




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
JOURNALOFLATEXCLASSFILES,VOL.14,NO.8,AUGUST2021
1
arXiv:2305.06360v2[cs.LG]14May2023
ExploringtheLandscapeofMachineUnlearning:AComprehensiveSurveyandTaxonomy
ThanveerShaik,XiaohuiTao,HaoranXie,LinLi,XiaofengZhu,andQingLi
Abstract—Machineunlearning(MU)isgainingincreasingattentionduetotheneedtoremoveormodifypredictionsmadebymachinelearning(ML)models.Whiletrainingmodelshavebecomemoreef?cientandaccurate,theimportanceofunlearningpreviouslylearnedinformationhasbecomeincreas-inglysigni?cantin?eldssuchasprivacy,security,andfairness.ThispaperpresentsacomprehensivesurveyofMU,coveringcurrentstate-of-the-arttechniquesandapproaches,includingdatadeletion,perturbation,andmodelupdates.Inaddition,commonlyusedmetricsanddatasetsarealsopresented.Thepaperalsohighlightsthechallengesthatneedtobeaddressed,includingattacksophistication,standardization,transferability,interpretability,trainingdata,andresourceconstraints.Thecontributionsofthispaperincludediscussionsaboutthepotentialbene?tsofMUanditsfuturedirections.Additionally,thepaperemphasizestheneedforresearchersandpractitionerstocontinueexploringandre?ningunlearningtechniquestoensurethatMLmodelscanadapttochangingcircumstanceswhilemaintainingusertrust.TheimportanceofunlearningisfurtherhighlightedinmakingArti?cialIntelligence(AI)moretrustworthyandtransparent,especiallywiththeincreasingimportanceofAIinvariousdomainsthatinvolvelargeamountsofpersonaluserdata.
IndexTerms—MachineUnlearning,Privacy,RighttobeForgotten,DataDeletion,DifferentialPrivacy,ModelUpdate,AdversarialAttacks
I.INTRODUCTION
Machinelearning(ML)referstotheprocessoftrainingan
algorithmtomakepredictionsordecisionsbasedondata[1]
.MLhasbecomeincreasinglyimportantinapplicationssuchashealth,highereducation,andotherrelevantdomains.Inhealth-care,MLmodelscanbeusedtopredictpatientoutcomes,
identifyhigh-riskpatientsandpersonalizetreatmentplans[2]
.Forhighereducation,MLhasbeenusedtoimprovestudentoutcomesandenhancethelearningexperience,orevenusedtoanalyzestudentdataandpredicttheironlineclassengagement. InML,analgorithmistrainedonadatasettolearnpatternsandrelationshipsinthedata.Oncethealgorithmhasbeentrained,itcanbeusedtomakepredictionsonnewdata.Thus,thegoalofMListocreateaccuratemodelsthatcan
ThanveerShaikandXiaohuiTaoarewiththeSchoolofMathematics,PhysicsandComputing,UniversityofSouthernQueensland,Queensland,Australia(e-mail:Thanveer.Shaik@.au,Xiaohui.Tao@.au).
HaoranXieiswiththeDepartmentofComputingandDecisionSciences,LingnanUniversity,TuenMun,HongKong(e-mail:hrxie@.hk)
LinLiiswiththeSchoolofComputerandArti?cialIntelligence,WuhanUniversityofTechnology,China(e-mail:cathylilin@)
XiaofengZhuiswiththeUniversityofElectronicScienceandTechnologyofChina(e-mail:seanzhuxf@)
QingLiiswiththeDepartmentofComputing,HongKongPolytechnicUniversity,HongKongSpecialAdministrativeRegionofChina(e-mail:qing-prof.li@.hk).
generalizewellontonewdata[3].Ontheotherhand,machine
unlearning(MU)istheprocessofremovingcertaindatapointsorfeaturesfromatrainedMLmodelwithoutaffectingits
performance[4].MUisarelativelynewandchallenging?eld
ofresearchthatisconcernedwithdevelopingtechniquesforremovingsensitiveorirrelevantdatafromtrainedmodels.ThegoalofMUistoensurethattrainedmodelsarefreefrombiasesandsensitiveinformationthatcouldleadtonegative
outcomes[5]
.
