版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
processcapability(CP,CPK,PPK)英文版知識講座ProcessCapability(Cp/Cpk/Pp/Ppk)
GlobalTrainingMaterialCreator :GlobalMechanicsProcessManagerFunction :MechanicsApprover :GaryBradley/GlobalProcessTeamDocumentID :DMT00018-ENVersion/Status :V.1.0/ApprovedLocation :Notes:\\…\NMP\DOCMANR4\PCP\PCProcessLibraryDocManChangeHistory:Issue Date HandledBy Comments1.0 21stDec’01 JimChristy&S?renLundsfryd ApprovedforGlobalUseNOTE–Allcommentsandimprovementsshouldbeaddressedtothecreatorofthisdocument.ContentsSection Heading/Description Page1 Variation,TolerancesandDimensionalControl 4 2 Population,SleandNormalDistribution 153 CpandCpkConcept 284 UseoftheNMPDataCollectionSpreadsheet 445 ConfidenceofCpk 52 ProcessCapability-EvaluatingManufacturingVariationAcknowledgementsBennyMatthiassen (NMPCMT,Copenhagen,Denmark)FrankAdler (NMPAlliance,Dallas,USA)JoniLaakso (NMPR&D,Salo,Finland)JimChristy (NMPSRC,Southwood,UK)Section1Variation,TolerancesandDimensionalControlTwoTypesofProductCharacteristicsVariable:Acharacteristicmeasuredinphysicalunits,limetres,volts,amps,decibelandseconds.ONOFFAttribute:Acharacteristicthatbycomparisontosomestandardisjudged“good”or“bad”,e.g.freefromscratches(visualquality).InthistrainingwedealwithvariablesonlyTheSourcesofProcess/SystemVariationMethodsOperatorsCustomerSatisfactionMaterialEnvironmentEquipmentProcessTwoTypesofProcessesAllprocesseshave:Natural(random)variability
=>duetocommoncausesStableProcess:
AprocessinwhichvariationinoutcomesarisesonlyfromcommoncausesUnstableProcess:
AprocessinwhichvariationisaresultofbothcommonandspecialcausesUSLLSLnominalvalueDefectUSLLSLnominalvalue
Unnaturalvariability=>duetospecialcausesShewhart(1931)TheTwoCausesofVariationCommonCauses:Causesthatareimplementedintheprocessduetothedesignoftheprocess,andaffectalloutcomesoftheprocessIdentifyingthesetypesofcausesrequiresmethodssuchasDesignofExperiment(DOE),etc.
SpecialCauses:Causesthatarenotpresentintheprocessallthetimeanddonotaffectalloutcomes,butarisebecauseofspecificcircumstancesSpecialcausescanbeidentifiedusingStatisticalProcessControl(SPC)USLLSLNominal
valueDefectUSLLSLnominal
valueTolerancesLSL(lowerspecificationlimit)10,7USL(upperspecificationlimit)10,9AcceptablepartRejectedPartRejectedProductNominal10,80,1RejectedPartAtoleranceisaallowedmaximumvariationofadimension.MeasurementReportInmostcaseswemeasureonlyonepartpercavityformeasurementreportExleofCapabilityAnalysisDataForsomecriticaldimensionsweneedtomeasuremorethan1partForcapabilitydataweusuallymeasure5pcs2times/hour=100pcs(butslingplanneedstobemadeonthebasisofproductionquantity,rundurationandcycletime)ProcessCapability-Whatisit?ProcessCapabilityisameasureoftheinherentcapabilityofamanufacturingprocesstobeabletoconsistentlyproducecomponentsthatmeettherequireddesignspecificationsProcessCapabilityisdesignatedbyCpandCpkProcessPerformanceisameasureoftheperformanceofaprocesstobeabletoconsistentlyproducecomponentsthatmeettherequireddesignspecifications.ProcessPerformanceincludesspecialcausesofvariationnotpresentinProcessCapabilityProcessPerformanceisdesignatedPpandPpkWhyMakeProcessCapabilityStudiesLSL(lowerspecificationlimit)10,7USL(upperspecificationlimit)10,9Nominal10,80,1Thispartiswithinspec.ThetoolwouldbeapprovedifonlythispartwasmeasuredThesepartsareoutofspecandcouldbeapprovedifonlyonegoodpartwasmeasuredAprocesscapabilitystudywouldrevealthatthetoolshouldnotbeacceptedWhenadimensionneedstobekeptproperlywithinspec,wemuststudytheprocesscapability….butstillthisisnoguaranteefortheactualperformanceoftheprocessasitisonlyaninitialcapabilitystudyE1.5
E1
E2
E3
E4
E5TheNokiaProcessVerificationProcessBlackdiamondstobefixedbyE3(oftenachangeofawhitediamond)ProposalforblackdiamondstobediscussedwithSupplier.Max:105,85OngoingProcessControl(SPC)TolerancesappliedtodrawingType1FunctionalCharacteristics-1part/cavitymeasuredformeasurementreportWhitediamonds(s)tobeagreedWhitediamonds(s)tobediscussedwithsupplier10parts/cavitymeasuredformeasurementreportCapabilitystudy:Requirement:CpandCpk>1.67byE3.Quantitiestobeagreedwithsupplier.Minimum5partspr1/2hourin10hoursmeasuredforeachcavity=100parts.Canvarydependingontoolcapacity,e.g.stampedparts(seeDMY00019-EN)Section2.Population,SleandNormalDistributionTheBellShaped(Normal)DistributionSymmetricalshapewithapeakinthemiddleoftherangeofthedata.Indicatesthattheinputvariables(X's)totheprocessarerandomlyinfluenced.“PopulationParameters”
=Populationmean
=PopulationstandarddeviationPopulationversusSlePopulationAnentiregroupofobjectsthathavebeenmadeorwillbemadecontainingacharacteristicofinterestSleThegroupofobjectsactuallymeasuredinastatisticalstudyAsleisusuallyasubsetofthepopulationofinterestPopulationSample“SampleStatistics” x=Samplemean s=SamplestandarddeviationTheNormalDistributionWhatMeasurementsCanBeUsedtoDescribeaProcessorSystem?Example:1
=52
=73
=44
=25
=6mean(average)ordescribesthelocationofthedistributionμ(mü),ameasureofcentraltendency,isthemeanoraverageofallvaluesinthepopulation.Whenonlyasampleofthepopulationisbeingdescribed,meanismoreproperlydenotedas
(x-bar):Example:1
=52
=73
=44
=25
=6Themostsimplemeasureofvariabilityistherange.Therangeofasleisdefinedbyasthedifferencebetweenthelargestandthesmallestobservationfromslesinasub-group,e.g.5consecutivepartsfromthemanufacturingprocess.WhatMeasurementsCanBeUsedtoDescribeProcessvariation?sST-oftennotatedasorsigma,isanothermeasureofdispersionorvariabilityandstandsfor“short-termstandarddeviation”,whichmeasuresthevariabilityofaprocessorsystemusing“rational”sub-grouping.where
