




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
云南省宣威市第八中學2022-2023學年高三下學期初聯(lián)考數(shù)學試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù),滿足對任意的實數(shù),都有成立,則實數(shù)的取值范圍為()A. B. C. D.2.為比較甲、乙兩名高二學生的數(shù)學素養(yǎng),對課程標準中規(guī)定的數(shù)學六大素養(yǎng)進行指標測驗(指標值滿分為5分,分值高者為優(yōu)),根據(jù)測驗情況繪制了如圖所示的六大素養(yǎng)指標雷達圖,則下面敘述正確的是()A.乙的數(shù)據(jù)分析素養(yǎng)優(yōu)于甲B.乙的數(shù)學建模素養(yǎng)優(yōu)于數(shù)學抽象素養(yǎng)C.甲的六大素養(yǎng)整體水平優(yōu)于乙D.甲的六大素養(yǎng)中數(shù)據(jù)分析最差3.已知某批零件的長度誤差(單位:毫米)服從正態(tài)分布,從中隨機取一件,其長度誤差落在區(qū)間(3,6)內的概率為()(附:若隨機變量ξ服從正態(tài)分布,則,.)A.4.56% B.13.59% C.27.18% D.31.74%4.已知數(shù)列對任意的有成立,若,則等于()A. B. C. D.5.在中,為上異于,的任一點,為的中點,若,則等于()A. B. C. D.6.已知復數(shù),則()A. B. C. D.27.已知向量與的夾角為,,,則()A. B.0 C.0或 D.8.已知直線y=k(x﹣1)與拋物線C:y2=4x交于A,B兩點,直線y=2k(x﹣2)與拋物線D:y2=8x交于M,N兩點,設λ=|AB|﹣2|MN|,則()A.λ<﹣16 B.λ=﹣16 C.﹣12<λ<0 D.λ=﹣129.已知數(shù)列的前項和為,且,,則()A. B. C. D.10.已知數(shù)列為等差數(shù)列,為其前項和,,則()A. B. C. D.11.若為虛數(shù)單位,網(wǎng)格紙上小正方形的邊長為1,圖中復平面內點表示復數(shù),則表示復數(shù)的點是()A.E B.F C.G D.H12.中國古代中的“禮、樂、射、御、書、數(shù)”合稱“六藝”.“禮”,主要指德育;“樂”,主要指美育;“射”和“御”,就是體育和勞動;“書”,指各種歷史文化知識;“數(shù)”,數(shù)學.某校國學社團開展“六藝”課程講座活動,每藝安排一節(jié),連排六節(jié),一天課程講座排課有如下要求:“樂”不排在第一節(jié),“射”和“御”兩門課程不相鄰,則“六藝”課程講座不同的排課順序共有()種.A.408 B.120 C.156 D.240二、填空題:本題共4小題,每小題5分,共20分。13.某市公租房源位于、、三個小區(qū),每位申請人只能申請其中一個小區(qū)的房子,申請其中任意一個小區(qū)的房子是等可能的,則該市的任意位申請人中,恰好有人申請小區(qū)房源的概率是______.(用數(shù)字作答)14.圖(1)是第七屆國際數(shù)學教育大會(ICME-7)的會徽圖案,它是由一串直角三角形演化而成的(如圖(2)),其中,則的值是______.15.在直角坐標系中,某等腰直角三角形的兩個頂點坐標分別為,函數(shù)的圖象經(jīng)過該三角形的三個頂點,則的解析式為___________.16.在平面直角坐標系中,若雙曲線(,)的離心率為,則該雙曲線的漸近線方程為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設為實數(shù),在極坐標系中,已知圓()與直線相切,求的值.18.