高三數(shù)學(xué)教案設(shè)計七篇_第1頁
高三數(shù)學(xué)教案設(shè)計七篇_第2頁
高三數(shù)學(xué)教案設(shè)計七篇_第3頁
高三數(shù)學(xué)教案設(shè)計七篇_第4頁
高三數(shù)學(xué)教案設(shè)計七篇_第5頁
已閱讀5頁,還剩6頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

第高三數(shù)學(xué)教案設(shè)計七篇高三數(shù)學(xué)教案設(shè)計七篇

高三數(shù)學(xué)教案設(shè)計都有哪些?數(shù)學(xué)家也研究純數(shù)學(xué),即數(shù)學(xué)本身,并不針對任何實際應(yīng)用。雖然很多工作都是從數(shù)學(xué)的研究開始的,但是后面可能會找到合適的應(yīng)用。下面是小編為大家?guī)淼母呷龜?shù)學(xué)教案設(shè)計七篇,希望大家能夠喜歡!

高三數(shù)學(xué)教案設(shè)計(篇1)

【教學(xué)目標】:

(1)知識目標:

通過實例,了解簡單的邏輯聯(lián)結(jié)詞“且”、“或”的含義;

(2)過程與方法目標:

了解含有邏輯聯(lián)結(jié)詞“且”、“或”復(fù)合命題的構(gòu)成形式,以及會對新命題作出真假的判斷;

(3)情感與能力目標:

在知識學(xué)習(xí)的基礎(chǔ)上,培養(yǎng)學(xué)生簡單推理的技能.

【教學(xué)重點】:

通過數(shù)學(xué)實例,了解邏輯聯(lián)結(jié)詞“或”、“且”的含義,使學(xué)生能正確地表述相關(guān)數(shù)學(xué)內(nèi)容.

【教學(xué)難點】:

簡潔、準確地表述“或”命題、“且”等命題,以及對新命題真假的判斷.

【教學(xué)過程設(shè)計】:

教學(xué)環(huán)節(jié)教學(xué)活動設(shè)計意圖

情境引入問題:

下列三個命題間有什么關(guān)系

(1)12能被3整除;

(2)12能被4整除;

(3)12能被3整除且能被4整除;通過數(shù)學(xué)實例,認識用用邏輯聯(lián)結(jié)詞“且”聯(lián)結(jié)兩個命題可以得到一個新命題;

知識建構(gòu)歸納總結(jié):

一般地,用邏輯聯(lián)結(jié)詞“且”把命題p和命題q聯(lián)結(jié)起來,就得到一個新命題,

記作,讀作“p且q”.

引導(dǎo)學(xué)生通過通過一些數(shù)學(xué)實例分析,概括出一般特征。

1、引導(dǎo)學(xué)生閱讀教科書上的例1中每組命題p,q,讓學(xué)生嘗試寫出命題,判斷真假,糾正可能出現(xiàn)的邏輯錯誤。學(xué)習(xí)使用邏輯聯(lián)結(jié)詞“且”聯(lián)結(jié)兩個命題,根據(jù)“且”的含義判斷邏輯聯(lián)結(jié)詞“且”聯(lián)結(jié)成的新命題的真假。

2、引導(dǎo)學(xué)生閱讀教科書上的例2中每個命題,讓學(xué)生嘗試改寫命題,判斷真假,糾正可能出現(xiàn)的邏輯錯誤。

歸納總結(jié):

當(dāng)p,q都是真命題時,是真命題,當(dāng)p,q兩個命題中有一個是假命題時,是假命題,

學(xué)習(xí)使用邏輯聯(lián)結(jié)詞“且”改寫一些命題,根據(jù)“且”的含義判斷原先命題的真假。

引導(dǎo)學(xué)生通過通過一些數(shù)學(xué)實例分析命題p和命題q以及命題的真假性,概括出這三個命題的真假性之間的一般規(guī)律。

高三數(shù)學(xué)教案設(shè)計(篇2)

