




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
河北省邯鄲市永年縣第一中學2022-2023學年高三下學期第四次聯考數學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知i是虛數單位,則1+iiA.-12+32i2.執(zhí)行如圖所示的程序框圖若輸入,則輸出的的值為()A. B. C. D.3.某人用隨機模擬的方法估計無理數的值,做法如下:首先在平面直角坐標系中,過點作軸的垂線與曲線相交于點,過作軸的垂線與軸相交于點(如圖),然后向矩形內投入粒豆子,并統(tǒng)計出這些豆子在曲線上方的有粒,則無理數的估計值是()A. B. C. D.4.已知函數,,當時,不等式恒成立,則實數a的取值范圍為()A. B. C. D.5.如圖,內接于圓,是圓的直徑,,則三棱錐體積的最大值為()A. B. C. D.6.盒中裝有形狀、大小完全相同的5張“刮刮卡”,其中只有2張“刮刮卡”有獎,現甲從盒中隨機取出2張,則至少有一張有獎的概率為()A. B. C. D.7.三棱錐中,側棱底面,,,,,則該三棱錐的外接球的表面積為()A. B. C. D.8.已知是球的球面上兩點,,為該球面上的動點.若三棱錐體積的最大值為36,則球的表面積為()A. B. C. D.9.《易·系辭上》有“河出圖,洛出書”之說,河圖、洛書是中華文化,陰陽術數之源,其中河圖的排列結構是一、六在后,二、七在前,三、八在左,四、九在右,五、十背中,如圖,白圈為陽數,黑點為陰數,若從陰數和陽數中各取一數,則其差的絕對值為5的概率為A. B. C. D.10.有一改形塔幾何體由若千個正方體構成,構成方式如圖所示,上層正方體下底面的四個頂點是下層正方體上底面各邊的中點.已知最底層正方體的棱長為8,如果改形塔的最上層正方體的邊長小于1,那么該塔形中正方體的個數至少是()A.8 B.7 C.6 D.411.2019年10月17日是我國第6個“扶貧日”,某醫(yī)院開展扶貧日“送醫(yī)下鄉(xiāng)”醫(yī)療義診活動,現有五名醫(yī)生被分配到四所不同的鄉(xiāng)鎮(zhèn)醫(yī)院中,醫(yī)生甲被指定分配到醫(yī)院,醫(yī)生乙只能分配到醫(yī)院或醫(yī)院,醫(yī)生丙不能分配到醫(yī)生甲、乙所在的醫(yī)院,其他兩名醫(yī)生分配到哪所醫(yī)院都可以,若每所醫(yī)院至少分配一名醫(yī)生,則不同的分配方案共有()A.18種 B.20種 C.22種 D.24種12.從裝有除顏色外完全相同的3個白球和個黑球的布袋中隨機摸取一球,有放回的摸取5次,設摸得白球數為,已知,則A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,某地一天從時的溫度變化曲線近似滿足函數,則這段曲線的函數解析式為______________.14.已知橢圓的離心率是,若以為圓心且與橢圓有公共點的圓的最大半徑為,此時橢圓的方程是____.15.在平面直角坐標系中,圓.已知過原點且相互垂直的兩條直線和,其中與圓相交于,兩點,與圓相切于點.若,則直線的斜率為_____________.16.已知三棱錐中,,,則該三棱錐的外接球的表面積是________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四面體中,.(1)求證:平面平面;(2)若,求四面體的體積.18.(12分)如圖,在平面直角坐標系中,以軸正半軸為始邊的銳角的終邊與單位圓交于點,且點的縱坐標是.(1)求的值:(2)若以軸正半軸為始邊的鈍角的終邊與單位圓交于點,且點的橫坐標為,求的值.19.(12分)設(1)當時,求不等式的解集;(2)若,求的取值范圍.20.