




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
processcapability(CP,CPK,PPK)英文版知識(shí)講座ProcessCapability(Cp/Cpk/Pp/Ppk)
GlobalTrainingMaterialCreator :GlobalMechanicsProcessManagerFunction :MechanicsApprover :GaryBradley/GlobalProcessTeamDocumentID :DMT00018-ENVersion/Status :V.1.0/ApprovedLocation :Notes:\\…\NMP\DOCMANR4\PCP\PCProcessLibraryDocManChangeHistory:Issue Date HandledBy Comments1.0 21stDec’01 JimChristy&S?renLundsfryd ApprovedforGlobalUseNOTE–Allcommentsandimprovementsshouldbeaddressedtothecreatorofthisdocument.ContentsSection Heading/Description Page1 Variation,TolerancesandDimensionalControl 4 2 Population,SleandNormalDistribution 153 CpandCpkConcept 284 UseoftheNMPDataCollectionSpreadsheet 445 ConfidenceofCpk 52 ProcessCapability-EvaluatingManufacturingVariationAcknowledgementsBennyMatthiassen (NMPCMT,Copenhagen,Denmark)FrankAdler (NMPAlliance,Dallas,USA)JoniLaakso (NMPR&D,Salo,Finland)JimChristy (NMPSRC,Southwood,UK)Section1Variation,TolerancesandDimensionalControlTwoTypesofProductCharacteristicsVariable:Acharacteristicmeasuredinphysicalunits,limetres,volts,amps,decibelandseconds.ONOFFAttribute:Acharacteristicthatbycomparisontosomestandardisjudged“good”or“bad”,e.g.freefromscratches(visualquality).InthistrainingwedealwithvariablesonlyTheSourcesofProcess/SystemVariationMethodsOperatorsCustomerSatisfactionMaterialEnvironmentEquipmentProcessTwoTypesofProcessesAllprocesseshave:Natural(random)variability
=>duetocommoncausesStableProcess:
AprocessinwhichvariationinoutcomesarisesonlyfromcommoncausesUnstableProcess:
AprocessinwhichvariationisaresultofbothcommonandspecialcausesUSLLSLnominalvalueDefectUSLLSLnominalvalue
Unnaturalvariability=>duetospecialcausesShewhart(1931)TheTwoCausesofVariationCommonCauses:Causesthatareimplementedintheprocessduetothedesignoftheprocess,andaffectalloutcomesoftheprocessIdentifyingthesetypesofcausesrequiresmethodssuchasDesignofExperiment(DOE),etc.
SpecialCauses:Causesthatarenotpresentintheprocessallthetimeanddonotaffectalloutcomes,butarisebecauseofspecificcircumstancesSpecialcausescanbeidentifiedusingStatisticalProcessControl(SPC)USLLSLNominal
valueDefectUSLLSLnominal
valueTolerancesLSL(lowerspecificationlimit)10,7USL(upperspecificationlimit)10,9AcceptablepartRejectedPartRejectedProductNominal10,80,1RejectedPartAtoleranceisaallowedmaximumvariationofadimension.MeasurementReportInmostcaseswemeasureonlyonepartpercavityformeasurementreportExleofCapabilityAnalysisDataForsomecriticaldimensionsweneedtomeasuremorethan1partForcapabilitydataweusuallymeasure5pcs2times/hour=100pcs(butslingplanneedstobemadeonthebasisofproductionquantity,rundurationandcycletime)ProcessCapability-Whatisit?ProcessCapabilityisameasureoftheinherentcapabilityofamanufacturingprocesstobeabletoconsistentlyproducecomponentsthatmeettherequireddesignspecificationsProcessCapabilityisdesignatedbyCpandCpkProcessPerformanceisameasureoftheperformanceofaprocesstobeabletoconsistentlyproducecomponentsthatmeettherequireddesignspecifications.ProcessPerformanceincludesspecialcausesofvariationnotpresentinProcessCapabilityProcessPerformanceisdesignatedPpandPpkWhyMakeProcessCapabilityStudiesLSL(lowerspecificationlimit)10,7USL(upperspecificationlimit)10,9Nominal10,80,1Thispartiswithinspec.ThetoolwouldbeapprovedifonlythispartwasmeasuredThesepartsareoutofspecandcouldbeapprovedifonlyonegoodpartwasmeasuredAprocesscapabilitystudywouldrevealthatthetoolshouldnotbeacceptedWhenadimensionneedstobekeptproperlywithinspec,wemuststudytheprocesscapability….butstillthisisnoguaranteefortheactualperformanceoftheprocessasitisonlyaninitialcapabilitystudyE1.5
E1
E2
E3
E4
E5TheNokiaProcessVerificationProcessBlackdiamondstobefixedbyE3(oftenachangeofawhitediamond)ProposalforblackdiamondstobediscussedwithSupplier.Max:105,85OngoingProcessControl(SPC)TolerancesappliedtodrawingType1FunctionalCharacteristics-1part/cavitymeasuredformeasurementreportWhitediamonds(s)tobeagreedWhitediamonds(s)tobediscussedwithsupplier10parts/cavitymeasuredformeasurementreportCapabilitystudy:Requirement:CpandCpk>1.67byE3.Quantitiestobeagreedwithsupplier.Minimum5partspr1/2hourin10hoursmeasuredforeachcavity=100parts.Canvarydependingontoolcapacity,e.g.stampedparts(seeDMY00019-EN)Section2.Population,SleandNormalDistributionTheBellShaped(Normal)DistributionSymmetricalshapewithapeakinthemiddleoftherangeofthedata.Indicatesthattheinputvariables(X's)totheprocessarerandomlyinfluenced.“PopulationParameters”
=Populationmean
=PopulationstandarddeviationPopulationversusSlePopulationAnentiregroupofobjectsthathavebeenmadeorwillbemadecontainingacharacteristicofinterestSleThegroupofobjectsactuallymeasuredinastatisticalstudyAsleisusuallyasubsetofthepopulationofinterestPopulationSample“SampleStatistics” x=Samplemean s=SamplestandarddeviationTheNormalDistributionWhatMeasurementsCanBeUsedtoDescribeaProcessorSystem?Example:1
=52
=73
=44
=25
=6mean(average)ordescribesthelocationofthedistributionμ(mü),ameasureofcentraltendency,isthemeanoraverageofallvaluesinthepopulation.Whenonlyasampleofthepopulationisbeingdescribed,meanismoreproperlydenotedas
(x-bar):Example:1
=52
=73
=44
=25
=6Themostsimplemeasureofvariabilityistherange.Therangeofasleisdefinedbyasthedifferencebetweenthelargestandthesmallestobservationfromslesinasub-group,e.g.5consecutivepartsfromthemanufacturingprocess.WhatMeasurementsCanBeUsedtoDescribeProcessvariation?sST-oftennotatedasorsigma,isanothermeasureofdispersionorvariabilityandstandsfor“short-termstandarddeviation”,whichmeasuresthevariabilityofaprocessorsystemusing“rational”sub-grouping.where
