,∴tan∠ACD=,∴=,解得,x≈1.答:熱氣球離地面的高度約為1米.【點(diǎn)睛】考查的是解直角三角形的應(yīng)用,理解仰角和俯角的概念、掌握銳角三角函數(shù)的概念是解題的關(guān)鍵,解答時(shí),注意正確作出輔助線構(gòu)造直角三角形.19、探究:證明見(jiàn)解析;應(yīng)用:;拓展:(1)BC=CD-CE,(2)BC=CE-CD【解析】試題分析:探究:判斷出∠BAD=∠CAE,再用SAS即可得出結(jié)論;
應(yīng)用:先算出BC,進(jìn)而算出BD,再用勾股定理求出DE,即可得出結(jié)論;
拓展:(1)同探究的方法得出△ABD≌△ACE,得出BD=CE,即可得出結(jié)論;
(2)同探究的方法得出△ABD≌△ACE,得出BD=CE,即可得出結(jié)論.試題解析:探究:∵∠BAC=90°,∠DAE=90°,
∴∠BAC=∠DAE.
∵∠BAC=∠BAD+∠DAC,∠DAE=∠CAE+∠DAC,
∴∠BAD=∠CAE.
∵AB=AC,AD=AE,
∴△ABD≌△ACE.
∴BD=CE.
∵BC=BD+CD,
∴BC=CE+CD.
應(yīng)用:在Rt△ABC中,AB=AC=,
∴∠ABC=∠ACB=45°,BC=2,
∵CD=1,
∴BD=BC-CD=1,
由探究知,△ABD≌△ACE,
∴∠ACE=∠ABD=45°,
∴∠DCE=90°,
在Rt△BCE中,CD=1,CE=BD=1,
根據(jù)勾股定理得,DE=,
∴△DCE的周長(zhǎng)為CD+CE+DE=2+
故答案為2+拓展:(1)同探究的方法得,△ABD≌△ACE.∴BD=CE
∴BC=CD-BD=CD-CE,
故答案為BC=CD-CE;(2)同探究的方法得,△ABD≌△ACE.
∴BD=CE
∴BC=BD-CD=CE-CD,
故答案為BC=CE-CD.20、AC=6.0km,AB=1.7km;【解析】
在Rt△AOC,由∠的正切值和OC的長(zhǎng)求出OA,在Rt△BOC,由∠BCO的大小和OC的長(zhǎng)求出OA,而AB=OB-0A,即可得到答案?!驹斀狻坑深}意可得:∠AOC=90°,OC=5km.在Rt△AOC中,∵AC=,∴AC=≈6.0km,∵tan34°=,∴OA=OC?tan34°=5×0.67=3.35km,在Rt△BOC中,∠BCO=45°,∴OB=OC=5km,∴AB=5﹣3.35=1.65≈1.7km.答:AC的長(zhǎng)為6.0km,AB的長(zhǎng)為1.7km.【點(diǎn)睛】本題主要考查三角函數(shù)的知識(shí)。21、(1)y=x2﹣x,點(diǎn)D的坐標(biāo)為(2,﹣);(2)t=2;(3)M點(diǎn)的坐標(biāo)為(2,0)或(6,0).【解析】
(1)利用待定系數(shù)法求拋物線解析式;利用配方法把一般式化為頂點(diǎn)式得到點(diǎn)D的坐標(biāo);(2)連接AC,如圖①,先計(jì)算出AB=4,則判斷平行四邊形OCBA為菱形,再證明△AOC和△ACB都是等邊三角形,接著證明△OCM≌△ACN得到CM=CN,∠OCM=∠ACN,則判斷△CMN為等邊三角形得到MN=CM,于是△AMN的周長(zhǎng)=OA+CM,由于CM⊥OA時(shí),CM的值最小,△AMN的周長(zhǎng)最小,從而得到t的值;(3)先利用勾股定理的逆定理證明△OCD為直角三角形,∠COD=90°,設(shè)M(t,0),則E(t,t2-t),根據(jù)相似三角形的判定方法,當(dāng)時(shí),△AME∽△COD,即|t-4|:4=|t2-t|:,當(dāng)時(shí),△AME∽△DOC,即|t-4|:=|t2-t|:4,然后分別解絕對(duì)值方程可得到對(duì)應(yīng)的M點(diǎn)的坐標(biāo).