istherangeofsubgroupj,Nthenumberofsubgroups,andd2*dependsonthenumberNofsubgroupsandthesizenofasubgroup(seenextslide)WhatMeasurementsCanBeUsedtoDescribeProcessvariation?d2*valuesforSSTWhere:N=no.ofsub-groups,n=no.ofsamplesineachsub-groupd2*d2Typical:N=20&n=5
x3
x2
x1
x10x_tExample:WhatMeasurementsCanBeUsedtoDescribeProcessvariation?TheDifferenceBetweenSSTandsLT!!meanTimeDimensionShorttermStandardDeviationLongtermStandardDeviationSubgroupsizen=5NumberofsubgroupsN=7TRENDSubgroupNo.1ThedifferencebetweenthestandarddeviationssLTandsSTgivesanindicationofhowmuchbetteronecandowhenusingappropriateproductioncontrol,likeStatisticalProcessControl(SPC).Short-termstandarddeviation:Long-termstandarddeviation
:ThedifferencebetweensSTandsLTThedifferencebetweensSTandsLTThedifferencebetweensLTandsST
isonlyinthewaythatthestandarddeviationiscalculatedsLTisalwaysthesameorlargerthansSTIfsLTequalssST,thentheprocesscontroloverthelonger-termisthesameastheshort-term,andtheprocesswouldnotbenefitfromSPCIfsLTislargerthansST,thentheprocesshaslostcontroloverthelonger-term,andtheprocesswouldbenefitfromSPCThereliabilityofsLTisimprovedifthedataistakenoveralongerperiodoftime.AlternativelysLTcanbecalculatedonseveraloccasionsseparatedbytimeandtheresultscomparedtoseewhethersLTisstableExercise1:SleDistributions1.InExcelfile"Dataexercise1.xls"youfind100measurementsbeingtheresultofacapabilitystudy.Thespecificationforthedimensionis15,16,012.Howwelldoestheslepopulationfitthespecification,e.g.shouldweexpectanypartsoutsidespec?3.Mentionpossibleconsequencesofhavingapartoutsidespec.4.Mentionpossiblecausesofvariationforparts.5. Calculatetheslemeanandslestandarddeviationforthe100measurements.UsetheaverageandstdevfunctionsExcel.Section3.CpandCpkConceptDefiningCpandPpSamplemeanProcessvariation6*sUSL-LSLLSLUSLNominaldimThetoleranceareadividedbythetotalprocessvariation,irrespectiveofprocesscentring.DefiningCpkandPpkSamplemeanProcessvariation3sProcessvariation3sMean-LSLUSL-MeanLSLUSLNominaldimCpkandPpkIndexesaccountalsoforprocesscentring.WhatistheDifferenceBetweenCpandCpk?TheCpindexonlyaccountsforprocessvariabilityTheCpkIndexaccountsforprocessvariabilityandcenteringoftheprocessmeantothedesignnominalTherefore,CpCpkNOTE:SameappliesalsoforPpandPpkCp=Cpk(bothlow)LSLUSLMean=NominalRejectpartsRejectpartsCphigh,Cpklow
Processshouldbeoptimized!NominalLSLMeanUSLRejectpartsWhatDoTheseIndexesTellUs??Simplenumericalvaluestodescribethequalityoftheprocess>>ThehigherthenumberthebetterRequirementforCpandCpkis1.67min.RecommendationforPpandPpkis1.33min.Thisleavesussomespaceforthevariation,i.e.asafetymarginAreweabletoimproveourprocessbyusingSPC?Ifindexislow,followingthingsshouldbegivenathought:IstheproductdesignOK?Aretolerancelimitssetcorrectly?Tootight?Istheprocesscapableofproducinggoodqualityproducts?Processvariation?DOErequired?Isthemeasuringsystemcapable?(SeeGageR&R)Cpk-Witha2-sigmasafetymargin-3sST+3sSTLCLUCLLSLUSLMeanvalue=NominalvalueorTargetRequirementforCpandCpkis1.67min.1.67isaratioof=5/3or10/6.6*standarddeviation10*standarddeviation2*standarddeviation2*standarddeviationCpk<1.67theprocessNOTCAPABLEAcceptabilityofCpkIndex