(12分)某景點上山共有級臺階,寓意長長久久.甲上臺階時,可以一步走一個臺階,也可以一步走兩個臺階,若甲每步上一個臺階的概率為,每步上兩個臺階的概率為.為了簡便描述問題,我們約定,甲從級臺階開始向上走,一步走一個臺階記分,一步走兩個臺階記分,記甲登上第個臺階的概率為,其中,且.(1)若甲走步時所得分數(shù)為,求的分布列和數(shù)學期望;(2)證明:數(shù)列是等比數(shù)列;(3)求甲在登山過程中,恰好登上第級臺階的概率.19.(12分)已知的內角的對邊分別為,且滿足.(1)求角的大??;(2)若的面積為,求的周長的最小值.20.(12分)中,內角的對邊分別為,.(1)求的大?。唬?)若,且為的重心,且,求的面積.21.(12分)已知,分別是橢圓:的左,右焦點,點在橢圓上,且拋物線的焦點是橢圓的一個焦點.(1)求,的值:(2)過點作不與軸重合的直線,設與圓相交于A,B兩點,且與橢圓相交于C,D兩點,當時,求△的面積.22.(10分)記拋物線的焦點為,點在拋物線上,且直線的斜率為1,當直線過點時,.(1)求拋物線的方程;(2)若,直線與交于點,,求直線的斜率.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
由題意可知函數(shù)為上為減函數(shù),可知函數(shù)為減函數(shù),且,由此可解得實數(shù)的取值范圍.【詳解】由題意知函數(shù)是上的減函數(shù),于是有,解得,因此,實數(shù)的取值范圍是.故選:B.【點睛】本題考查利用分段函數(shù)的單調性求參數(shù),一般要分析每支函數(shù)的單調性,同時還要考慮分段點處函數(shù)值的大小關系,考查運算求解能力,屬于中等題.2、C【解析】
根據(jù)題目所給圖像,填寫好表格,由表格數(shù)據(jù)選出正確選項.【詳解】根據(jù)雷達圖得到如下數(shù)據(jù):數(shù)學抽象邏輯推理數(shù)學建模直觀想象數(shù)學運算數(shù)據(jù)分析甲454545乙343354由數(shù)據(jù)可知選C.【點睛】本題考查統(tǒng)計問題,考查數(shù)據(jù)處理能力和應用意識.3、B【解析】試題分析:由題意故選B.考點:正態(tài)分布4、B【解析】
觀察已知條件,對進行化簡,運用累加法和裂項法求出結果.【詳解】已知,則,所以有,,,,兩邊同時相加得,又因為,所以.故選:【點睛】本題考查了求數(shù)列某一項的值,運用了累加法和裂項法,遇到形如時就可以采用裂項法進行求和,需要掌握數(shù)列中的方法,并能熟練運用對應方法求解.5、A【解析】
根據(jù)題意,用表示出與,求出的值即可.【詳解】解:根據(jù)題意,設,則,又,,,故選:A.【點睛】本題主要考查了平面向量基本定理的應用,關鍵是要找到一組合適的基底表示向量,是基礎題.6、C【解析】
根據(jù)復數(shù)模的性質即可求解.【詳解】,,故選:C【點睛】本題主要考查了復數(shù)模的性質,屬于容易題.7、B【解析】
由數(shù)量積的定義表示出向量與的夾角為,再由,代入表達式中即可求出.【詳解】由向量與的夾角為,得,所以,又,,,,所以,解得.故選:B【點睛】本題主要考查向量數(shù)量積的運算和向量的模長平方等于向量的平方,考查學生的計算能力,屬于基礎題.8、D【解析】
分別聯(lián)立直線與拋物線的方程,利用韋達定理,可得,,然后計算,可得結果.【詳解】設,聯(lián)立則,因為直線經(jīng)過C的焦點,所以.同理可得,所以故選:D.【點睛】本題考查的是直線與拋物線的交點問題,運用拋物線的焦點弦求參數(shù),屬基礎題。9、C【解析】