istherangeofsubgroupj,Nthenumberofsubgroups,andd2*dependsonthenumberNofsubgroupsandthesizenofasubgroup(seenextslide)WhatMeasurementsCanBeUsedtoDescribeProcessvariation?d2*valuesforSSTWhere:N=no.ofsub-groups,n=no.ofsamplesineachsub-groupd2*d2Typical:N=20&n=5
x3
x2
x1
x10x_tExample:WhatMeasurementsCanBeUsedtoDescribeProcessvariation?TheDifferenceBetweenSSTandsLT!!meanTimeDimensionShorttermStandardDeviationLongtermStandardDeviationSubgroupsizen=5NumberofsubgroupsN=7TRENDSubgroupNo.1ThedifferencebetweenthestandarddeviationssLTandsSTgivesanindicationofhowmuchbetteronecandowhenusingappropriateproductioncontrol,likeStatisticalProcessControl(SPC).Short-termstandarddeviation:Long-termstandarddeviation
:ThedifferencebetweensSTandsLTThedifferencebetweensSTandsLTThedifferencebetweensLTandsST
isonlyinthewaythatthestandarddeviationiscalculatedsLTisalwaysthesameorlargerthansSTIfsLTequalssST,thentheprocesscontroloverthelonger-termisthesameastheshort-term,andtheprocesswouldnotbenefitfromSPCIfsLTislargerthansST,thentheprocesshaslostcontroloverthelonger-term,andtheprocesswouldbenefitfromSPCThereliabilityofsLTisimprovedifthedataistakenoveralongerperiodoftime.AlternativelysLTcanbecalculatedonseveraloccasionsseparatedbytimeandtheresultscomparedtoseewhethersLTisstableExercise1:SleDistributions1.InExcelfile"Dataexercise1.xls"youfind100measurementsbeingtheresultofacapabilitystudy.Thespecificationforthedimensionis15,16,012.Howwelldoestheslepopulationfitthespecification,e.g.shouldweexpectanypartsoutsidespec?3.Mentionpossibleconsequencesofhavingapartoutsidespec.4.Mentionpossiblecausesofvariationforparts.5. Calculatetheslemeanandslestandarddeviationforthe100measurements.UsetheaverageandstdevfunctionsExcel.Section3.CpandCpkConceptDefiningCpandPpSamplemeanProcessvariation6*sUSL-LSLLSLUSLNominaldimThetoleranceareadividedbythetotalprocessvariation,irrespectiveofprocesscentring.DefiningCpkandPpkSamplemeanProcessvariation3sProcessvariation3sMean-LSLUSL-MeanLSLUSLNominaldimCpkandPpkIndexesaccountalsoforprocesscentring.WhatistheDifferenceBetweenCpandCpk?TheCpindexonlyaccountsforprocessvariabilityTheCpkIndexaccountsforprocessvariabilityandcenteringoftheprocessmeantothedesignnominalTherefore,CpCpkNOTE:SameappliesalsoforPpandPpkCp=Cpk(bothlow)LSLUSLMean=NominalRejectpartsRejectpartsCphigh,Cpklow
Processshouldbeoptimized!NominalLSLMeanUSLRejectpartsWhatDoTheseIndexesTellUs??Simplenumericalvaluestodescribethequalityoftheprocess>>ThehigherthenumberthebetterRequirementforCpandCpkis1.67min.RecommendationforPpandPpkis1.33min.Thisleavesussomespaceforthevariation,i.e.asafetymarginAreweabletoimproveourprocessbyusingSPC?Ifindexislow,followingthingsshouldbegivenathought:IstheproductdesignOK?Aretolerancelimitssetcorrectly?Tootight?Istheprocesscapableofproducinggoodqualityproducts?Processvariation?DOErequired?Isthemeasuringsystemcapable?(SeeGageR&R)Cpk-Witha2-sigmasafetymargin-3sST+3sSTLCLUCLLSLUSLMeanvalue=NominalvalueorTargetRequirementforCpandCpkis1.67min.1.67isaratioof=5/3or10/6.6*standarddeviation10*standarddeviation2*standarddeviation2*standarddeviationCpk<1.67theprocessNOTCAPABLEAcceptabilityofCpkIndex