MUwas?rstintroducedbyCaoetal.[6],whorecognized
theneedfora“forgettingsystem”anddevelopedoneoftheinitialunlearningalgorithmscalledmachineunlearning.Thisapproachef?cientlyremovesdatatracesbyconvertinglearningalgorithmsintoasummationformwhichcanhelpcounterdatapollutionattacks.Theincreasingneedforregu-latorycompliancewithmodernprivacyregulationsledtotheestablishmentofMU,whichinvolvesdeletingdatanotonly
fromstoragearchives,butalsofromMLmodels[7].Existing
studiesupdatethemodelweightsforunlearningusingeitherthewholetrainingdata,asubsetoftrainingdata,orsome
metadatastoredduringtraining[8].Althoughstrictregulatory
compliancerequiresthetimelydeletionofdata,thereareinstanceswheredatapertainingtothetrainingprocessmaynotbeavailableforunlearningpurposes.CompaniesandorganizationscommonlyemployuserdatatotrainMLmodels,butlegalframeworkslikeGDPR,CCPA,andCPPAdemand
thatuserdatabeerasedwhenrequested[9].Thequestionis
whethermerelydeletingthedataissuf?cient,orifthemodels
trainedonthisdatashouldalsobeadjusted[10].However,
straightforwardtechniqueslikeretrainingmodelsfromscratchorcheck-pointingcanbecomputationallycostlyandrequire
signi?cantstorageresources[11].WithMU,wecanmodify
modelstoexcludespeci?cdatapointsmoreef?ciently[12]
.
Varioustechniqueshavebeensuggestedformanaginguserdatadeletionrequests,suchasoptimization,clustering,andregressionmethods.Conductingacomprehensivesurveyofexistingliteratureonmanaginguserdatadeletionrequestscansupporttheidenti?cationofgapsandtrendsinthe?eld,whichwillguidefutureresearchandprovideinsightsfororganizationshandlingsuchrequests.Inthisstudy,weaimtoaddressthefollowingresearchquestions.
1)WhatarethemosteffectivetechniquesforunlearningdatafromMLmodels?
2)Howcantheimpactofunlearningonmodelperformancebemeasuredandevaluated?
3)WhatarethechallengesinMU,andhowcanthesechallengesbeaddressed?
JOURNALOFLATEXCLASSFILES,VOL.14,NO.8,AUGUST2021
2
Thecontributionsofthisstudyareasfollows:
●Acomprehensiveandup-to-datetaxonomyabouttheemerging?eldofMU,includinganexplanationofitsimportanceandpotentialapplications.
●Adetailedtaxonomyofthevarioustechniquesandap-proachesthathavebeendevelopedforunlearningdatafromMLmodels,suchasdatadeletion,dataperturbation,andmodelupdatetechniques.
●AdiscussionofdifferentevaluationmethodsforassessingtheeffectivenessofMUtechniques,suchasmeasuringthedegreeofforgettingortheirimpactonmodelperfor-
mance.
●Ataxonomyofseveralkeychallengesinthe?eldofMU,includingattacksophistication,standardization,transferability,interpretability,trainingdata,andresourceconstraints.
●Finally,adiscussionofthepotentialbene?tsofMUanditsfuturedirectionsinnaturallanguageprocessing(NLP),computervision,andrecommendersystems.
Theremainderofthepaperisorganizedasfollows.Sec-tion
II
outlinestheaimsandobjectivesofMU.InSection
III,
wedelveintodatadeletion,dataperturbation,andmodelupdatetechniquesingreaterdepth.Section
IV
detailstheevaluationmetricsofMU,whileSection
V
discussesthechallengesassociatedwiththe?eldandproposespotentialsolutions.InSection
VI,weexplorethefuturedirections
ofMUinNLP,computervision,andrecommendersystems.
Finally,Section
VII
concludesthepaper.