教學(xué)目標

(1)使學(xué)生正確理解組合的意義,正確區(qū)分排列、組合問題;

(2)使學(xué)生掌握組合數(shù)的計算公式、組合數(shù)的性質(zhì)用組合數(shù)與排列數(shù)之間的關(guān)系;

(3)通過學(xué)習(xí)組合知識,讓學(xué)生掌握類比的學(xué)習(xí)方法,并提高學(xué)生分析問題和解決問題的能力;

(4)通過對排列、組合問題求解與剖析,培養(yǎng)學(xué)生學(xué)習(xí)興趣和思維深刻性,學(xué)生具有嚴謹?shù)膶W(xué)習(xí)態(tài)度。

教學(xué)建議

一、知識結(jié)構(gòu)

二、重點難點分析

本小節(jié)的重點是組合的定義、組合數(shù)及組合數(shù)的公式,組合數(shù)的性質(zhì)。難點是解組合的應(yīng)用題。突破重點、難點的關(guān)鍵是對加法原理與乘法原理的掌握和應(yīng)用,并將這兩個原理的基本思想貫穿在解決組合應(yīng)用題當(dāng)中。

組合與組合數(shù),也有上面類似的關(guān)系。從n個不同元素中任取m(m≤n)個元素并成一組,叫做從n個不同元素中任取m個元素的一個組合。所有這些不同的組合的個數(shù)叫做組合數(shù)。從集合的角度看,從n個元素的有限集中取出m個組成的一個集合(無序集),相當(dāng)于一個組合,而這種集合的個數(shù),就是相應(yīng)的組合數(shù)。

解排列組合應(yīng)用題時主要應(yīng)抓住是排列問題還是組合問題,其次要搞清需要分類,還是需要分步.切記:排組分清(有序排列、無序組合),加乘明確(分類為加、分步為乘).

三、教法設(shè)計

1.對于基礎(chǔ)較好的學(xué)生,建議把排列與組合的概念進行對比的進行學(xué)習(xí),這樣有利于搞請這兩組概念的區(qū)別與聯(lián)系.

2.學(xué)生與老師可以合編一些排列組合問題,如“45人中選出5人當(dāng)班干部有多少種選法”與“45人中選出5人分別擔(dān)任班長、副班長、體委、學(xué)委、生委有多少種選法”這是兩個相近問題,同學(xué)們會根據(jù)自己身邊的實際可以編出各種各樣的具有特色的問題,教師要引導(dǎo)學(xué)生辨認哪個是排列問題,哪個是組合問題.這樣既調(diào)動了學(xué)生學(xué)習(xí)的積極性,又在編題辨題中澄清了概念.

為了理解排列與組合的概念,建議大家學(xué)會畫排列與組合的樹圖.如,從a,b,c,d4個元素中取出3個元素的排列樹圖與組合樹圖分別為:

高三數(shù)學(xué)教案設(shè)計(篇3)

教學(xué)目的:

(1)使學(xué)生初步理解集合的概念,知道常用數(shù)集的概念及記法

(2)使學(xué)生初步了解“屬于”關(guān)系的意義

(3)使學(xué)生初步了解有限集、無限集、空集的意義

教學(xué)重點:集合的基本概念及表示方法

教學(xué)難點:運用集合的兩種常用表示方法——列舉法與描述法,正確表示

一些簡單的集合

授課類型:新授課

課時安排:1課時

教具:多媒體、實物投影儀

內(nèi)容分析:

集合是中學(xué)數(shù)學(xué)的一個重要的基本概念在小學(xué)數(shù)學(xué)中,就滲透了集合的初步概念,到了初中,更進一步應(yīng)用集合的語言表述一些問題例如,在代數(shù)中用到的有數(shù)集、解集等;在幾何中用到的有點集至于邏輯,可以說,從開始學(xué)習(xí)數(shù)學(xué)就離不開對邏輯知識的掌握和運用,基本的邏輯知識在日常生活、學(xué)習(xí)、工作中,也是認識問題、研究問題不可缺少的工具這些可以幫助學(xué)生認識學(xué)習(xí)本章的意義,也是本章學(xué)習(xí)的基礎(chǔ)

