本科畢業(yè)設(shè)計(jì)-日產(chǎn)5000噸熟料水泥生產(chǎn)線工藝設(shè)計(jì)參數(shù)_第1頁
本科畢業(yè)設(shè)計(jì)-日產(chǎn)5000噸熟料水泥生產(chǎn)線工藝設(shè)計(jì)參數(shù)_第2頁
本科畢業(yè)設(shè)計(jì)-日產(chǎn)5000噸熟料水泥生產(chǎn)線工藝設(shè)計(jì)參數(shù)_第3頁
本科畢業(yè)設(shè)計(jì)-日產(chǎn)5000噸熟料水泥生產(chǎn)線工藝設(shè)計(jì)參數(shù)_第4頁
本科畢業(yè)設(shè)計(jì)-日產(chǎn)5000噸熟料水泥生產(chǎn)線工藝設(shè)計(jì)參數(shù)_第5頁
已閱讀5頁,還剩72頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

摘要日產(chǎn)5000噸熟料水泥生產(chǎn)線工藝設(shè)計(jì)參數(shù)×=5.3688(m3/kg熟料)6.2.5C2廢氣量1.來自C3的廢氣=1.5721Nm3/kg熟料2.漏入空氣量=3.C2廢氣量=(1+5%)=1.051.5721=1.6507(Nm3/kg熟料)化為工作態(tài):V1=V標(biāo)××=1.6507××=4.9735(m3/kg熟料)6.2.6C1廢氣量1.來自C2的廢氣=1.6507Nm3/kg熟料2.漏入空氣量=3.C1廢氣量=(1+5%)=1.051.6507=1.7332(Nm3/kg熟料)化為工作態(tài):V1=V標(biāo)××=1.7332××=3.9203(m3/kg熟料)窯尾廢氣溫度壓力表如下頁表6-3:表6-3窯尾廢氣溫度壓力表名稱標(biāo)況Nm3/kg熟料工況m3/kg熟料負(fù)壓溫度℃總風(fēng)量103m單位風(fēng)量m3/S窯尾0.36031.66913001050380.55105.71分解爐1.12314.932012008801109.95312.40C51.42596.047320008501378.78383.00C41.49725.704026007501300.51361.25C31.57215.368830006201224.09340.03C21.65074.973538005101133.96314.99C11.73323.92034600320893.83248.29第七章燒成窯尾旋風(fēng)筒的流體阻力主要由兩部分組成:一部分是在管道內(nèi)氣流使生料粉上升所需的能量;另一部分為氣流在旋風(fēng)筒及其進(jìn)出口的能量損失,因而可以通過選取合適的斷面流速,進(jìn)口風(fēng)速與進(jìn)口尺寸,在進(jìn)口處安裝導(dǎo)向板及改進(jìn)頂蓋型式等來降低阻力損失,也可設(shè)置偏心內(nèi)筒及扁內(nèi)筒或改進(jìn)旋風(fēng)筒下料口結(jié)構(gòu),即在旋風(fēng)筒底部增設(shè)膨脹倉,使下料順暢,防止二次飛揚(yáng),提高旋風(fēng)筒分離效率.采用普通型旋風(fēng)筒時(shí),截面風(fēng)速大多采用3.5~4.0m/s。在新設(shè)計(jì)的五級(jí)新預(yù)熱器中,一級(jí)預(yù)熱器的斷面風(fēng)速為3.5m/s,2~3級(jí)預(yù)熱器為4.5m/s,4~5級(jí)預(yù)熱器為5m/s,進(jìn)口氣流速度均為20m/s左右為宜[19]。一些風(fēng)速數(shù)值的設(shè)定[20]如表7-1:表7-1一些風(fēng)速數(shù)值的設(shè)定(參考煙臺(tái)東源水泥)項(xiàng)目C1C2C3C4C5分解爐風(fēng)速(m/s)4.05.08.0新型預(yù)熱器尺寸比例[21]如表7-2:表7-2新型預(yù)熱器尺寸比例型式級(jí)別直徑料管直徑進(jìn)口寬進(jìn)口高柱體高錐體高總高新型D(m)d2(m)b(m)a(m)h1(m)h2(m)H(m)110.160.380.602~410.110.360.630.311.132.21510.110.360.630.471.132.357.1窯尾燒成系統(tǒng)的熱工設(shè)備簡(jiǎn)介7.1.1預(yù)熱器預(yù)熱器是由五級(jí)旋風(fēng)筒(2-1-1-1-1雙系列)和連接旋風(fēng)筒的氣體管道構(gòu)成,在其內(nèi)部窯尾廢氣和生料粉進(jìn)行熱交換。旋風(fēng)預(yù)熱器內(nèi)分散的生料與氣流的接觸面積大,傳熱速度快,升溫效率高。生料和熱氣流的熱交換主要是在氣體管道中進(jìn)行,各級(jí)旋風(fēng)筒的主要作用是進(jìn)行氣固分離和收集粉塵的作用。設(shè)置四個(gè)一級(jí)旋風(fēng)筒的目的是提高系統(tǒng)的分離效率,降低出預(yù)熱器氣體的含塵量,減少飛灰。生料由提升機(jī)提入二級(jí)旋風(fēng)筒的出風(fēng)管道內(nèi)。生料在快速移動(dòng)氣流的作用下立即分散。懸浮在氣流中,隨氣流進(jìn)入一級(jí)旋風(fēng)筒。氣料分離后,物料借助自身的重力下落到下級(jí)氣體管道中。如此循環(huán),經(jīng)過了四個(gè)熱交換過程,物料的溫度升至760℃左右之后,經(jīng)由四級(jí)旋風(fēng)筒的下料管從分解爐的兩側(cè)進(jìn)入分解爐。在分解爐內(nèi)受熱分解后的物料,與窯尾廢氣一起進(jìn)入五級(jí)旋風(fēng)筒。分離收集下來的物料(850各級(jí)下料管道均設(shè)置有起鎖風(fēng)作用的翻板閥,以提高旋風(fēng)筒的分離效率,各級(jí)風(fēng)管上均設(shè)有撒料裝置,便于生料均勻分散。懸浮于熱氣流中,從而提高換熱效率。7.1.2TDF型分解爐本廠采用的TDF型分解爐為噴騰型分解爐,為DD型的改進(jìn)型。是引進(jìn)日本神戶制剛所的技術(shù),由天津水泥設(shè)計(jì)院轉(zhuǎn)化,國(guó)內(nèi)制造的新一代分解爐。它具有如下的特點(diǎn)[16]:1.簡(jiǎn)單,外形規(guī)整,便于設(shè)計(jì)布置。2.TDF爐與窯尾煙室直接連通,可以避免結(jié)皮,保證穩(wěn)定操作。由窯內(nèi)排出的氣體,溫度為950℃~10503.