II.OVERVIEWOFMACHINEUNLEARNING
Theconceptofthe“righttobeforgotten”referstotheabil-
itytohavepersonalinformationremovedfromonlinesearch
resultsanddirectoriesincertainsituations[13].However,there
isnoconsensusonitsde?nition,orwhetheritshouldbeclassi?edasahumanright.Nevertheless,variousinstitutionsandgovernments,suchasthoseinArgentina,theEuropeanUnion(EU),andthePhilippines,arebeginningtoproposeregulationsaroundthisissue
1.
Informationandeventsfromanindividual’spastcancontinuetocarryastigmaandleadtonegativeconsequences,evenafteraconsiderableamountoftimehaspassed.Forexample,inJuly2018,Disney?redwriteranddirectorJamesGunn,whowascreditedformuchofthestudio’ssuccesswith?lmssuchas“GuardiansoftheGalaxy”,afteroldtweetsresurfacedcontainingdarkhumoraboutpedophiliaandrape.FansandactorsralliedtoGunn’sdefense,withanopenlettercallingforhisreinstatementand
petitionstorehirehim[14].However,deletingwhataperson
haspostedonsocialmediaplatformssuchasFacebookandInstagrammaynotentirelyremovethedatafromtheInternet.AlthoughFacebooklaunchedatoolcalled“Off-FacebookActivity”tohelpusersdeletedatathatthird-partyappsandwebsitessharewithFacebook,itonlyde-linksthedatafromtheuser.In2014,aSpanishcourtruledinfavorofamanwhorequestedthatGoogleremovecertaininformationabout
himfromitssearchresults[15].Thecourtfoundthatthe
1https://link.library.eui.eu/portal/The-Right-To-Be-Forgotten–A-Comparative-Study/tw0VHCyGcDc/
informationwasnolongerrelevantoradequate,asthedebthadbeenpaidalongtimebefore.TheEUcourtalsoruledthatGoogleneededtoremovethesearchresults.
The“righttobeforgotten”isusedtodescribeanindi-vidual’srighttorequestthattheirpersonalinformationberemovedfromtheInternet,particularlysearchengineresults,
incertaincases[16].Supportersofthisrightarguethatitis
necessarytoprotectindividualsfromhavingpastmistakesorpersonalinformationusedagainstthem,suchasincasesofrevengeporn,pettycrimes,orunpaiddebts.However,criticsofthisrightclaimthatitinfringesuponfreedomofexpressionandtherighttocriticize.TheEUhastriedtoaddresstheseconcernsbystrikingabalancebetweentherighttoprivacyand
freedomofexpression[17].Theissueisfurthercomplicated
bytheuseofML,whichcancollectandanalyzevastamountsofdatainde?nitely.Thisdatacanthenbeusedinapplicationssuchasinsurance,medical,andloanevaluations,leadingtopotentialharmandamplifyingexistingbiases.Assuch,itisimportanttoconsidertheethicalimplicationsofMLmodelsanddatacollectioninthesecontexts.Wegenerateade?nitionofMUbasedonacomprehensivereviewofexistingresearch
literature,includingthestudiesin[6],[8],[18]–[22]:
GeneralDe?nition:Machineunlearningisaconceptthatreferstotheprocessofremovingor“forgetting”previ-ouslylearnedinformationfromamachinelearningmodel.Inessence,itistheoppositeofmachinelearning;whilemachinelearningisallabouttrainingmodelstorecognizepatternsandmakepredictionsbasedonthatdata,machineunlearningaimstoundoorreversethatprocess,byremovingpreviouslylearnedpatternsorpredictionsthatarenolongerrelevantoraccurate.