(12分)隨著科技的發(fā)展,網絡已逐漸融入了人們的生活.網購是非常方便的購物方式,為了了解網購在我市的普及情況,某調查機構進行了有關網購的調查問卷,并從參與調查的市民中隨機抽取了男女各100人進行分析,從而得到表(單位:人)經常網購偶爾或不用網購合計男性50100女性70100合計(1)完成上表,并根據以上數據判斷能否在犯錯誤的概率不超過0.01的前提下認為我市市民網購與性別有關?(2)①現從所抽取的女市民中利用分層抽樣的方法抽取10人,再從這10人中隨機選取3人贈送優(yōu)惠券,求選取的3人中至少有2人經常網購的概率;②將頻率視為概率,從我市所有參與調查的市民中隨機抽取10人贈送禮品,記其中經常網購的人數為,求隨機變量的數學期望和方差.參考公式:0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.82821.(12分)已知等差數列an,和等比數列b(I)求數列{an}(II)求數列n2an?a22.(10分)如圖所示,在四棱錐中,∥,,點分別為的中點.(1)證明:∥面;(2)若,且,面面,求二面角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
利用復數的運算法則即可化簡得出結果【詳解】1+i故選D【點睛】本題考查了復數代數形式的乘除運算,屬于基礎題。2、C【解析】
由程序語言依次計算,直到時輸出即可【詳解】程序的運行過程為當n=2時,時,,此時輸出.故選:C【點睛】本題考查由程序框圖計算輸出結果,屬于基礎題3、D【解析】
利用定積分計算出矩形中位于曲線上方區(qū)域的面積,進而利用幾何概型的概率公式得出關于的等式,解出的表達式即可.【詳解】在函數的解析式中,令,可得,則點,直線的方程為,矩形中位于曲線上方區(qū)域的面積為,矩形的面積為,由幾何概型的概率公式得,所以,.故選:D.【點睛】本題考查利用隨機模擬的思想估算的值,考查了幾何概型概率公式的應用,同時也考查了利用定積分計算平面區(qū)域的面積,考查計算能力,屬于中等題.4、D【解析】
由變形可得,可知函數在為增函數,由恒成立,求解參數即可求得取值范圍.【詳解】,即函數在時是單調增函數.則恒成立..令,則時,單調遞減,時單調遞增.故選:D.【點睛】本題考查構造函數,借助單調性定義判斷新函數的單調性問題,考查恒成立時求解參數問題,考查學生的分析問題的能力和計算求解的能力,難度較難.5、B【解析】
根據已知證明平面,只要設,則,從而可得體積,利用基本不等式可得最大值.【詳解】因為,所以四邊形為平行四邊形.又因為平面,平面,所以平面,所以平面.在直角三角形中,,設,則,所以,所以.又因為,當且僅當,即時等號成立,所以.故選:B.【點睛】本題考查求棱錐體積的最大值.解題方法是:首先證明線面垂直同,得棱錐的高,然后設出底面三角形一邊長為,用建立體積與邊長的函數關系,由基本不等式得最值,或由函數的性質得最值.6、C【解析】
先計算出總的基本事件的個數,再計算出兩張都沒獲獎的個數,根據古典概型的概率,求出兩張都沒有獎的概率,由對立事件的概率關系,即可求解.【詳解】從5張“刮刮卡”中隨機取出2張,共有種情況,2張均沒有獎的情況有(種),故所求概率為.故選:C.【點睛】本題考查古典概型的概率、對立事件的概率關系,意在考查數學建模、數學計算能力,屬于基礎題.7、B【解析】由題,側棱底面,,,,則根據余弦定理可得,的外接圓圓心三棱錐的外接球的球心到面的距離則外接球的半徑,則該三棱錐的外接球的表面積為點睛:本題考查的知識點是球內接多面體,熟練掌握球的半徑公式是解答的關鍵.8、C【解析】
如圖所示,當點C位于垂直于面的直徑端點時,三棱錐的體積最大,設球的半徑為,此時,故,則球的表面積為,故選C.考點:外接球表面積和椎體的體積.9、A【解析】