熟料篦冷機(jī)來的三次風(fēng)由徑向分成兩路進(jìn)入分解爐,與TDF爐底部向上的噴騰氣流匯合,形成一個(gè)強(qiáng)烈攪動(dòng)的渦流區(qū),使生料與煤粉混合均勻,煤粉在混合氣體中燃燒不會(huì)造成爐內(nèi)局部過熱,保證爐內(nèi)溫度分布均勻。中心氣流溫度約900℃,邊緣溫度約8804.爐的中部設(shè)置了第二個(gè)縮口,其目的是再次形成噴騰效應(yīng),并使氣固流通過縮口沖撞至爐頂返回后進(jìn)入五級(jí)旋風(fēng)筒,從而加速氣流與生料的混合攪動(dòng),在較小的過??諝庀戮湍苁姑悍弁耆紵⒓铀倥c生料的熱交換過程。由于在爐內(nèi)形成兩次噴騰效應(yīng),大大延長(zhǎng)了物料在爐內(nèi)的停留時(shí)間。5.爐用煤粉由羅茨風(fēng)機(jī)經(jīng)四路閥門進(jìn)入分解爐。噴煤管位于三次風(fēng)管入口上部,煤粉噴入時(shí)形成渦流,在富氧條件下立即分解,氧化和燃燒,其熱量迅速傳遞給由上流下來的呈懸浮狀態(tài)的生料,使之受熱分解。煤粉交匯點(diǎn)比下料點(diǎn)略低,三次風(fēng)緊接在下面,這種設(shè)計(jì)保證了混合與燃燒及爐內(nèi)溫度的均勻。7.1.3回轉(zhuǎn)窯窯保持4%的斜度,借助與斜度和旋轉(zhuǎn),使物料慢慢地向窯頭方向移動(dòng),由窯頭煤粉燃燒器燃燒煤粉提供熱量進(jìn)行煅燒。燒成帶采用強(qiáng)制通風(fēng)冷卻,以保證燒成帶的筒體,延長(zhǎng)耐火磚的使用壽命。窯中設(shè)置了液壓擋輪,限制和調(diào)節(jié)筒體的上下移動(dòng)。7.2三次風(fēng)管直徑的確定有效內(nèi)徑:D有=18.815(V/W)1/2為簡(jiǎn)化起見,計(jì)算圖形截面的統(tǒng)一計(jì)算系數(shù)風(fēng)量[立方米/小時(shí)]/3600秒=斷面面積[平方米]×W[m/s]V(M3/H)/3600=Π/4D2/(106×W)m/s所以D㎜=[V×106/(3600×Π/4/W)]1/2D有=18.815(V/W)1/2式中V—風(fēng)量度W—假定風(fēng)速一般取20m/sD有=18.815×[460846/20]1/2=2856mmD=D有+2ξ=2856+2×140=3136mm7.3分解爐規(guī)格的確定1.解爐有效內(nèi)徑的確定(直筒部分)S爐=VG/3600WG《概論》P130著5-71D爐=(4S爐/Π)1/2=(4VG/Π/3600WG)1/2=18.815(VG/WG)1/2=18.815×(1109950÷7.9)1/2=7052式中:S爐—分解爐有效截面積mm2D爐—分解爐的有效直徑mmWG—分解爐的斷面風(fēng)速(直筒部分)m/s取8.0m/sVG—通過分解爐的工況風(fēng)量m2/hD=D爐+2ξ=7052+2×220=7492mm2.分解爐的高度:一般可以根據(jù)氣流在分解爐內(nèi)需要停留的時(shí)間來計(jì)算:H1=WT=4×7=28.0m式中H1—分解爐高度mW—?dú)怏w在分解爐內(nèi)的平均風(fēng)速成取7.0T—?dú)怏w在分解爐內(nèi)停留的時(shí)間取4s有效截面積:S爐=40.16m2;有效內(nèi)經(jīng);D有=7.14m;分解爐高:3.分解爐的直徑:D向=(VG/VW)1/2×18.815=18.815×(1109950÷15)1/2=5118.1D=D有+2ξ=5118.1+2×220≈5500VW—分解爐的斷面風(fēng)速(縮口部分)m/s取15.0m4.進(jìn)口尺寸與五級(jí)預(yù)熱器的進(jìn)口尺寸相同.5.排風(fēng)管尺寸計(jì)算:有效內(nèi)徑:D有=18.815(W/V)1/2V—排風(fēng)管的斷面風(fēng)速m/s取15.0m/s五級(jí)—四級(jí)排風(fēng)管d=18.815×(1378780÷15.0÷2)1/2=4033.5α=200mmd5=d+α×2=4433.5四級(jí)—三級(jí)排風(fēng)管d=18.815×(1300510÷15.0÷2)1/2=3917.4α=200mmd4=d+α×2=4317.4三級(jí)—二級(jí)排風(fēng)管d=18.815×(1224090÷15.0÷2)1/2=3800α=200mmd3=d+α×2=4200二級(jí)—一級(jí)排風(fēng)管d=18.815×(1133960÷15.0÷2)1/2=3658α=200mmd2=d+α×2=排風(fēng)管:d1=18.815×(893830÷4÷18)1/2=2096≈2100主排風(fēng)管:d=18.815×(893830÷18)1/2=4192≈42007.4預(yù)熱器規(guī)格的確定7.4.1五級(jí)預(yù)熱器規(guī)格的確定柱體有效直徑:D5=18.815×(VG/VW)1/2=18.815×(1378780÷2÷5.5)1/2=666D=D5+2ξ=6661+2×200=7061mm料管直徑:d2=D5×0.11+2ξ=932.71≈950mm(取ξ=進(jìn)口寬:b=D5×0.36+2ξ=2597.96≈2600進(jìn)口高:a=D5×0.63+2ξ=4396.43≈4400柱體高:h1=0.47×D5+ξ=3230.67≈3400錐體高:h2=1.13×D5=7496.42≈7500總高:H=a+h1+h2=4400+3400+7500=153007.4.2四級(jí)預(yù)熱器規(guī)格的確定柱體有效直徑:D4=18.815×(VG/VW)1/2=18.815×(1300510÷2÷5.3)1/2=6469D=D4+2ξ=6469+2×200=6869mm料管直徑:d2=D4×0.11+2ξ=911.59≈950mm(取ξ=進(jìn)口寬:b=D4×0.36+2ξ=2528.84≈2600進(jìn)口高:a=D4×0.63+2ξ=4275.477≈4柱體高:h1=0.31×D4+ξ=2105.39≈2200錐體高:h4=1.13×D4=7309.97≈7總高:H=a+h1+h2=4400+2200+7500=141007.4.3三級(jí)預(yù)熱器規(guī)格的確定D3=18.815×(VG/VW)1/2=18.815×(1224090÷2÷5.3)1/2=6393D=D3+2ξ=6393+2×200=6793mm料管直徑:d2=D3×0.11+2ξ=903.23≈900mm(取ξ=進(jìn)口寬:b=D3×0.36+2ξ=2501.48≈2510進(jìn)口高:a=D3×0.63+2ξ=4227.59≈4柱體高:h1=0.31×D3+ξ=2081≈2錐體高:h4=1.13×D3=7224≈7200總高:H=a+h1+h2=4300+2200+7200=137007.4.4二級(jí)預(yù)熱器規(guī)格的確定D2=18.815×(VG/VW)1/2=18.815×(1133960÷2÷5.0)1/2=6153D=D2+2ξ=6153+2×200=6553mm料管直徑:d2=D2×0.11+2ξ=876.83≈900mm(取ξ=進(jìn)口寬:b=D2×0.36+2ξ=2415.08≈2600進(jìn)口高:a=D2×0.63+2ξ=4076.39≈4200柱體高:h1=0.31×D2+ξ=207.43≈2100錐體高:h4=1.13×D2=6952.89≈7總高:H=a+h1+h2=4200+2100+7200=134007.4.5一級(jí)預(yù)熱器規(guī)格的確定D1=18.815×(VG/VW)1/2=18.815×(893830÷4÷4)1/2=4447一級(jí)預(yù)熱器內(nèi)的溫度較低不設(shè)襯料,其有效直徑就為其外徑,故D1=4500料管直徑:d2=0.16×D1=711≈720進(jìn)口寬:b=D1×0.38=1689.86≈1700進(jìn)口高:a=D1×0.65=2890.55≈2900柱體高:h1=D1×1.3=5781.1≈5800錐體高:h4=D1×1.15=5114.05≈5總高:H=a+h1+h2=2900+5800+5150=13850新型預(yù)熱器尺寸參數(shù)如表7-3:表7-3新型預(yù)熱器尺寸參數(shù)級(jí)別直徑mm料管直徑mm進(jìn)口寬mm進(jìn)口高mm柱體高mm錐體高mm總高mmDd2bah1h2HC14500720170029005800515013850C26700900260042002100720013400C36800900251043002200720013700C47100950260044002200750014100C57100950260044003400750015300結(jié)論本次設(shè)計(jì)是在綜合應(yīng)用四年來的理論知識(shí)基礎(chǔ)上,吸收國(guó)內(nèi)已設(shè)計(jì)的幾條同類型窯型生產(chǎn)線的優(yōu)點(diǎn),在指導(dǎo)老師的精心指導(dǎo)下,并參考了大量的設(shè)計(jì)資料的前提下進(jìn)行的,通過本次設(shè)計(jì)使我學(xué)到了許多新的設(shè)計(jì)思想和設(shè)計(jì)新理念:1.進(jìn)行總平面布置設(shè)計(jì)時(shí)考慮到所給風(fēng)向,把員工生活區(qū)和辦公區(qū)設(shè)在了上風(fēng)口,盡量避免或減輕對(duì)附近城鎮(zhèn)居民點(diǎn)及本廠區(qū)的污染。2.進(jìn)行工藝流程設(shè)計(jì)時(shí),為了降低能耗,將窯尾廢氣引入生料磨作烘干介質(zhì),出磨氣體經(jīng)電收塵凈化后再排入大氣中,將窯系統(tǒng)與生料磨或煤磨系統(tǒng)組合成一個(gè)聯(lián)合流程,彼此聯(lián)接緊密,此種生產(chǎn)系統(tǒng)的工藝流程比較簡(jiǎn)單。3.在生料粉磨工序中普遍采用烘干兼粉磨系統(tǒng)。4.本次設(shè)計(jì)為一臺(tái)窯外分解窯,在生產(chǎn)工藝上要求煅燒高飽和比高硅率的生料,這樣能提高熟料的質(zhì)量并能減少預(yù)熱器分解爐系統(tǒng)的堵塞和回轉(zhuǎn)窯燒成帶的結(jié)圈。5.在水泥粉磨系統(tǒng)采用輥壓機(jī)、球磨、高效選粉機(jī)(如O—SEPA選粉機(jī)等)的聯(lián)合粉磨系統(tǒng)。在本次畢業(yè)設(shè)計(jì)中,由于受本人知識(shí)結(jié)構(gòu)及能力所限和參考文獻(xiàn)的制約,設(shè)計(jì)時(shí)間比較短,在設(shè)計(jì)中難免有錯(cuò)誤和欠缺之處,懇請(qǐng)各位老師批評(píng)指正。參考文獻(xiàn)PAGE70謝辭光陰似箭、日月如梭,轉(zhuǎn)瞬即到了要畢業(yè)的時(shí)間,即將離去,流連忘返也許是此時(shí)心情最貼切的詮釋?;厮葸^去,老師們的諄諄教誨,同學(xué)的熱情幫助,仍然歷歷在目久久不能忘懷,失敗時(shí)的悲傷,成功時(shí)的喜悅,明亮的教室,翻得有點(diǎn)卷頁的課本,還有大家一起嬉鬧吶喊的一幕幕,一切的一切都成為我腦海中永遠(yuǎn)的回憶。忙碌了,努力了,最終帶來了收獲,我相信有付出就會(huì)有回報(bào)。我深深的意識(shí)到老師教給我們的不僅是書本上的理論知識(shí),還有他們豐富的人生閱歷,工作經(jīng)驗(yàn),生活品味等等。此外,在我們的多次課程設(shè)計(jì)以及這次的畢業(yè)設(shè)計(jì)中,老師們不厭其煩的教我們?cè)趺纯?,怎么想,怎么做,如何發(fā)現(xiàn)并解決問題,如何將我們學(xué)到的理論知識(shí)與實(shí)際工程相結(jié)合,這對(duì)我們來說是全新的體驗(yàn)和無比寶貴的經(jīng)驗(yàn)。也必將在我未來的工作學(xué)習(xí)中獲得體現(xiàn)。因?yàn)橛欣蠋焸兯哪陙頍o私的奉獻(xiàn),使我由一個(gè)稚氣未脫的高中生成長(zhǎng)為有著扎實(shí)理論基礎(chǔ)的畢業(yè)生。我對(duì)未來充滿了信心和憧憬。在這里深深的對(duì)指導(dǎo)老師張新愛老師表示衷心的感謝,是她的孜孜不倦的指導(dǎo),我才順利完成了畢業(yè)設(shè)計(jì),對(duì)我?guī)椭艽螅钗沂斋@頗豐,因此我想說一句,謝謝對(duì)于這次畢業(yè)設(shè)計(jì),三個(gè)多月的時(shí)間里,進(jìn)行實(shí)際工程的設(shè)計(jì),對(duì)于實(shí)際工程中的若干問題也有了深刻的體會(huì)。這次的畢業(yè)設(shè)計(jì)使我對(duì)這門專業(yè)有了更為完整的體驗(yàn),這也將成為我們將來工作中的偉大財(cái)富。感謝老師的用心良苦,同時(shí)感謝在本次設(shè)計(jì)中給予我?guī)椭睦顩_和李輝等同學(xué),這次設(shè)計(jì)的完成與他們的幫助是分不開的。在這里也向他們道謝,并祝他們今后的生活工作能夠一帆風(fēng)順,萬事如意。