根據(jù)已知條件判斷出數(shù)列是等比數(shù)列,求得其通項公式,由此求得.【詳解】由于,所以數(shù)列是等比數(shù)列,其首項為,第二項為,所以公比為.所以,所以.故選:C【點睛】本小題主要考查等比數(shù)列的證明,考查等比數(shù)列通項公式,屬于基礎題.10、B【解析】
利用等差數(shù)列的性質求出的值,然后利用等差數(shù)列求和公式以及等差中項的性質可求出的值.【詳解】由等差數(shù)列的性質可得,.故選:B.【點睛】本題考查等差數(shù)列基本性質的應用,同時也考查了等差數(shù)列求和,考查計算能力,屬于基礎題.11、C【解析】
由于在復平面內點的坐標為,所以,然后將代入化簡后可找到其對應的點.【詳解】由,所以,對應點.故選:C【點睛】此題考查的是復數(shù)與復平面內點的對就關系,復數(shù)的運算,屬于基礎題.12、A【解析】
利用間接法求解,首先對6門課程全排列,減去“樂”排在第一節(jié)的情況,再減去“射”和“御”兩門課程相鄰的情況,最后還需加上“樂”排在第一節(jié),且“射”和“御”兩門課程相鄰的情況;【詳解】解:根據(jù)題意,首先不做任何考慮直接全排列則有(種),當“樂”排在第一節(jié)有(種),當“射”和“御”兩門課程相鄰時有(種),當“樂”排在第一節(jié),且“射”和“御”兩門課程相鄰時有(種),則滿足“樂”不排在第一節(jié),“射”和“御”兩門課程不相鄰的排法有(種),故選:.【點睛】本題考查排列、組合的應用,注意“樂”的排列對“射”和“御”兩門課程相鄰的影響,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
基本事件總數(shù),恰好有2人申請小區(qū)房源包含的基本事件個數(shù),由此能求出該市的任意5位申請人中,恰好有2人申請小區(qū)房源的概率.【詳解】解:某市公租房源位于、、三個小區(qū),每位申請人只能申請其中一個小區(qū)的房子,申請其中任意一個小區(qū)的房子是等可能的,該市的任意5位申請人中,基本事件總數(shù),該市的任意5位申請人中,恰好有2人申請小區(qū)房源包含的基本事件個數(shù):,該市的任意5位申請人中,恰好有2人申請小區(qū)房源的概率是.故答案為:.【點睛】本題考查概率的求法,考查古典概型、排列組合等基礎知識,考查運算求解能力,屬于中檔題.14、【解析】
先求出向量和夾角的余弦值,再由公式即得.【詳解】如圖,過點作的平行線交于點,那么向量和夾角為,,,,,且是直角三角形,,同理得,,.故答案為:【點睛】本題主要考查平面向量數(shù)量積,解題關鍵是找到向量和的夾角.15、【解析】
結合題意先畫出直角坐標系,點出所有可能組成等腰直角三角形的點,采用排除法最終可確定為點,再由函數(shù)性質進一步求解參數(shù)即可【詳解】等腰直角三角形的第三個頂點可能的位置如下圖中的點,其中點與已有的兩個頂點橫坐標重復,舍去;若為點則點與點的中間位置的點的縱坐標必然大于或小于,不可能為,因此點也舍去,只有點滿足題意.此時點為最大值點,所以,又,則,所以點,之間的圖像單調,將,代入的表達式有由知,因此.故答案為:【點睛】本題考查由三角函數(shù)圖像求解解析式,數(shù)形結合思想,屬于中檔題16、【解析】
利用,解出,即可求出雙曲線的漸近線方程.【詳解】,且,,,該雙曲線的漸近線方程為:.故答案為:.【點睛】本題考查了雙曲線離心率與漸近線方程,考查了雙曲線基本量的關系,考查了運算能力,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、【解析】
將圓和直線化成普通方程.再根據(jù)相切,圓心到直線的距離等于半徑,列等式方程,解方程即可.【詳解】解:將圓化成普通方程為,整理得.將直線化成普通方程為.因為相切,所以圓心到直線的距離等于半徑,即解得.【點睛】本題考查極坐標方程與普通方程的互化,考查直線與圓的位置關系,是基礎題.18、見解析【解析】