MUisanemerging?eldwithintherealmofarti?cialintelligence(AI)thatseekstoremovespeci?cdatapointsfromamodelwithoutcompromisingitsperformance.This
technique,alsoknownasselectiveamnesia[23],hasavariety
ofpotentialapplications,includingenablingindividualstoexercisetheir“righttobeforgotten”andpreventingAImodelsfrominadvertentlyleakingsensitiveinformation.MUcanalsohelpcombatdatapoisoningandadversarialattacks.Throughitsapplication,MUhasthefollowingobjectives:
●ToaddressprivacyconcernsinMLbyeliminatingsensi-tiveorpersonaldatafromthemodelwithoutsigni?cantlyreducingitsperformance.ItisdifferentfromML,whichfocusesontrainingmodelstopredictoutcomesbasedoninputdata.Theworkscitedinthiscontextincluderesearchonnoveltechniquesforprivacy-preservingML,statisticalmethodsfordataprotection,andadaptiveal-gorithmsthatadjusttochangingdataprivacyrequire-
ments[24]–[34]
.
●ToimprovetheaccuracyandfairnessofMLmodelsbyremovingbiasesorcorrectingerrorsthatmayhavebeenintroducedduringthelearningprocess.Thisistypicallydonebyanalyzingthemodel’sperformanceonvariousmetricsandidentifyingareaswhereimprovementisneeded.Theseworkscoverresearchonmitigatingbiasinmachinelearningmodelsandtechniquesforimproving
fairnessinalgorithmicdecision-making[35]–[45]
.
JOURNALOFLATEXCLASSFILES,VOL.14,NO.8,AUGUST2021
3
●ToimprovetheperformanceofMLmodelsovertimebyallowingthemtoadapttochangingdataandcircum-stances.Byunlearningoutdatedorirrelevantinformation,MLmodelscanbecomemoreaccurate,ef?cient,andadaptabletonewsituations.Thereferencescitedinthiscontextincludestudiesontransferlearning,whichin-volvesapplyingknowledgefrompreviouslylearnedtasks
tonewproblems[46]–[53]
.
Despitethesigni?cantinvestmentthatcompaniesmakeintraininganddeployinglargeAImodels,regulatorsinboththeEUandtheUnitedStatesarecautioningthatmodelstrainedonsensitivedatamayneedtoberemoved.InareportfocusedonAIframeworks,theUKgovernmentexplainedthatMLmodelsmaybesubjecttodatadeletionundertheGeneralDataProtectionRegulation(GDPR).Forinstance,ParavisionwasrecentlyfoundtohavecollectedmillionsoffacialphotosinappropriatelyandwasrequiredbytheUSFederalTradeCommissiontodeleteboththedataandanytrainedmodelsthatreliedonit
2.Themoststraightforwardstrategyforre
-movingadatapointfromtrainingdataandupdatingthemodel
istoconductretraining[54].Unfortunately,thisprocedure
incursconsiderablecosts,asexempli?edbyOpenAI’sreported
expensesofupto20milliondollarstotrainGPT-3[55]
.Hence,thereisaneedformorecost-effectiveandef?cientmethodstoaddressdatapointremovalinMLmodels.
Thechallengeistobalanceprivacyandtherighttoex-pressiontopreventtherighttobeforgottenfrombecoming
aformofcensorship[56].Balancingprivacyandtheright
toexpressioniscrucialinimplementingtherighttobeforgottenwithoutthisprocessbeingmisused.Theemergenceofnewtechnologies,suchasblockchain,presentsnewchal-lengesinmaintainingthisbalance.Furthermore,theincreasingpublicsensitivitytowarddataprivacyhaspromptedmanycompaniestoprioritizeuserprivacy.Forexample,GooglerecentlyannouncedanexpandedpolicyforUScitizensto
removepersonaldatafromsearchresults3.
However,whendatapointsareeliminated,theAImodelstrainedonthemneedtobeappropriatelycleaneduptoavoidperpetuatingbiasedorsensitiveinformation.WhileMUisacomplexchallenge,variousapproachesarebeingtestedanddevelopedtoaddressthisissue.Asregulationsondataprivacyincrease,MUisexpectedtoplayacriticalroleinensuringthatAImodels
aretransparentandethical.
III.TECHNIQUESANDAPPROACHES
ThissectioncategorizestheMUtechniquesintothreegroups,namelyDataDeletion,DataPerturbation,andModelUpdatetechniques,asillustratedinthetaxonomyinFig
1.The
?rstresearchquestionwillalsobeaddressedinthissection.