把集合的初步知識與簡易邏輯知識安排在高中數(shù)學(xué)的最開始,是因為在高中數(shù)學(xué)中,這些知識與其他內(nèi)容有著密切聯(lián)系,它們是學(xué)習(xí)、掌握和使用數(shù)學(xué)語言的基礎(chǔ)例如,下一章講函數(shù)的概念與性質(zhì),就離不開集合與邏輯

本節(jié)首先從初中代數(shù)與幾何涉及的集合實例入手,引出集合與集合的元素的概念,并且結(jié)合實例對集合的概念作了說明然后,介紹了集合的常用表示方法,包括列舉法、描述法,還給出了畫圖表示集合的例子

這節(jié)課主要學(xué)習(xí)全章的引言和集合的基本概念學(xué)習(xí)引言是引發(fā)學(xué)生的學(xué)習(xí)興趣,使學(xué)生認識學(xué)習(xí)本章的意義本節(jié)課的教學(xué)重點是集合的基本概念

集合是集合論中的原始的、不定義的概念在開始接觸集合的概念時,主要還是通過實例,對概念有一個初步認識教科書給出的“一般地,某些指定的對象集在一起就成為一個集合,也簡稱集”這句話,只是對集合概念的描述性說明

教學(xué)過程:

一、復(fù)習(xí)引入:

1.簡介數(shù)集的發(fā)展,復(fù)習(xí)公約數(shù)和最小公倍數(shù),質(zhì)數(shù)與和數(shù);

2.教材中的章頭引言;

3.集合論的創(chuàng)始人——康托爾(德國數(shù)學(xué)家)(見附錄);

4.“物以類聚”,“人以群分”;

5.教材中例子(P4)

二、講解新課:

閱讀教材第一部分,問題如下:

(1)有那些概念是如何定義的

(2)有那些符號是如何表示的

(3)集合中元素的特性是什么

集合的有關(guān)概念:

由一些數(shù)、一些點、一些圖形、一些整式、一些物體、一些人組成的.我們說,每一組對象的全體形成一個集合,或者說,某些指定的對象集在一起就成為一個集合,也簡稱集.集合中的每個對象叫做這個集合的元素.

定義:一般地,某些指定的對象集在一起就成為一個集合.

1、集合的概念

(1)集合:某些指定的對象集在一起就形成一個集合(簡稱集)

(2)元素:集合中每個對象叫做這個集合的元素

2、常用數(shù)集及記法

(1)非負整數(shù)集(自然數(shù)集):全體非負整數(shù)的集合記作N,

(2)正整數(shù)集:非負整數(shù)集內(nèi)排除0的集記作N或N+

(3)整數(shù)集:全體整數(shù)的集合記作Z,

(4)有理數(shù)集:全體有理數(shù)的集合記作Q,

(5)實數(shù)集:全體實數(shù)的集合記作R

注:(1)自然數(shù)集與非負整數(shù)集是相同的,也就是說,自然數(shù)集包括數(shù)0

(2)非負整數(shù)集內(nèi)排除0的集記作N或N+Q、Z、R等其它數(shù)集內(nèi)排除0的集,也是這樣表示,例如,整數(shù)集內(nèi)排除0的集,表示成Z

高三數(shù)學(xué)教案設(shè)計(篇4)