陽數:,陰數:,然后分析陰數和陽數差的絕對值為5的情況數,最后計算相應概率.【詳解】因為陽數:,陰數:,所以從陰數和陽數中各取一數差的絕對值有:個,滿足差的絕對值為5的有:共個,則.故選:A.【點睛】本題考查實際背景下古典概型的計算,難度一般.古典概型的概率計算公式:.10、A【解析】
則從下往上第二層正方體的棱長為:,從下往上第三層正方體的棱長為:,從下往上第四層正方體的棱長為:,以此類推,能求出改形塔的最上層正方體的邊長小于1時該塔形中正方體的個數的最小值的求法.【詳解】最底層正方體的棱長為8,則從下往上第二層正方體的棱長為:,從下往上第三層正方體的棱長為:,從下往上第四層正方體的棱長為:,從下往上第五層正方體的棱長為:,從下往上第六層正方體的棱長為:,從下往上第七層正方體的棱長為:,從下往上第八層正方體的棱長為:,∴改形塔的最上層正方體的邊長小于1,那么該塔形中正方體的個數至少是8.故選:A.【點睛】本小題主要考查正方體有關計算,屬于基礎題.11、B【解析】
分兩類:一類是醫(yī)院A只分配1人,另一類是醫(yī)院A分配2人,分別計算出兩類的分配種數,再由加法原理即可得到答案.【詳解】根據醫(yī)院A的情況分兩類:第一類:若醫(yī)院A只分配1人,則乙必在醫(yī)院B,當醫(yī)院B只有1人,則共有種不同分配方案,當醫(yī)院B有2人,則共有種不同分配方案,所以當醫(yī)院A只分配1人時,共有種不同分配方案;第二類:若醫(yī)院A分配2人,當乙在醫(yī)院A時,共有種不同分配方案,當乙不在A醫(yī)院,在B醫(yī)院時,共有種不同分配方案,所以當醫(yī)院A分配2人時,共有種不同分配方案;共有20種不同分配方案.故選:B【點睛】本題考查排列與組合的綜合應用,在做此類題時,要做到分類不重不漏,考查學生分類討論的思想,是一道中檔題.12、B【解析】
由題意知,,由,知,由此能求出.【詳解】由題意知,,,解得,,.故選:B.【點睛】本題考查離散型隨機變量的方差的求法,解題時要認真審題,仔細解答,注意二項分布的靈活運用.二、填空題:本題共4小題,每小題5分,共20分。13、,【解析】
根據圖象得出該函數的最大值和最小值,可得,,結合圖象求得該函數的最小正周期,可得出,再將點代入函數解析式,求出的值,即可求得該函數的解析式.【詳解】由圖象可知,,,,,從題圖中可以看出,從時是函數的半個周期,則,.又,,得,取,所以,.故答案為:,.【點睛】本題考查由圖象求函數解析式,考查計算能力,屬于中等題.14、【解析】
根據題意設為橢圓上任意一點,表達出,再根據二次函數的對稱軸與求解的關系分析最值求解即可.【詳解】因為橢圓的離心率是,,所以,故橢圓方程為.因為以為圓心且與橢圓有公共點的圓的最大半徑為,所以橢圓上的點到點的距離的最大值為.設為橢圓上任意一點,則.所以因為的對稱軸為.(i)當時,在上單調遞增,在上單調遞減.此時,解得.(ii)當時,在上單調遞減.此時,解得舍去.綜上,橢圓方程為.故答案為:【點睛】本題主要考查了橢圓上的點到定點的距離最值問題,需要根據題意設橢圓上的點,再求出距離,根據二次函數的對稱軸與區(qū)間的關系分析最值的取值點分類討論求解.屬于中檔題.15、【解析】
設:,:,利用點到直線的距離,列出式子,求出的值即可.【詳解】解:由圓,可知圓心,半徑為.設直線:,則:,圓心到直線的距離為,,.圓心到直線的距離為半徑,即,并根據垂徑定理的應用,可列式得到,解得.故答案為:.【點睛】本題主要考查點到直線的距離公式的運用,并結合圓的方程,垂徑定理的基本知識,屬于中檔題.16、【解析】
將三棱錐補成長方體,設,,,設三棱錐的外接球半徑為,求得的值,然后利用球體表面積公式可求得結果.【詳解】將三棱錐補成長方體,設,,,設三棱錐的外接球半徑為,則,由勾股定理可得,上述三個等式全部相加得,,因此,三棱錐的外接球面積為.故答案為:.【點睛】本題考查三棱錐外接球表面積的計算,根據三棱錐對棱長相等將三棱錐補成長方體是解答的關鍵,考查推理能力,屬于中等題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2).【解析】
