湖北省七市2023年高三年級四月考數(shù)學試題_第1頁
湖北省七市2023年高三年級四月考數(shù)學試題_第2頁
湖北省七市2023年高三年級四月考數(shù)學試題_第3頁
湖北省七市2023年高三年級四月考數(shù)學試題_第4頁
湖北省七市2023年高三年級四月考數(shù)學試題_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

湖北省七市2023年高三年級四月考數(shù)學試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.《九章算術(shù)》是我國古代數(shù)學名著,書中有如下問題:“今有勾六步,股八步,問勾中容圓,徑幾何?”其意思為:“已知直角三角形兩直角邊長分別為6步和8步,問其內(nèi)切圓的直徑為多少步?”現(xiàn)從該三角形內(nèi)隨機取一點,則此點取自內(nèi)切圓的概率是()A. B. C. D.2.執(zhí)行如圖所示的程序框圖,若輸入的,則輸出的()A.9 B.31 C.15 D.633.以,為直徑的圓的方程是A. B.C. D.4.阿波羅尼斯(約公元前262~190年)證明過這樣的命題:平面內(nèi)到兩定點距離之比為常數(shù)的點的軌跡是圓.后人將這個圓稱為阿氏圓.若平面內(nèi)兩定點,間的距離為2,動點與,的距離之比為,當,,不共線時,的面積的最大值是()A. B. C. D.5.如圖,棱長為的正方體中,為線段的中點,分別為線段和棱上任意一點,則的最小值為()A. B. C. D.6.已知平面向量滿足,且,則所夾的銳角為()A. B. C. D.07.已知斜率為的直線與雙曲線交于兩點,若為線段中點且(為坐標原點),則雙曲線的離心率為()A. B.3 C. D.8.已知平面向量,,滿足:,,則的最小值為()A.5 B.6 C.7 D.89.如圖,某幾何體的三視圖是由三個邊長為2的正方形和其內(nèi)部的一些虛線構(gòu)成的,則該幾何體的體積為()A. B. C.6 D.與點O的位置有關(guān)10.一個正四棱錐形骨架的底邊邊長為,高為,有一個球的表面與這個正四棱錐的每個邊都相切,則該球的表面積為()A. B. C. D.11.已知正項數(shù)列滿足:,設(shè),當最小時,的值為()A. B. C. D.12.如圖,四面體中,面和面都是等腰直角三角形,,,且二面角的大小為,若四面體的頂點都在球上,則球的表面積為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,滿足不等式組,則的取值范圍為________.14.已知集合,,則_________.15.已知命題:,,那么是__________.16.將函數(shù)的圖象向右平移個單位長度后得到函數(shù)的圖象,則函數(shù)的最大值為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)己知點,分別是橢圓的上頂點和左焦點,若與圓相切于點,且點是線段靠近點的三等分點.求橢圓的標準方程;直線與橢圓只有一個公共點,且點在第二象限,過坐標原點且與垂直的直線與圓相交于,兩點,求面積的取值范圍.18.(12分)已知函數(shù).(1)解不等式;(2)使得,求實數(shù)的取值范圍.19.(12分)已知拋物線Γ:y2=2px(p>0)的焦點為F,P是拋物線Γ上一點,且在第一象限,滿足(2,2)(1)求拋物線Γ的方程;(2)已知經(jīng)過點A(3,﹣2)的直線交拋物線Γ于M,N兩點,經(jīng)過定點B(3,﹣6)和M的直線與拋物線Γ交于另一點L,問直線NL是否恒過定點,如果過定點,求出該定點,否則說明理由.20.(12分)如圖,四棱錐中,平面平面,底面為梯形.,且與均為正三角形.為的中點為重心,與相交于點.(1)求證:平面;(2)求三棱錐的體積.21.(12分)已知函數(shù),.(1)若函數(shù)在上單調(diào)遞減,且函數(shù)在上單調(diào)遞增,求實數(shù)的值;(2)求證:(,且).22.(10分)的內(nèi)角、、所對的邊長分別為、、,已知.(1)求的值;(2)若,點是線段的中點,,求的面積.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

利用直角三角形三邊與內(nèi)切圓半徑的關(guān)系求出半徑,再分別求出三角形和內(nèi)切圓的面積,根據(jù)幾何概型的概率計算公式,即可求解.【詳解】由題意,直角三角形的斜邊長為,利用等面積法,可得其內(nèi)切圓的半徑為,所以向次三角形內(nèi)投擲豆子,則落在其內(nèi)切圓內(nèi)的概率為.故選:C.【點睛】本題主要考查了面積比的幾何概型的概率的計算問題,其中解答中熟練應(yīng)用直角三角形的性質(zhì),求得其內(nèi)切圓的半徑是解答的關(guān)鍵,著重考查了推理與運算能力.2、B【解析】

根據(jù)程序框圖中的循環(huán)結(jié)構(gòu)的運算,直至滿足條件退出循環(huán)體,即可得出結(jié)果.【詳解】執(zhí)行程序框;;;;;,滿足,退出循環(huán),因此輸出,故選:B.【點睛】本題考查循環(huán)結(jié)構(gòu)輸出結(jié)果,模擬程序運行是解題的關(guān)鍵,屬于基礎(chǔ)題.3、A【解析】