一.說教材

地位及重要性

函數(shù)的單調(diào)性一節(jié)屬高中數(shù)學(xué)第一冊(上)的必修內(nèi)容,在高考的重要考查范圍之內(nèi)。函數(shù)的單調(diào)性是函數(shù)的一個重要性質(zhì),也是在研究函數(shù)時經(jīng)常要注意的一個性質(zhì),并且在比較幾個數(shù)的大小、對函數(shù)的定性分析以及與其他知識的綜合應(yīng)用上都有廣泛的應(yīng)用。通過對這一節(jié)課的學(xué)習(xí),既可以讓學(xué)生掌握函數(shù)單調(diào)性的概念和證明函數(shù)單調(diào)性的步驟,又可加深對函數(shù)的本質(zhì)認識。也為今后研究具體函數(shù)的性質(zhì)作了充分準備,起到承上啟下的作用。

教學(xué)目標

(1)了解能用文字語言和符號語言正確表述增函數(shù)、減函數(shù)、單調(diào)性、單調(diào)區(qū)間的概念;

(2)了解能用圖形語言正確表述具有單調(diào)性的函數(shù)的圖象特征;

(3)明確掌握利用函數(shù)單調(diào)性定義證明函數(shù)單調(diào)性的方法與步驟;并能用定義證明某些簡單函數(shù)的單調(diào)性;

(4)培養(yǎng)學(xué)生嚴密的邏輯思維能力、用運動變化、數(shù)形結(jié)合、分類討論的方法去分析和處理問題,以提高學(xué)生的思維品質(zhì);同時讓學(xué)生體驗數(shù)學(xué)的藝術(shù)美,養(yǎng)成用辨證唯物主義的觀點看問題。

教學(xué)重難點

重點是對函數(shù)單調(diào)性的有關(guān)概念的本質(zhì)理解。

難點是利用函數(shù)單調(diào)性的概念證明或判斷具體函數(shù)的單調(diào)性。

二.說教法

根據(jù)本節(jié)課的內(nèi)容及學(xué)生的實際水平,我嘗試運用“問題解決”與“多媒體輔助教學(xué)”的模式。力圖通過提出問題、思考問題、解決問題的過程,讓學(xué)生主動參與以達到對知識的“發(fā)現(xiàn)”與接受,進而完成對知識的內(nèi)化,使書本知識成為自己知識;同時也培養(yǎng)學(xué)生的探索精神。

三.說學(xué)法

在教學(xué)過程中,教師設(shè)置問題情景讓學(xué)生想辦法解決;通過教師的啟發(fā)點撥,學(xué)生的不斷探索,最終把解決問題的核心歸結(jié)到判斷函數(shù)的單調(diào)性。然后通過對函數(shù)單調(diào)性的概念的學(xué)習(xí)理解,最終把問題解決。整個過程學(xué)生學(xué)生主動參與、積極思考、探索嘗試的動態(tài)活動之中;同時讓學(xué)生體驗到了學(xué)習(xí)數(shù)學(xué)的快樂,培養(yǎng)了學(xué)生自主學(xué)習(xí)的能力和以嚴謹?shù)目茖W(xué)態(tài)度研究問題的習(xí)慣。

四.說過程

通過設(shè)置問題情景、課堂導(dǎo)入、新課講授及終結(jié)階段的教學(xué)中,我力求培養(yǎng)學(xué)生的自主學(xué)習(xí)的能力,以點撥、啟發(fā)、引導(dǎo)為教師職責(zé)。

高三數(shù)學(xué)教案設(shè)計(篇5)

【教學(xué)目標】

1.知識與技能

(1)理解等差數(shù)列的定義,會應(yīng)用定義判斷一個數(shù)列是否是等差數(shù)列

(2)賬務(wù)等差數(shù)列的通項公式及其推導(dǎo)過程

(3)會應(yīng)用等差數(shù)列通項公式解決簡單問題。

2.過程與方法

在定義的理解和通項公式的推導(dǎo)、應(yīng)用過程中,培養(yǎng)學(xué)生的觀察、分析、歸納能力和嚴密的邏輯思維的能力,體驗從特殊到一般,一般到特殊的認知規(guī)律,提高熟悉猜想和歸納的能力,滲透函數(shù)與方程的思想。