【詳解】解:(1)把A(4,0)和B(6,2)代入y=ax2+bx得,解得,∴拋物線解析式為y=x2-x;∵y=x2-x=-2)2-;∴點(diǎn)D的坐標(biāo)為(2,-);(2)連接AC,如圖①,AB==4,而OA=4,∴平行四邊形OCBA為菱形,∴OC=BC=4,∴C(2,2),∴AC==4,∴OC=OA=AC=AB=BC,∴△AOC和△ACB都是等邊三角形,∴∠AOC=∠COB=∠OCA=60°,而OC=AC,OM=AN,∴△OCM≌△ACN,∴CM=CN,∠OCM=∠ACN,∵∠OCM+∠ACM=60°,∴∠ACN+∠ACM=60°,∴△CMN為等邊三角形,∴MN=CM,∴△AMN的周長(zhǎng)=AM+AN+MN=OM+AM+MN=OA+CM=4+CM,當(dāng)CM⊥OA時(shí),CM的值最小,△AMN的周長(zhǎng)最小,此時(shí)OM=2,∴t=2;(3)∵C(2,2),D(2,-),∴CD=,∵OD=,OC=4,∴OD2+OC2=CD2,∴△OCD為直角三角形,∠COD=90°,設(shè)M(t,0),則E(t,t2-t),∵∠AME=∠COD,∴當(dāng)時(shí),△AME∽△COD,即|t-4|:4=|t2-t|:,整理得|t2-t|=|t-4|,解方程t2-t=(t-4)得t1=4(舍去),t2=2,此時(shí)M點(diǎn)坐標(biāo)為(2,0);解方程t2-t=-(t-4)得t1=4(舍去),t2=-2(舍去);當(dāng)時(shí),△AME∽△DOC,即|t-4|:=|t2-t|:4,整理得|t2-t|=|t-4|,解方程t2-t=t-4得t1=4(舍去),t2=6,此時(shí)M點(diǎn)坐標(biāo)為(6,0);解方程t2-t=-(t-4)得t1=4(舍去),t2=-6(舍去);綜上所述,M點(diǎn)的坐標(biāo)為(2,0)或(6,0).【點(diǎn)睛】本題考查了二次函數(shù)的綜合題:熟練掌握二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征、二次函數(shù)的性質(zhì)、平行四邊形的性質(zhì)和菱形的判定與性質(zhì);會(huì)利用待定系數(shù)法求函數(shù)解析式;理解坐標(biāo)與圖形性質(zhì);熟練掌握相似三角形的判定方法;會(huì)運(yùn)用分類討論的思想解決數(shù)學(xué)問(wèn)題.22、(1)y=140x+6000;(2)三種,答案見(jiàn)解析;(3)選擇方案③進(jìn)貨時(shí),經(jīng)銷商可獲利最大,最大利潤(rùn)是13000元.【解析】
(1)根據(jù)利潤(rùn)y=(A售價(jià)﹣A進(jìn)價(jià))x+(B售價(jià)﹣B進(jìn)價(jià))×(100﹣x)列式整理即可;(2)全部銷售后利潤(rùn)不少于1.26萬(wàn)元得到一元一次不等式組,求出滿足題意的x的正整數(shù)值即可;(3)利用y與x的函數(shù)關(guān)系式的增減性來(lái)選擇哪種方案獲利最大,并求此時(shí)的最大利潤(rùn)即可.【詳解】解:(1)y=(900﹣700)x+(160﹣100)×(100﹣x)=140x+6000.由700x+100(100﹣x)≤40000得x≤50.∴y與x之間的函數(shù)關(guān)系式為y=140x+6000(x≤50)(2)令y≥12600,即
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024學(xué)校鍋爐工環(huán)境保護(hù)與節(jié)能減排合同范本3篇
- 自動(dòng)打鈴器課程設(shè)計(jì)數(shù)電
- 漢川市汽車營(yíng)銷課程設(shè)計(jì)
- 自動(dòng)飛行系統(tǒng)課程設(shè)計(jì)
- 2024年裝表接電工(初級(jí)工)技能鑒定理論考試復(fù)習(xí)題庫(kù)(含答案)
- 2024年美術(shù)教案課件
- 童話課程設(shè)計(jì)封面
- 立式車床主軸箱課程設(shè)計(jì)
- 小班兔子繪本課程設(shè)計(jì)
- 金融投資行業(yè)顧問(wèn)工作總結(jié)
- 《古蘭》中文譯文版
- 膽囊結(jié)石合并急性膽囊炎臨床路徑表單
- 電力建設(shè)安全工作規(guī)程解析(線路部分)課件
- 軟膠囊生產(chǎn)工藝流程
- 小學(xué)英語(yǔ)不規(guī)則動(dòng)詞表
- VIC模型PPT課件
- AQL2.5抽檢標(biāo)準(zhǔn)
- 宣傳廣告彩頁(yè)制作合同
- 除濕機(jī)說(shuō)明書(shū)
- 征信知識(shí)測(cè)試題及答案
- 理想系列一體化速印機(jī)故障代碼
評(píng)論
0/150
提交評(píng)論