參考文獻(xiàn)[1]曾學(xué)敏.水泥工業(yè)現(xiàn)狀及發(fā)展趨勢(shì).中國(guó)水泥.2005.4.[2]金容容.水泥廠工藝設(shè)計(jì)概論【M】.武漢:武漢理工大學(xué)出版社,1993,21~214.[3]孫晉濤.硅酸鹽工業(yè)熱工基礎(chǔ)【M】,武漢,武漢工業(yè)大學(xué)出版社,1992.5.[4]李濤平.再論新型干法水泥廠設(shè)計(jì)新概念.CHINAEMENT.2005.4.[5]簡(jiǎn)淼夫.用辦公軟件EXCEL作配料計(jì)算.水泥,2001.10.[6]沈威.水泥工藝學(xué),武漢,武漢理工大學(xué)出版社,1991.7.[7]駐馬店豫龍同力水泥有限責(zé)任公司5000T/D燒成系統(tǒng)調(diào)試操作說明書.天津水泥工業(yè)設(shè)計(jì)研究院.2003.12.[8]水泥工業(yè)網(wǎng),百度網(wǎng),水泥技術(shù)網(wǎng),建材網(wǎng).2011.3-2011.6.[9]龔文虎.水泥廠工藝設(shè)計(jì)中物料平衡的計(jì)算方法.CEMENTTECHNOLOGY.2000.1.[10]GB175-2007通用硅酸鹽水泥.2007.11.[11]何俊元.水泥廠工藝設(shè)計(jì)概論(1982年版).中國(guó)建工出版社.1982.3.[12]李海濤,郭獻(xiàn)軍,吳武偉..新型干法水泥生產(chǎn)技術(shù)與設(shè)備.北京,化學(xué)工業(yè)出版社,2006.1.[13]兩渣一灰綜合利用日產(chǎn)4000噸特種水泥熟料生產(chǎn)線可行性研究報(bào)告中材國(guó)際工程股份有限公司官網(wǎng).2006.3.[14]曹文聰、楊樹森.普通硅酸鹽工藝學(xué)【M】,武漢,武漢工業(yè)大學(xué)出版社,1996.10~26.[15]高長(zhǎng)明.預(yù)分解窯水泥生產(chǎn)技術(shù)及進(jìn)展,北京,化學(xué)工業(yè)出版社,2006.1[16]嚴(yán)生,常捷,程麟.新型干法水泥廠工藝設(shè)計(jì)手冊(cè).中國(guó)建材工業(yè)出版社,2007.1.[17]第三代5500t/d預(yù)分解系統(tǒng)的研究開發(fā)及應(yīng)用.天津水泥工業(yè)設(shè)計(jì)研究院.2010.1.[18]陳守強(qiáng);胡慶銀;高冬美.年產(chǎn)100t噸水泥粉磨站生產(chǎn)線實(shí)踐.山東東華水泥有限公司水泥,cement.2007.No.1[19]熊會(huì)思,熊然.新型干法水泥廠設(shè)備選型使用手冊(cè)-5000t/d熟料生產(chǎn)線工藝系統(tǒng)設(shè)計(jì).中國(guó)建材工業(yè)出版社,2007.1[20]劉志江.新型干法水泥技術(shù).中國(guó)建材工業(yè)出版社,2005.1[21]潘軼、蔣超鵬.華潤(rùn)水泥(貴港)有限公司2×5000t/d熟料生產(chǎn)線工藝設(shè)計(jì)簡(jiǎn)介.水泥工程,2007.01附錄PAGE16外文資料翻譯TheHydrationofBlendedCementatLowW/BRatioABSTRACT:Thehydrationprocess,hydrationproductandhydrationheatofblendedcementpastemixedwithmineraladmixtureandexpansiveagentatLow/BratioarestudiedByrd,Thermosanalysis,andcalorimetryinstrument,andtheywerecomparedwiththoseimpurecementpaste.TheresultsshowthatpurecementandblendedcementatLow/Bratiohavethesametypeshyperproductions,butrespectiveamountshyperrationalproductsofvariousblendedcementsatsameagesAntheavariationOlatheamountofsamehydrationwithagesaredifferent;Thejointeffectliquefactionfodgel-deterringduetowaterabsorptionandtheexpansivepressureonmilleporeadriftcausedSothebycrystallogeneticistheimpetusofthevolumeexpansioncementapaste,andRothermereeffectismuchgreaterthanthelatterone.KEYWORDS:hydration;blendedcement;lowW/Bratio;expansionmechanism1IntroductionThehydrationandhardeningprocessesofordinarycementhavebeenstudiedintensively[1-3].Partlyreplacingcementwithflyash,slag,orotheractivemineraladmixturecannotcommodifythecementstrengthgrade,reducethehydrationheatofcement,butalsomelioratethestructureofhardencementpaste[4].Applyingexpansiveagentinordinaryconcretecancombinethebearingandwaterprooffunctionsofabuilding,anditcanalsoreducetheshrinkageandpreventthecrackingofconcrete[5,6].However,thehydrationprocessofcementmixedwithflyash,slagandexpansiveagentatLow/Bratioundernon-saturationwaterconditionneedtobestudiedsufficiently.Soweexecutetheresearchworkinthisfield.2Elementarily2.1RawmaterialsCement:Grade42.5POcementproducedbyHuitainCementCompanyinChinawasused.Flyash:GroundflyAshdownproducedbyathermoelectricityplant.