A.DataDeletion
Inthissubsection,wede?nethedatadeletiontechniquessuchasdatapoisoning,datasubsampling,anddatashuf?ing.
2
/story/startup-nix-algorithms-ill-gotten-facial-data/
3
/2022/09/28/google
-rolls-out-tool-to-request-
removal-of-personal-info-from-search-results-will-later-add-proactive-alerts/
1)Datapoisoning:Datapoisoningisatechniqueusedin
MUtointentionallyintroduceincorrectormisleadingdataintothetrainingdataset.ThegoalofdatapoisoningistodegradetheaccuracyoftheMLmodel,oftenwithmaliciousintent.Thistechniqueisoftenusedinattacksonprivacy-preservingsystemsortomanipulatetheresultsofautomateddecision-makingprocesses.
SupposewehaveadatasetD=
(x1,y1),(x2,y2),...,(xn,yn)andamaliciousadversarywantstoinjectabackdoorintothemodelbymodifyingafractionofthetrainingdata.Theattackeraddsapoisondatapoint(x/,y/)tothetrainingdata,withthegoalofmakingthemodelpredictaspeci?ctargetlabelytargetinsteadofthetruelabely/.Thepoisoneddatasetcanbewrittenas:
D/=(x1,y1),(x2,y2),...,(xi,ytarget),...,(xn,yn)(1)where(xi,ytarget)isthepoisoneddatapoint.
TominimizethelossfunctionL(θ;D/)butsubjecttotheconstraintthatthemodelaccuracyontheoriginaltrainingdata
D,denotedbyAcc(θ;D),doesnotfallbelowaprede?ned
thresholdofAcc0,wecanwrite:
D=(x1,y1),(x2,y2), ,(xn,yn)(
2)
minimizeL(θ;D/)subjecttoAcc(θ;D)>Acc0
Theprocessofdatapoisoninginvolvesanattackeridenti-fyingvulnerabilitiesinthedatacollectionprocessandthensubmittingmaliciouslycrafteddataintothesystem.Themaliciousdataisoftendesignedtolooklikelegitimatedatatobetterevadedetection.Oncethemaliciousdataisintroduced,theMLmodelcanbecomebiasedorproduceincorrectresults.
Aprojectedgradientdescent(PGD)solutionisformulated
forthedatapoisoningproblembyMarchantetal.[57].Their
articlediscussesthechallengeofcomplyingwithdataprotec-tionregulations,suchastherighttoerasure,whenitcomestotrainedMLmodels.Theyidenti?edanewvulnerabilityinMLsystems,namely“poisoningattacks”thatslowdownunlearning.Theirsuiteofexperimentsexplorestheeffectsoftheseattacksinvarioussettingsandhighlightstherisksofdeployingapproximateunlearningalgorithmswithdata-
dependentruntimes.Marchantetal.[57]callintoquestion
theextenttowhichunlearningimprovesperformanceoverfullretraining,showingthatdatapoisoningcanharmcomputationbeyondaccuracy,similartoconventionaldenial-of-serviceat-
tacks.Sunetal.[58]discussedthethreatofhowattackerscan
utilizefederatedlearningtolaunchdatapoisoningattacksondifferentnodes.Theseauthorsdemonstratedadatapoisoning
attackonFederatedMultitaskLearning[59],byformulating
anoptimalstrategyasageneralbi-leveloptimizationproblem.Theyalsode?nedthreeattacks:adirectattack,anindirectattack,andahybridattack.Inadirectattack,allthetargetnodesaredirectlyinjectedwithpoisoneddatawhiletraining,whereasintheindirectmodeofattack,theattackerstargetrelateddevicesduetocommunicationprotocols.Inhybridattackmode,theattackersadoptbothdirectandindirectattacks.Toovercometheseattacks,theauthorsproposedanattackonafederatedlearning(AT2FL)frameworkwhereinimplicitgradientsofpoisoneddatacanbecomputedinsidesourceattackingnodes.