設(shè)圓的標準方程,利用待定系數(shù)法一一求出,從而求出圓的方程.【詳解】設(shè)圓的標準方程為,由題意得圓心為,的中點,根據(jù)中點坐標公式可得,,又,所以圓的標準方程為:,化簡整理得,所以本題答案為A.【點睛】本題考查待定系數(shù)法求圓的方程,解題的關(guān)鍵是假設(shè)圓的標準方程,建立方程組,屬于基礎(chǔ)題.4、A【解析】

根據(jù)平面內(nèi)兩定點,間的距離為2,動點與,的距離之比為,利用直接法求得軌跡,然后利用數(shù)形結(jié)合求解.【詳解】如圖所示:設(shè),,,則,化簡得,當點到(軸)距離最大時,的面積最大,∴面積的最大值是.故選:A.【點睛】本題主要考查軌跡的求法和圓的應(yīng)用,還考查了數(shù)形結(jié)合的思想和運算求解的能力,屬于中檔題.5、D【解析】

取中點,過作面,可得為等腰直角三角形,由,可得,當時,最小,由,故,即可求解.【詳解】取中點,過作面,如圖:則,故,而對固定的點,當時,最?。藭r由面,可知為等腰直角三角形,,故.故選:D【點睛】本題考查了空間幾何體中的線面垂直、考查了學生的空間想象能力,屬于中檔題.6、B【解析】

根據(jù)題意可得,利用向量的數(shù)量積即可求解夾角.【詳解】因為即而所以夾角為故選:B【點睛】本題考查了向量數(shù)量積求夾角,需掌握向量數(shù)量積的定義求法,屬于基礎(chǔ)題.7、B【解析】

設(shè),代入雙曲線方程相減可得到直線的斜率與中點坐標之間的關(guān)系,從而得到的等式,求出離心率.【詳解】,設(shè),則,兩式相減得,∴,.故選:B.【點睛】本題考查求雙曲線的離心率,解題方法是點差法,即出現(xiàn)雙曲線的弦中點坐標時,可設(shè)弦兩端點坐標代入雙曲線方程相減后得出弦所在直線斜率與中點坐標之間的關(guān)系.8、B【解析】

建立平面直角坐標系,將已知條件轉(zhuǎn)化為所設(shè)未知量的關(guān)系式,再將的最小值轉(zhuǎn)化為用該關(guān)系式表達的算式,利用基本不等式求得最小值.【詳解】建立平面直角坐標系如下圖所示,設(shè),,且,由于,所以..所以,即..當且僅當時取得最小值,此時由得,當時,有最小值為,即,,解得.所以當且僅當時有最小值為.故選:B【點睛】本小題主要考查向量的位置關(guān)系、向量的模,考查基本不等式的運用,考查數(shù)形結(jié)合的數(shù)學思想方法,屬于難題.9、B【解析】

根據(jù)三視圖還原直觀圖如下圖所示,幾何體的體積為正方體的體積減去四棱錐的體積,即可求出結(jié)論.【詳解】如下圖是還原后的幾何體,是由棱長為2的正方體挖去一個四棱錐構(gòu)成的,正方體的體積為8,四棱錐的底面是邊長為2的正方形,頂點O在平面上,高為2,所以四棱錐的體積為,所以該幾何體的體積為.故選:B.【點睛】本題考查三視圖求幾何體的體積,還原幾何體的直觀圖是解題的關(guān)鍵,屬于基礎(chǔ)題.10、B【解析】

根據(jù)正四棱錐底邊邊長為,高為,得到底面的中心到各棱的距離都是1,從而底面的中心即為球心.【詳解】如圖所示:因為正四棱錐底邊邊長為,高為,所以,到的距離為,同理到的距離為1,所以為球的球心,所以球的半徑為:1,所以球的表面積為.故選:B【點睛】本題主要考查組合體的表面積,還考查了空間想象的能力,屬于中檔題.11、B【解析】

由得,即,所以得,利用基本不等式求出最小值,得到,再由遞推公式求出.【詳解】由得,即,,當且僅當時取得最小值,此時.故選:B【點睛】本題主要考查了數(shù)列中的最值問題,遞推公式的應(yīng)用,基本不等式求最值,考查了學生的運算求解能力.12、B【解析】

分別取、的中點、,連接、、,利用二面角的定義轉(zhuǎn)化二面角的平面角為,然后分別過點作平面的垂線與過點作平面的垂線交于點,在中計算出,再利用勾股定理計算出,即可得出球的半徑,最后利用球體的表面積公式可得出答案.【詳解】如下圖所示,分別取、的中點、,連接、、,由于是以為直角等腰直角三角形,為的中點,,,且、分別為、的中點,所以,,所以,,所以二面角的平面角為,,則,且,所以,,,是以為直角的等腰直角三角形,所以,的外心為點,同理可知,的外心為點,分別過點作平面的垂線與過點作平面的垂線交于點,則點在平面內(nèi),如下圖所示,由圖形可知,,在中,,,所以,,所以,球的半徑為,因此,球的表面積為.故選:B.【點睛】本題考查球體的表面積,考查二面角的定義,解決本題的關(guān)鍵在于找出球心的位置,同時考查了計算能力,屬于中等題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