Cpk>=1.67theprocessisCAPABLECpk>=2.0theprocesshasreachedSixSigmalevelWhatDoTheseIndexesTellUs??IfCp=Cpk,IfPp=Ppk,IfCpk<Cp,IfPpk<Pp,IfCp=Pp,IfCpk=Ppk,IfPp<Cp,IfPpk<Cpk,…thenprocessisaffectedbyspecialcauses.InvestigateX-bar/R-chartforout-of-controlconditions.SPCmaybeeffective…thenprocessisnotaffectedbyspecialcausesduringthestudyrun.SPCwouldnotbeeffectiveinthiscase…thenprocessperfectlycentred…thenprocessnotcentred(checkprocessmeanagainstdesignnominal)CpandCpkIndicesandDefects
(bothtailsofthenormaldistribution)Pp=Ppk=1,3363ppmdefects=0,006%Cp=Cpk=1,670,6ppmdefects=0,00006%Note:PpmrejectratescalculatedfromCp&CpkarebasedontheshorttermvariationwhichmaynotrepresentthelongtermrejectrateTheEffectsofCpkandCponFFRExercise2:CpandCpkCalculateCpandCpkforthe100measurementsinthefile"Dataexercise1.xls"DeterminetheapproximateCpandCpkforthe4slepopulationsonthefollowingpageShouldactionsbemadetoimprovetheseprocesses.Ifyes,which?EstimateCpandCpk?Thewidthofthenormaldistributionsshowninclude±3*sLSLUSLA)LSLUSLB)LSLUSLC)USLLSLD)EstimateCpandCpk?-A)LSLUSLA)MeanandnominalUSL-LSL6*sUSL-MeanMean-LSL3*sEstimateCpandCpk?-B)LSLUSLB)NominalMeanUSL-LSL6*sUSL-MeanMean-LSL3*sEstimateCpandCpk?-C)LSLUSLC)NominalMeanUSL-LSL6*sUSL-MeanMean-LSL3*sEstimateCpandCpk?-DUSLLSLD)NominalMeanUSL-LSL6*sUSL-MeanMean-LSL3*sSection4.UseoftheNMPDataCollectionSpreadsheetExleofhowtoCollectData1. Runinandstabiliseprocess2. Notethemainparametersforreference3. Whentheprocessisstablerunthetoolfor10hours3. Take5partsoutfromeachcavityeveryhalfhourandmarkthemwithtime,dateandcavity.Total20setsof5partsfromeachcavitymustbemade,oraccordingtoagreement.4. Afterthelastslelotnotethemainprocessparametersforreference5. Measureandrecordthemainfunctionalcharacteristics(whitediamonds)6. FilldataintotheNMPdatacollectionspreadsheet7. Analyse!SeeDMY00019-ENClassificationandMarkingofFunctionalCharact
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2022年小學教師資格考試《綜合素質》能力提升試題D卷-附答案
- 《小小工程師》2024課件新變化
- 2024年夢想高地:《理想的翅膀》課件助力成長
- 全面升級的2024版辦公自動化培訓課件:助力職場發(fā)展
- 2024年考研復試分數(shù)線及錄取趨勢
- 2024年全新教學體驗:故宮課件制作工作坊
- 2024年幼兒園《詠鵝》詩朗誦活動策劃案
- 江蘇專用2024高考政治一輪復習高考特訓9探究開放類主觀題專項突破含解析
- 2024秋三年級數(shù)學上冊第七單元分數(shù)的初步認識一1認識幾分之一學案蘇教版
- 2024-2025學年高中歷史專題八19世紀以來的文學藝術8.2碰撞與沖突課時分層作業(yè)含解析人民版必修3
- 第四講夏商周考古
- 微機原理與接口技術8259A練習題及答案
- 正方體的11種展開圖
- 第15章《分式》教材分析課件(32張)
- 商鋪裝修工程施工方案.
- 西門子RWD68說明書
- 形式發(fā)票樣本(Proforma Invoice)
- 醫(yī)院車輛加油卡管理制度
- 數(shù)獨題目高級50題(后附答案)【最新】
- 問題線索辦理呈批表
- 學、練、評一體化課堂模式下賽的兩個問題與對策
評論
0/150
提交評論