DataPertubation
DataAnonymization
PGD[27]
ReviewonMU[41]
AT^2FL[28]
MLevaluationwithpoisoning[30]
Hashensembleapproach[31]
DifferentialPrivacy
Adaptive,non-
adaptivedeletion[47]
Unlearndata[34]
Tolowerdifferentialprivacy[35]
EvaluateMUexperiment[36]
DataShuffling
3DArnoldcatmap[37]
Twofold
framework[63]
Linearfiltration[68]
DSMixup[69]
JOURNALOFLATEXCLASSFILES,VOL.14,NO.8,AUGUST20214
MachineUnlearningTechniques
DataDeletion
DataPoisoning
Black-boxquery[43]
Social
engineering[44]
Re-identificationriskanalysis[45]
PSO[32]
DataSubsampling
Totalvariation
stability[48]
Ignoresetofdeleterequests[9]
Unlearningfeaturesandlabels[49]
ProtectDNNtrainingdata[34]
InverseDataGeneration
Zero-shotMU[50]
ModelUpdateTechniques
Regularization
L1norm
regularization[64]
Generateadversarialexamples[66]
TransferLearning
SISAtraining[70]
Distillation
Knowledgedistillation[76]
FedLU[77]
NAD[78]
ModelPruning
TF-IDFfor
pruning[71]
Prunefirst,thenunlearn[72]
ModelInversion
ModifiedInversion[79]
Few-shotunlearning[80]
Fig.1.MachineUnlearning-Taxonomy
Datapoisoningcanbeusedtomanipulatethetrainingwithadversarialattacks,suchasrandomlabel?ippinganddistance-basedlabel?ippingattacks.Intheirstudy,Yerlikayaetal.
[60]didempiricalexperimentstochecktheperformancesof
sixMLalgorithmsunderthetwoadversarialattacks.Theauthorsusedspam,botnet,malware,andcancerdetectiondatasetstoevaluatethealgorithmsbylaunchingadversarialattacksonthem.Theresultsshowedthatalgorithmbehaviordependsonthetypeofdataset.Poisoningattackstypicallyinvolvemaliciouslyalteringthetrainingdatasettodecreaseclassi?cationaccuracyormisclassifyingspeci?cinputswhenthemodelisdeployed.Thus,hash-basedensembleapproacheshavebeenproposedasasolutiontocounteractpoisoningattacks,buttheireffectivenessindifferentscenariossuchastabulardatasetsandensemble-basedMLalgorithms(e.g.RandomForests)hasnotbeenfullyevaluated.Therobustnessofahash-basedensembleapproachagainstdatapoisoningin
atabulardatasetwasevaluatedbyAnisettietal.[61]using
aRandomForest(RF)algorithmasaworst-casescenario.TheirresultsshowedthatevensmallensemblescanprotectagainstpoisoningandthatplainRFsarehighlysensitivetolabel?ipping,butalmostinsensitivetootherperturbations.Indatapoisoningcircumstances,selectingthehyperparametersfordeeplearning(DL)modelsiscriticaltomaintainingoren-
hancingtheperformancemetrics.Maabrehetal.[62]proposed
developingDLmodelsthatareoptimizedusingthenature-
inspiredalgorithm,particleswarmoptimizer(PSO)[63],while
someofthetrainingdatasamplesarefakei.e.poisoneddata.
Theresultsshowedthatanincreaseinthepoisoningratedecreasesalltheperformancemetrics,suchasaccuracy,recall,precision,andF1-score.PSOcanrecommenddifferentvaluesforimportantparametersandimprovemodelperformance,evenwithahighpoisoningrate.However,cautionshouldbetakenwhenusingPSO,asitmaytemporarilyhidetheexistenceoffakesamplesandfailwhenthereisasigni?cantconcentrationofpoisoninthedataset.
Thereareseveralapproachestodefendagainstdatapoison-ingattacks,includingrobusttrainingmethodsthatcanidentifyandremovemaliciousdata,aswellastechniquesthatcandetectchangesinthedatadistribution.However,sophisticatedattackerscanalsobypassthesetechniques,soongoingresearch
isneededtodevelopmoreeffectivedefenses.