(3)Slag:GroundblastfurnaceslagwasproducedbyWuHanSteelCompanyinChinawhosespecificsurfaceis6000cm2/g.(4)Expansiveagent:(a)UEAexpansiveagentwasmanufacturedbyZhengzhouCompany,ThechemicalcompositionsofrawmaterialsareshowninTable1.(b)Twokindsofexpansivegrandparentalpreparedbyourselves;ThemaincomponentsexpansiveagentarrawaluniteandCaSO4·2H2Oandthoseexpansiveagentincludeautunite,clinkerandsulphonatecementCaSO4·2H2O.2.2Method2.2.1Thepurecementpaste(orcementpastemixedwithmineraladmixtureandexpansiveagent)waspreparedin20×20×20mmmould.ThespecimenDemopolisafter24hofstandardcuring(20℃,RH90±5%),andthencuredwithoutmoldsunderthesameconditiontotestages.2.2.2MeasuringthehydrationheatofcementpasteADardansblandXMD50000seriesintellectiveinstrumentandastandardCu-Thermosresistancetemperaturesensorwereused.Thetemperaturemeasuringrangewas-50℃to150℃.Afterbeingmixedevenly,thecementpaste.Samplewasputintotheroundvacuumflask,andthetemperaturesensorwasembeddedintothecementpaste,sealingthemouthoftheflaskwithPVClaminaandolefinandcontinuouslymeasuringthetemperaturevariationofthecementpasteat20℃environmenttemperatureuntilthetemperatureofcementpasteisthewherewithalofenvironmenttemperature.3ResultsandDiscussion3.1HydrationprocessofblendedcementWeused15%flyash,15%flagand10%UEAtoreplacecorrespondencycement,andstudiedthehydrationproductswithXRD.Thespecimenswereallmoldedandcuredunderfree,Low/Bratio(0.28)andmoistconditions(butnotsoakedintowater).FromFig.1toFig.4wecanlearnthatthetypesofthehydrationproductsofpurecementandblendedcementarethesame.AllofthemareC-S-H,CH,Aftetc.Inaddition,therehemihydratedC3SandC2Setc.Butinthesamehydrationage,theamountofallkindsofhydrationproductsdiffersobviously.Andthisfactisreflectedinthedifferencesoftherelativeintegrityofthediffractionpeaks(Counterseal-e).WelisttherelativeintensityofthediffractionpeaksofthemainhydrationproductsandhydratedC3SandC2Satagesof3dand28dageinTable2.Table1CharacteristicsofRawMaterialsSS:Specificsurface;RWD:Ratioofwaterdemand;R28:Compressivestrengthof28dTable2TheRelativeIntensityoftheDiffractionPeaks/CountsFig.1XRDpatternofpurecementsampleat3dand28dagesFig.2XRDpatternofthesampleofcementmixedwithflyashat3dand28dagesFig.3XRDpatternofGBSScementhydratedfor3dand28dFig.4XRDpatternofUEAcementhydratedfor3dand28dTable2showsseveralcharacteristicsofthehydrationprocessofthesecountertypesofcementunderLow/Bratioandnot-soakedintowatercuringconditions:(1)ThevariationlawoftheamountofCHproduced:InpureCementonpaste,theamountofChformedat28dageismuchgreaterthanthatat3dage.ButincementpastemixedwithUEAtheamountofCHformedat28dageisobviouslylessthanthatat3dage,andthereductionpercentageisabout20%.