畫出不等式組表示的平面區(qū)域如下圖中陰影部分所示,易知在點處取得最小值,即,所以由圖可知的取值范圍為.14、【解析】

根據(jù)交集的定義即可寫出答案?!驹斀狻?,,故填【點睛】本題考查集合的交集,需熟練掌握集合交集的定義,屬于基礎(chǔ)題。15、真命題【解析】

由冪函數(shù)的單調(diào)性進行判斷即可.【詳解】已知命題:,,因為在上單調(diào)遞增,則,所以是真命題,故答案為:真命題【點睛】本題主要考查了判斷全稱命題的真假,屬于基礎(chǔ)題.16、【解析】

由三角函數(shù)圖象相位變換后表達函數(shù)解析式,再利用三角恒等變換與輔助角公式整理的表達式,進而由三角函數(shù)值域求得最大值.【詳解】將函數(shù)的圖象向右平移個單位長度后得到函數(shù)的圖象,則所以,當函數(shù)最大,最大值為故答案為:【點睛】本題考查表示三角函數(shù)圖象平移后圖象的解析式,還考查了利用三角恒等變換化簡函數(shù)式并求最值,屬于簡單題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、;.【解析】

連接,由三角形相似得,,進而得出,,寫出橢圓的標準方程;由得,,因為直線與橢圓相切于點,,解得,,因為點在第二象限,所以,,所以,設(shè)直線與垂直交于點,則是點到直線的距離,設(shè)直線的方程為,則,求出面積的取值范圍.【詳解】解:連接,由可得,,,橢圓的標準方程;由得,,因為直線與橢圓相切于點,所以,即,解得,,即點的坐標為,因為點在第二象限,所以,,所以,所以點的坐標為,設(shè)直線與垂直交于點,則是點到直線的距離,設(shè)直線的方程為,則,當且僅當,即時,有最大值,所以,即面積的取值范圍為.【點睛】本題考查直線和橢圓位置關(guān)系的應(yīng)用,利用基本不等式,屬于難題.18、(1);(2)或.【解析】

(1)分段討論得出函數(shù)的解析式,再分范圍解不等式,可得解集;(2)先求出函數(shù)的最小值,再建立關(guān)于的不等式,可求得實數(shù)的取值范圍.【詳解】(1)因為,所以當時,;當時,無解;當時,;綜上,不等式的解集為;(2),又,或.【點睛】本題考查分段函數(shù),絕對值不等式的解法,以及關(guān)于函數(shù)的存在和任意的問題,屬于中檔題.19、(1)y2=4x;;(2)直線NL恒過定點(﹣3,0),理由見解析.【解析】

(1)根據(jù)拋物線的方程,求得焦點F(,0),利用(2,2),表示點P的坐標,再代入拋物線方程求解.(2)設(shè)M(x0,y0),N(x1,y1),L(x2,y2),表示出MN的方程y和ML的方程y,因為A(3,﹣2),B(3,﹣6)在這兩條直線上,分別代入兩直線的方程可得y1y2=12,然后表示直線NL的方程為:y﹣y1(x),代入化簡求解.【詳解】(1)由拋物線的方程可得焦點F(,0),滿足(2,2)的P的坐標為(2,2),P在拋物線上,所以(2)2=2p(2),即p2+4p﹣12=0,p>0,解得p=2,所以拋物線的方程為:y2=4x;(2)設(shè)M(x0,y0),N(x1,y1),L(x2,y2),則y12=4x1,y22=4x2,直線MN的斜率kMN,則直線MN的方程為:y﹣y0(x),即y①,同理可得直線ML的方程整理可得y②,將A(3,﹣2),B(3,﹣6)分別代入①,②的方程可得,消y0可得y1y2=12,易知直線kNL,則直線NL的方程為:y﹣y1(x),即yx,故yx,所以y(x+3),因此直線NL恒過定點(﹣3,0).【點睛】本題主要考查了拋物線的方程及直線與拋物線的位置關(guān)系,直線過定點問題,還考查了轉(zhuǎn)化化歸的思想和運算求解的能力,屬于中檔題.20、(1)見解析(2)【解析】

(1)第(1)問,連交于,連接.證明//,即證平面.(2)第(2)問,主要是利用體積變換,,求得三棱錐的體積.【詳解】(1)方法一:連交于,連接.由梯形,且,知又為的中點,為的重心,∴在中,,故//.又平面,平面,∴平面.方法二:過作交PD于N,過F作FM||AD交CD于M,連接MN,G為△PAD的重心,又ABCD為梯形,AB||CD,又由所作GN||AD,FM||AD,得//,所以GNMF

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論