2)DataSubsampling:DatasubsamplingisatechniqueusedinMUtoreducetheamountofdatausedinthemodeltrainingprocess.Inthistechnique,asubsetoftheoriginaldataisrandomlyselected,andonlythatsubsetisusedtotrainthemodel.Thistechniquecanbeusefulincaseswheretheoriginaldatasetisverylargeandthecomputationalresourcesrequiredfortrainingthemodelonthefulldatasetareprohibitive.
LetX=x1,x2,...,xnbetheoriginaltrainingdatasetwithcorrespondinglabelsY=y1,y2,...,yn.WerandomlyselectasubsetSofsizem<n,suchthatS=s1,s2,...,sm.WeremovetheselectedsubsetfromXandYtocreatenewtrainingsetsX/andY/:
(3)
X/=x1,x2,...,xn-S
Y/=y1,y2,...,yn-S
JOURNALOFLATEXCLASSFILES,VOL.14,NO.8,AUGUST20215
TABLEI
DATADELETIONTECHNIQUESFORMACHINEUNLEARNING
Technique
Reference
Problem
ProposedFramework
DataPoisoning
Marchantetal.
[57]
Complyingwithdataprotectionregulations
Projectedgradientdescent(PGD)
Sunetal.
[58]
DatapoisoningattackonFederatedLearning
AttackonFederatedLearning(AT2FL)framework.
Yerlikayaetal.
[60]
Adversarialattacksonmachinelearningalgorithms
Evaluationofmachinelearningalgorithmperformancesinattacksusingdatapoisoning.
Anisettietal.
[61]
Poisoninga
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 國際關(guān)系學(xué)院《工程力學(xué)與機(jī)械設(shè)計(jì)》2023-2024學(xué)年第二學(xué)期期末試卷
- 河北環(huán)境工程學(xué)院《護(hù)理學(xué)基礎(chǔ)技術(shù)(一)》2023-2024學(xué)年第二學(xué)期期末試卷
- 南京航空航天大學(xué)金城學(xué)院《細(xì)胞生物學(xué)課程設(shè)計(jì)》2023-2024學(xué)年第二學(xué)期期末試卷
- 廣州城市職業(yè)學(xué)院《戰(zhàn)略管理》2023-2024學(xué)年第二學(xué)期期末試卷
- 廣東新安職業(yè)技術(shù)學(xué)院《生物化學(xué)及實(shí)驗(yàn)》2023-2024學(xué)年第二學(xué)期期末試卷
- 長春師范大學(xué)《汽車底盤構(gòu)造與維修》2023-2024學(xué)年第二學(xué)期期末試卷
- 山西華澳商貿(mào)職業(yè)學(xué)院《移動(dòng)通信技術(shù)》2023-2024學(xué)年第二學(xué)期期末試卷
- 大學(xué)生畢業(yè)實(shí)習(xí)計(jì)劃
- 大一新生軍訓(xùn)心得感悟(28篇)
- 農(nóng)村亂占耕地建房問題整治工作匯報(bào)范文(3篇)
- 外研社一起英語四年級(jí)下冊(cè)課文
- 學(xué)校辦公室主任述職報(bào)告
- 《列夫·托爾斯泰》-完整版PPT
- 高考古代詩歌鑒賞復(fù)習(xí)教案
- 負(fù)數(shù)的認(rèn)識(shí)1202
- After-Effects影視特效設(shè)計(jì)教程完整版全套ppt課件
- 中國鐵塔建設(shè)維護(hù)工作培訓(xùn)PPT通用通用課件
- 新視野大學(xué)英語第三版Book 2 Unit 1 Text A
- 醫(yī)療設(shè)備清單
- SHD干燥機(jī)說明書(英)
- 藍(lán)色卡通風(fēng)格研學(xué)旅行報(bào)告PPT講座學(xué)習(xí)
評(píng)論
0/150
提交評(píng)論