(2)ThevariationlawoftheamountofAFformedbyblendedcement:at3dand28dage,cementmixedWithee>cementmixedwithslag=purecement>withholdmentflyash;ItisnoticedthattheamountofAftformedat3dorat28dhydrationageofdifferentblendedcementisalmostthesame,evenlower.Ifcuredundermaldistributioninthisperiod,severalkindsofcementpaste,especiallythecementpastemixedwithexpansiveagent,micromesh-expansioninmacrovolume,buttheamountofAF,theexpansionsource,doesnotincreaseobviously,becausethatthejointeffectoftumefactionoffiddlestringduetothewaterabsorptionandtheexpansivepressureontheporeandriftcausedbythecrystalloiddeterringistheimpetusofthevolumeexpansionofcementpaste,andtheformereffectismuchgreaterthanthelatterone.Before3d,thepastestructureisloose,andthereismuchspaceforthecrystaltogrow,sothedeterringformedinthisperiodIsmailneedle-orcylinder-likedeterring.However,inlaterages,thereislittlespaceleftforthefreegrowthofthedeterring,therefore,thedeterringformedinlateperiodismainly-deterring.Therefore,inXRDpattern,therelativeintensityofthediffractionpeaksofdeterringformedinlaterperiodisnotobvious.ThemainreasonforagreatdealofhydratedC3SandC2SexistinginthefouramercementsistheLow/Bratioofthecementpaste,andthecementcannotbehydratedcompletely.Thereplacementofcementwithequiponderancemineraladmixturecanacceleratethehydrationprocessofcement.Theadmixturewhichacceleratestheearlyhydrationprocessmostobviouslyisslag.Andtheothertwoadmixtureshavealmostthesameaccelerationeffectsontheearlyhydrationprocess.Butatlaterageofthehydrationprocess,thereisnoobviousdifferenceintheaccelerationeffectamongthese3admixtures.Admixturesacceleratethehydrationprocessmainlyduetotheirdilutioneffect,whichcanincreasethereal/Cratioofcementpastes.TheincreaseofthehydrationlevelofcementpasteisalsoreflectedontheamountofCHproduced.Thatistosay,theamountofChformedinthecementpastemixedwithflyash,UEAorslagat3dageisgreaterthanthatofpurecement.However,comparedtothatat3dage,theamountsofCHproducedat28dagedecreasetoanextentinthe3cementpastes.Thisisduetothealkali—pozzolaniceffectofslagandflyashatlatehydrationage;theactiveadmixturesabsorbapartofCH,whichresultsinthedecreaseoftheamountsofCH.Butthereisnotsucheffectinpurecementpaste,sotheamountofCHincreasesgreatly.AstothecementpastemixedwithexpansiveagentUEA,therelativeintensityofthediffractionpeakofAftinXRDdiagramisthehighestamongthe4cementsamplesat3dor28dage.ThisisduetothecombinationofthemainingredientofUEA,aluniteandgypsum,andtheCHproducedinthehydrationprocessofcement,producingagreatamountofdeterring,andatthesametime,consumingagreatamountofCH.Therefore,thehydrationreactionofC3SandC2Scanbeaccelerated,whichcanmakethestrengthandtheexpansionofcementdevelopcoordinately,andthedeterringproducedinthisprocesscanpossessthemicro-expansionandshrinkagecompensationabilities.Thisisexactionoftheimportantcharacteristicsofthehydrationandhardeningreactionofcementpastemixedwithexpansiveagent.ThemassformationofCa(OH)2cannotonlyincreasethealkalinityofthesolutionintheporeofcementpastetobesupersaturated,contributetotheincreaseofamountsofdeterringandtheexpansionenergy,butalsoactivatethepozzolanicactivityofmineraladmixtures,facilitatingthedevelopmentofconcretestrength.Itisobviousthattheincorporationofexpansiveagentintotheconcreteblendedwithmineraladmixturesnotonlymakesconcretehavethemicro-expansionandshrinkagecompensationeffects,butalsocanfacilitatethedeveloper'sitsearlystrengthandoptimizeitsperformancesofmaterials.3.2ThermalanalysisofhydrationproductsThedifferentialthermalanalysis(DTA)methodisusedtomeasuretheTG-DTAcurveofpurecementandcementmixedwithantetypeexpansibilityagentduring20to600℃temperature,theresultsareshowninFigs.5-7.Fig.5DTAcurveofpurecementsampleat3dand28dagesFig.6DTAcurveofthesampleofcementmixedAwithexpansiveagent3dand28dagesFig.7DTAcurveofthesampieofcementmixedwithtypeBexpansiveagent3dand28dagesTheexperimentalresultsshortheadOutcurvesofthethreecementpastesarealmostsame.Theyallhaveonlytwoobviousendothermicpeaks:thedehydrationpeakofAFatabout100℃andthedehydrationpeakofCa(OH)2at440-445℃.Iftheweightlossvaluebetween20-155℃togetherwiththeareaofthe2endothermicpeaksofDTAcurveisusedtoaccesstheamountofAFandCa(OH)2:(1)At3dage,theamountsofAFandCa(OH)2producedinpurecementpastearemuchlowerthanthatofcementpastemixedwithexpansiveagent.Theweightlossesintcurvesofthe3samplesarelistedbelow:Between20to155℃temperaturerange:10.03%,10.89%,10.64%;between410to480℃temperaturerange:2.17%,2.95%,2.84%;(2)At28dage,theamountofAFinthe2cementpastesmixedwithexpansiveagentisstillobviouslyhigherthanthatofpurecementpaste,buttheamountsofCHarealmostequivalenttoeachother.TheweightlossesinTGcurvesofthe3samplesarelistedbelow:Between20-155℃temperateness:9.77%,11.54%,10.73%;Between410-480℃temperaturerange:2.34%,2.33%,2.36%;(3)From3dto28dhydrationage,theamountofAFofthe3cementsamplesdidnotincreaseobviouslyanylonger.Therefore,theexpansionatthelateagewascausedbythewater-absorptiontumefactioneffectofgel-likedeterring,butnotthecrystallizationstresscausedbytheformationofnewdeterringcrystalinthedeliquescence-crystallizationprocess.3.3HydrationeaThehydrationheatofcementmixedwithflyashandslaghasbeenstudiedindetail,sothehydrationheatofcementmixedwithexpansiveagentisfocusedon.Inthecementpastemixedwithexpansiveagent,thehydrationheatvariesgreatlywiththeexpansiveagenttypes.Themixesofthe3cementsamplesarelistedinTable3,andthehydrationheatcurvesareshowninFig.8.Table3TheMixesofthe3CementSamplesFig.8Thehydrationheatcurvesofthe3cementsamplesFig.8showsthatifthecementispartlyreplacedbyexpansiveagentwithoutsulfur-aluminatecementclinkerandflyash,thepeakvalueofhydrationheatwillbethelowest,andthetemperaturewilldecreasefrompeakvaluequickly.Ifthecementpastemixedwithflyashispartlyreplacedbyexpansiveagentcontainingsulfur-aluminatecementclinker,thehydrationheatwillbethemostobvious.Moreover,the3cementpastesamplesreachthehighesthydrationheatatalmostthesametimebetween12-16hours.4Conclusionsa)UnderLow/Bratiocondition,purecementandblendedcementhavethesametypesofhydrationproductsandhydratedC3SandC2S.Buttheamountsofthehydratesofvariousblendedcementsaredifferentobviously.b)ThevariationlawoftheamountofCHformed:Forpurecementpaste,theamountofCHformedat28dageismuchgreaterthanthatat3dage.ButforcementpastemixedwithUEA,theamountofCHformedat28dageisobviouslylessthanThanatos3dage,andthereductionpercentageisabout20%.c)Thejointeffectoftumefactionofgel-deterringduetowaterabsorptionandtheexpansivepressureontheporeandriftcausedbythecrystalloiddeterringistheimpetusofthevolumeexpansionofcementpaste,andtheformereffectismuchgreaterthanthelatterone.References[1]Bruegel,Kvan.NumericalSimulationofHydrationandMicrostructuralDevelopmentinHardeningCement-basedMaterials(II)Theory.CementaccretionResearch,1995,25(2):319-331[2]BhangDing,ChiLei-lin.StudyoftheHydrationProcessofCement-basedMaterialsbyACImpedanceTechnique.JournalofBuildingMaterials,2000,3(2):109-112(inChinese)[3]Bent,DP.Three-dimensionalComputerSimulationofPortlandCementHydrationandMacrostructureDevelopment.J.Am.Ceram.Soc.,1997,80(1):3-21[4]LuLinnu.StudyonPretermGandhism-strengthConcreteExpertSystem.[ThesisofMaster’sDegree].Wuhan:WuhanUniversityofTechnology,1999[5]DingBing-jun,LuLin-nu,HSh-Guangzhou,HeYong-aia.PreparationhighImpermeableandCrack-resistanceChemicalAdmixtureandItsMechanism.JournalWuhanUniversitycytotechnology-Mater.Sci.Ed.,2002,17(2):70-73[6]Deafening,TangMing-Sh.FormationandExpansionofdeterringCrystals.CementandConcreteResearch,1994,24(1):119中文翻譯低水灰比復(fù)合水泥的水化摘要通過XRD,差熱分析來研究含有礦物混合物和外加劑的低水灰比的復(fù)合水泥的水化過程,水化產(chǎn)物和水化熱,并且把這些研究與普通水泥做了比較,結(jié)果表明普通水泥和低水灰比的復(fù)合水泥有相同類型的水化產(chǎn)物,但在同一個(gè)階段不同的復(fù)合水泥它們的各自水化產(chǎn)物含量和各階段的同一水化產(chǎn)物的含量變化率是不同的;凝膠體的膨脹的聯(lián)合效應(yīng)是由于吸水性引起的,而作用在結(jié)晶狀的凝膠體所引起的氣孔和裂口處的可擴(kuò)張壓力是水泥漿體的體積膨脹的原動(dòng)力,并且前者的影響比后者大。關(guān)鍵詞:水化,復(fù)合水泥,低水灰比,膨脹機(jī)理第一章引言普通水泥的水化和硬化過程已經(jīng)進(jìn)行了集中的研究。部分用粉煤灰,礦渣,或者其它的有活性的礦物混合物來代替水泥不僅可以改變水泥的強(qiáng)度等級(jí),降低水泥的水化熱,而且也可以改善硬化水泥漿體的結(jié)構(gòu),在普通的混凝土中應(yīng)用外加劑可以使建筑物的紋理和防水功能結(jié)合,并且它也可以減少收縮量,阻止混凝土開裂。盡管如此,在沒有浸透水的條件下,低水灰比的混有粉煤灰,礦渣和外加劑的水泥的水化過程仍需要充分研究。所以我們?cè)谶@個(gè)領(lǐng)域進(jìn)行了研究工作。第二章試驗(yàn)§2.1原料⑴水泥:采用中國(guó)華新水泥公司生產(chǎn)的P.O42.5;⑵粉煤灰:采用熱電廠的;⑶礦渣:有中國(guó)武漢鋼鐵廠提供的,它的比表面積為6000cm2/g;⑷外加劑:(a)UEA外加劑是有中原公司生產(chǎn)的,生料的化學(xué)成分見表1(b)我們準(zhǔn)備了A和B兩種外加劑;A型外加劑的主要成分是明礬石和石膏,B型外加劑的主要成分包括明礬石,熟料和水泥?!?.2方法§2.2.1在沒有凝固的條件下,水泥樣品的制備在20×20×20mm的模型中來制備普通水泥漿體,這些水泥在標(biāo)況下凝固,并經(jīng)過24樣品的制備過程用XRD和TG-DTA來分析:在某一水化階段,將樣品粉碎成3到5mm§2.2.2水泥漿體水化熱的測(cè)量溫度的測(cè)量范圍是從-50℃到150℃,料充分混合后,把水泥漿體放入到真空瓶中,并把溫度探測(cè)儀插入水泥漿體中,用PVC薄片和油酸把真空瓶口密封住,同時(shí)不停地測(cè)量水泥漿體在第三章結(jié)果與討論§3.1復(fù)合水泥的水化過程我們用15%的粉煤灰,15%的礦渣和10%UEA來代替同樣重量的水泥,用XRD來研究水化產(chǎn)物。這些樣品在低水灰比和干燥狀態(tài)下都沒有進(jìn)行處理和凝固。從圖1到圖4我們可以看到普通水泥和復(fù)合水泥的水化產(chǎn)物類型是一樣的,它們都是C-S-H,CH和AFt等。另外還有一些未水化的C3S和C2S等。但在同一水化階段,各種水化產(chǎn)物的含量是明顯的不

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論