Cpk>=1.67theprocessisCAPABLECpk>=2.0theprocesshasreachedSixSigmalevelWhatDoTheseIndexesTellUs??IfCp=Cpk,IfPp=Ppk,IfCpk<Cp,IfPpk<Pp,IfCp=Pp,IfCpk=Ppk,IfPp<Cp,IfPpk<Cpk,…thenprocessisaffectedbyspecialcauses.InvestigateX-bar/R-chartforout-of-controlconditions.SPCmaybeeffective…thenprocessisnotaffectedbyspecialcausesduringthestudyrun.SPCwouldnotbeeffectiveinthiscase…thenprocessperfectlycentred…thenprocessnotcentred(checkprocessmeanagainstdesignnominal)CpandCpkIndicesandDefects
(bothtailsofthenormaldistribution)Pp=Ppk=1,3363ppmdefects=0,006%Cp=Cpk=1,670,6ppmdefects=0,00006%Note:PpmrejectratescalculatedfromCp&CpkarebasedontheshorttermvariationwhichmaynotrepresentthelongtermrejectrateTheEffectsofCpkandCponFFRExercise2:CpandCpkCalculateCpandCpkforthe100measurementsinthefile"Dataexercise1.xls"DeterminetheapproximateCpandCpkforthe4slepopulationsonthefollowingpageShouldactionsbemadetoimprovetheseprocesses.Ifyes,which?EstimateCpandCpk?Thewidthofthenormaldistributionsshowninclude±3*sLSLUSLA)LSLUSLB)LSLUSLC)USLLSLD)EstimateCpandCpk?-A)LSLUSLA)MeanandnominalUSL-LSL6*sUSL-MeanMean-LSL3*sEstimateCpandCpk?-B)LSLUSLB)NominalMeanUSL-LSL6*sUSL-MeanMean-LSL3*sEstimateCpandCpk?-C)LSLUSLC)NominalMeanUSL-LSL6*sUSL-MeanMean-LSL3*sEstimateCpandCpk?-DUSLLSLD)NominalMeanUSL-LSL6*sUSL-MeanMean-LSL3*sSection4.UseoftheNMPDataCollectionSpreadsheetExleofhowtoCollectData1. Runinandstabiliseprocess2. Notethemainparametersforreference3. Whentheprocessisstablerunthetoolfor10hours3. Take5partsoutfromeachcavityeveryhalfhourandmarkthemwithtime,dateandcavity.Total20setsof5partsfromeachcavitymustbemade,oraccordingtoagreement.4. Afterthelastslelotnotethemainprocessparametersforreference5. Measureandrecordthemainfunctionalcharacteristics(whitediamonds)6. FilldataintotheNMPdatacollectionspreadsheet7. Analyse!SeeDMY00019-ENClassificationandMarkingofFunctionalCharact
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 景區(qū)擴(kuò)建籌備計(jì)劃方案
- 高端酒店停車場(chǎng)經(jīng)營(yíng)管理合同
- 乾隆與皇后考試題及答案
- 數(shù)據(jù)日?qǐng)?bào)面試題及答案
- 主動(dòng)脈夾層的診斷與治療
- 調(diào)度中心管理方案模板
- 車輛無償租賃給臨時(shí)施工項(xiàng)目協(xié)議
- 石板保護(hù)處理方案
- 消防驗(yàn)收計(jì)劃及方案
- 英國(guó)教育發(fā)展史綱
- 基本原理與性能特點(diǎn)多自由度電磁軸承課件
- Q∕SY 1836-2015 鍋爐 加熱爐燃油(氣)燃燒器及安全聯(lián)鎖保護(hù)裝置檢測(cè)規(guī)范
- 北京輸變電工程標(biāo)準(zhǔn)工藝應(yīng)用圖冊(cè)(圖文并茂)
- 儀器使用記錄表
- 石河子大學(xué)化學(xué)化工學(xué)院學(xué)院綜合測(cè)評(píng)方案-理學(xué)院
- 《汽車電工電子技術(shù)》全套教案(完整版)
- 國(guó)家職業(yè)技能標(biāo)準(zhǔn) (2021年版) 嬰幼兒發(fā)展引導(dǎo)員
- (高清正版)JJF(浙)1091—2014內(nèi)測(cè)卡尺校準(zhǔn)規(guī)范
- 伯杰氏細(xì)菌系統(tǒng)分類學(xué)手冊(cè)
- 國(guó)際結(jié)算業(yè)務(wù)系列培訓(xùn)-福費(fèi)廷業(yè)務(wù)課件
- 班組計(jì)件承包協(xié)議書
評(píng)論
0/150
提交評(píng)論