(1)取中點,連接,根據等腰三角形的性質得到,利用全等三角形證得,由此證得平面,進而證得平面平面.(2)由(1)知平面,即是四面體的面上的高,結合錐體體積公式,求得四面體的體積.【詳解】(1)證明:如圖,取中點,連接,由則,則,故故,平面.又平面,故平面平面(2)由(1)知平面,即是四面體的面上的高,且.在中,,由勾股定理易知故四面體的體積【點睛】本小題主要考查面面垂直的證明,考查錐體體積計算,考查空間想象能力和邏輯推理能力,屬于中檔題.18、(1)(2)【解析】
(1)依題意,任意角的三角函數的定義可知,,進而求出.在利用余弦的和差公式即可求出.(2)根據鈍角的終邊與單位圓交于點,且點的橫坐標是,得出,進而得出,利用正弦的和差公式即可求出,結合為銳角,為鈍角,即可得出的值.【詳解】解:因為銳角的終邊與單位圓交于點,點的縱坐標是,所以由任意角的三角函數的定義可知,.從而.(1)于是.(2)因為鈍角的終邊與單位圓交于點,且點的橫坐標是,所以,從而.于是.因為為銳角,為鈍角,所以從而.【點睛】本題本題考查正弦函數余弦函數的定義,考查正弦余弦的兩角和差公式,是基礎題.19、(1)(2)【解析】
(1)通過討論的范圍,得到關于的不等式組,解出取并集即可.(2)去絕對值將函數寫成分段函數形式討論分段函數的單調性由恒成立求得結果.【詳解】解:(1)當時,,即或或解之得或,即不等式的解集為.(2)由題意得:當時為減函數,顯然恒成立.當時,為增函數,,當時,為減函數,綜上所述:使恒成立的的取值范圍為.【點睛】本題考查了解絕對值不等式問題,考查不等式恒成立問題中求解參數問題,考查分類討論思想,轉化思想,屬于中檔題.20、(Ⅰ)詳見解析;(Ⅱ)①;②數學期望為6,方差為2.4.【解析】
(1)完成列聯表,由列聯表,得,由此能在犯錯誤的概率不超過0.01的前提下認為我市市民網購與性別有關.(2)①由題意所抽取的10名女市民中,經常網購的有人,偶爾或不用網購的有人,由此能選取的3人中至少有2人經常網購的概率.②由列聯表可知,抽到經常網購的市民的頻率為:,由題意,由此能求出隨機變量的數學期望和方差.【詳解】解:(1)完成列聯表(單位:人):經常網購偶爾或不用網購合計男性5050100女性7030100合計12080200由列聯表,得:,∴能
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 木材加工中的刀具磨損與維護考核試卷
- 動物膠在紡織工業(yè)中的應用考核試卷
- 床上用品企業(yè)產品生命周期管理考核試卷
- 塑料制品在汽車燃油系統(tǒng)的應用考核試卷
- 婚慶布置道具考核試卷
- 放射性金屬礦選礦新技術與發(fā)展趨勢分析考核試卷
- 成人學生心理健康教育考核試卷
- 阿姐房屋租賃合同范本
- 沙石購銷合同范本
- 蘇州房屋裝修合同范本
- TCALC 003-2023 手術室患者人文關懷管理規(guī)范
- 2024春蘇教版《亮點給力大試卷》 數學四年級下冊(全冊有答案)
- 潤滑油存放區(qū)應急預案
- 25題退役軍人事務員崗位常見面試問題含HR問題考察點及參考回答
- 重慶市渝北區(qū)大灣鎮(zhèn)招錄村綜合服務專干模擬檢測試卷【共500題含答案解析】
- GB/T 5915-1993仔豬、生長肥育豬配合飼料
- 壓花藝術課件
- DB32T4220-2022消防設施物聯網系統(tǒng)技術規(guī)范-(高清版)
- (新版)老年人健康管理理論考試題庫(含答案)
- 感應加熱操作規(guī)程
- 煤氣設施安全檢查表(修訂)
評論
0/150
提交評論