(1)由題可得的所有可能取值為,,,,且,,,,所以的分布列為所以的數(shù)學期望.(2)由題可得,所以,又,,所以,所以是以為首項,為公比的等比數(shù)列.(3)由(2)可得.19、(1)(2)【解析】
(1)因為,所以,由余弦定理得,化簡得,可得,解得,又因為,所以.(6分)(2)因為,所以,則(當且僅當時,取等號).由(1)得(當且僅當時,取等號),解得.所以(當且僅當時,取等號),所以的周長的最小值為.20、(1);(2)【解析】
(1)利用正弦定理,轉化為,分析運算即得解;(2)由為的重心,得到,平方可得解c,由面積公式即得解.【詳解】(1)由,由正弦定理得C,即∴∵∴,又∵∴(2)由于為的重心故,∴解得或舍∴的面積為.【點睛】本題考查了正弦定理和余弦定理的綜合應用,考查了學生綜合分析,轉化劃歸,數(shù)學運算的能力,屬于中檔題.21、(1);(2).【解析】
(1)由已知根據(jù)拋物線和橢圓的定義和性質,可求出,;(2)設直線方程為,聯(lián)立直線與圓的方程可以求出,再聯(lián)立直線和橢圓的方程化簡,由根與系數(shù)的關系得到結論,繼而求出面積.【詳解】(1)焦點為F(1,0),則F1(1,0),F(xiàn)2(1,0),,解得,=1,=1,(Ⅱ)由已知,可設直線方程為,,聯(lián)立得,易知△>0,則===因為,所以=1,解得聯(lián)立,得,△=8>0設,則【點睛】本題主要考查拋物線和橢圓的定義與性質應用,同時考查利用根與系數(shù)的關系,解決直線與圓,直線與橢圓的位置關系問題.意在考查學生的數(shù)學運算能力.22、(1)(2)0【解析】
(1)根據(jù)題意,設直線,與聯(lián)立,得,再由弦長公式,求解.(2)設,根據(jù)直線的斜率為1,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 【正版授權】 IEC 63522-13:2024 EN-FR Electrical relays - Tests and measurements - Part 13: Corrosive atmospheres due to sulfur impact
- 【正版授權】 IEC 62309:2024 EN-FR Dependability of new products containing reused parts and life-extended products
- 2025-2030年中國降血脂藥行業(yè)運營現(xiàn)狀及發(fā)展規(guī)劃分析報告
- 2025-2030年中國銀礦石市場運行動態(tài)與發(fā)展趨勢分析報告
- 2025-2030年中國鋁合金防火門窗市場發(fā)展狀況及營銷戰(zhàn)略研究報告
- 2025-2030年中國鋼構件行業(yè)市場發(fā)展現(xiàn)狀及前景趨勢分析報告
- 2025-2030年中國遠洋漁輪市場運行格局及發(fā)展趨勢分析報告
- 2025-2030年中國轎車懸架彈簧行業(yè)發(fā)展前景及投資戰(zhàn)略研究報告
- 2025-2030年中國美體塑身衣行業(yè)市場運行狀況及發(fā)展趨勢分析報告
- 2025-2030年中國繡花機市場運行動態(tài)及發(fā)展趨勢分析報告
- 快手申訴文本
- 現(xiàn)金調撥系統(tǒng)操作手冊教學課件
- 學校物業(yè)管理宿舍管理方案995
- PFMEA-失效模式分析案例
- 荔枝依舊年年紅
- SMT貼片線項目可行性研究報告
- 新加坡公司法-英文版
- 中藥學電子版教材
- 第五版-FMEA-新版FMEA【第五版】
- 口腔修復學第三章牙體缺損的修復
- 建設部環(huán)衛(wèi)勞動定額
評論
0/150
提交評論