![高三數(shù)學單元必掌握的知識點歸納_第1頁](http://file4.renrendoc.com/view/bf2d9c6fcea52a35378cd7ddd750650f/bf2d9c6fcea52a35378cd7ddd750650f1.gif)
![高三數(shù)學單元必掌握的知識點歸納_第2頁](http://file4.renrendoc.com/view/bf2d9c6fcea52a35378cd7ddd750650f/bf2d9c6fcea52a35378cd7ddd750650f2.gif)
![高三數(shù)學單元必掌握的知識點歸納_第3頁](http://file4.renrendoc.com/view/bf2d9c6fcea52a35378cd7ddd750650f/bf2d9c6fcea52a35378cd7ddd750650f3.gif)
下載本文檔
版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
高三數(shù)學單元必掌握的知識點歸納高三數(shù)學單元必掌握的知識點歸納1(1)先看“充分條件和必要條件”當命題“若p則q”為真時,可表示為p=>q,則我們稱p為q的充分條件,q是p的必要條件。這里由p=>q,得出p為q的充分條件是容易理解的。但為什么說q是p的必要條件呢?事實上,與“p=>q”等價的逆否命題是“非q=>非p”。它的意思是:若q不成立,則p一定不成立。這就是說,q對于p是必不可少的,因而是必要的。(2)再看“充要條件”若有p=>q,同時q=>p,則p既是q的充分條件,又是必要條件。簡稱為p是q的充要條件。記作p<=>q回憶一下初中學過的“等價于”這一概念;如果從命題A成立可以推出命題B成立,反過來,從命題B成立也可以推出命題A成立,那么稱A等價于B,記作A<=>B?!俺湟獥l件”的含義,實際上與“等價于”的含義完全相同。也就是說,如果命題A等價于命題B,那么我們說命題A成立的充要條件是命題B成立;同時有命題B成立的充要條件是命題A成立。(3)定義與充要條件數(shù)學中,只有A是B的充要條件時,才用A去定義B,因此每個定義中都包含一個充要條件。如“兩組對邊分別平行的四邊形叫做平行四邊形”這一定義就是說,一個四邊形為平行四邊形的充要條件是它的兩組對邊分別平行。顯然,一個定理如果有逆定理,那么定理、逆定理合在一起,可以用一個含有充要條件的語句來表示。“充要條件”有時還可以改用“當且僅當”來表示,其中“當”表示“充分”?!皟H當”表示“必要”。(4)一般地,定義中的條件都是充要條件,判定定理中的條件都是充分條件,性質(zhì)定理中的“結論”都可作為必要條件。高三數(shù)學單元必掌握的知識點歸納2基本事件的定義:一次試驗連同其中可能出現(xiàn)的每一個結果稱為一個基本事件。等可能基本事件:若在一次試驗中,每個基本事件發(fā)生的可能性都相同,則稱這些基本事件為等可能基本事件。古典概型:如果一個隨機試驗滿足:(1)試驗中所有可能出現(xiàn)的基本事件只有有限個;(2)每個基本事件的發(fā)生都是等可能的;那么,我們稱這個隨機試驗的概率模型為古典概型.古典概型的概率:如果一次試驗的等可能事件有n個,考試技巧,那么,每個等可能基本事件發(fā)生的概率都是;如果某個事件A包含了其中m個等可能基本事件,那么事件A發(fā)生的概率為。古典概型解題步驟:(1)閱讀題目,搜集信息;(2)判斷是否是等可能事件,并用字母表示事件;(3)求出基本事件總數(shù)n和事件A所包含的結果數(shù)m;(4)用公式求出概率并下結論。求古典概型的概率的關鍵:求古典概型的概率的關鍵是如何確定基本事件總數(shù)及事件A包含的基本事件的個數(shù)。高三數(shù)學單元必掌握的知識點歸納3向量的向量積定義:兩個向量a和b的向量積(外積、叉積)是一個向量,記作a×b。若a、b不共線,則a×b的模是:∣a×b∣=|a|?|b|?sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按這個次序構成右手系。若a、b共線,則a×b=0。向量的向量積性質(zhì):∣a×b∣是以a和b為邊的平行四邊形面積。a×a=0。a‖b〈=〉a×b=0。向量的向量積運算律a×b=-b
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 第1課 中華傳統(tǒng)文化的內(nèi)涵與特點 教學設計-2023-2024學年高中歷史統(tǒng)編版(2019)選擇性必修3
- 渣土及建筑廢棄物資源化利用項目可行性研究報告完整立項報告
- 粵教版 信息技術 必修 5.1 認識信息資源管理教學設計
- 科技創(chuàng)新中心項目實施計劃與時間節(jié)點
- 信息技術必修2信息系統(tǒng)與社會4.2《信息系統(tǒng)安全技術》教學設計
- 健身房設施居間合同模板
- 地方高校轉型中的問題與挑戰(zhàn)
- 換熱器項目可行性研究報告
- 2025年度年度賣房合同:帶產(chǎn)權車位及游泳池
- 2025年度股權協(xié)議書與合伙人協(xié)議書綜合實施策略
- 長江委水文局2025年校園招聘17人歷年高頻重點提升(共500題)附帶答案詳解
- 2025年湖南韶山干部學院公開招聘15人歷年高頻重點提升(共500題)附帶答案詳解
- 廣東省廣州市番禺區(qū)2023-2024學年七年級上學期期末數(shù)學試題
- 健身新人直播流程
- 不可切除肺癌放療聯(lián)合免疫治療專家共識(2024年版)j解讀
- DB23/T 3657-2023醫(yī)養(yǎng)結合機構服務質(zhì)量評價規(guī)范
- 教科版科學六年級下冊14《設計塔臺模型》課件
- 企業(yè)的生產(chǎn)過程課件
- 智研咨詢發(fā)布:2024年中國MVR蒸汽機械行業(yè)市場全景調(diào)查及投資前景預測報告
- 法規(guī)解讀丨2024新版《突發(fā)事件應對法》及其應用案例
- JGJ46-2024 建筑與市政工程施工現(xiàn)場臨時用電安全技術標準
評論
0/150
提交評論