3.情感、態(tài)度與價值觀

通過教師指導(dǎo)下學(xué)生的自主學(xué)習(xí)、相互交流和探索活動,培養(yǎng)學(xué)生主動探索、用于發(fā)現(xiàn)的求知精神,激發(fā)學(xué)生的學(xué)習(xí)興趣,讓學(xué)生感受到成功的喜悅。在解決問題的過程中,使學(xué)生養(yǎng)成細心觀察、認真分析、善于總結(jié)的良好習(xí)慣。

【教學(xué)重點】

①等差數(shù)列的概念;

②等差數(shù)列的通項公式

【教學(xué)難點】

①理解等差數(shù)列“等差”的特點及通項公式的含義;

②等差數(shù)列的通項公式的推導(dǎo)過程.

【學(xué)情分析】

我所教學(xué)的學(xué)生是我校高一(7)班的學(xué)生(平行班學(xué)生),經(jīng)過一年的高中數(shù)學(xué)學(xué)習(xí),大部分學(xué)生知識經(jīng)驗已較為豐富,他們的智力發(fā)展已到了形式運演階段,具備了較強的抽象思維能力和演繹推理能力,但也有一部分學(xué)生的基礎(chǔ)較弱,學(xué)習(xí)數(shù)學(xué)的興趣還不是很濃,所以我在授課時注重從具體的生活實例出發(fā),注重引導(dǎo)、啟發(fā)、研究和探討以符合這類學(xué)生的心理發(fā)展特點,從而促進思維能力的進一步發(fā)展.

【設(shè)計思路】

1.教法

①啟發(fā)引導(dǎo)法:這種方法有利于學(xué)生對知識進行主動建構(gòu);有利于突出重點,突破難點;有利于調(diào)動學(xué)生的主動性和積極性,發(fā)揮其創(chuàng)造性.

②分組討論法:有利于學(xué)生進行交流,及時發(fā)現(xiàn)問題,解決問題,調(diào)動學(xué)生的積極性.

③講練結(jié)合法:可以及時鞏固所學(xué)內(nèi)容,抓住重點,突破難點.

2.學(xué)法

引導(dǎo)學(xué)生首先從三個現(xiàn)實問題(數(shù)數(shù)問題、水庫水位問題、儲蓄問題)概括出數(shù)組特點并抽象出等差數(shù)列的概念;接著就等差數(shù)列概念的特點,推導(dǎo)出等差數(shù)列的通項公式;可以對各種能力的同學(xué)引導(dǎo)認識多元的推導(dǎo)思維方法.

高三數(shù)學(xué)教案設(shè)計(篇6)

教學(xué)準備

教學(xué)目標

數(shù)列求和的綜合應(yīng)用

教學(xué)重難點

數(shù)列求和的綜合應(yīng)用

教學(xué)過程

典例分析

3.數(shù)列{an}的前n項和Sn=n2-7n-8,

(1)求{an}的通項公式

(2)求{|an|}的前n項和Tn

4.等差數(shù)列{an}的公差為,S100=145,則a1+a3+a5+…+a99=

5.已知方程(___2-2___+m)(___2-2___+n)=0的四個根組成一個首項為的等差數(shù)列,則|m-n|=

6.數(shù)列{an}是等差數(shù)列,且a1=2,a1+a2+a3=12

(1)求{an}的通項公式

(2)令bn=an___n,求數(shù)列{bn}前n項和公式

7.四數(shù)中前三個數(shù)成等比數(shù)列,后三個數(shù)成等差數(shù)列,首末兩項之和為21,中間兩項之和為18,求此四個數(shù)

8.在等差數(shù)列{an}中,a1=20,前n項和為Sn,且S10=S15,求當(dāng)n為何值時,Sn有值,并求出它的值

.已知數(shù)列{an},an∈N______,Sn=(an+2)2

(1)求證{an}是等差數(shù)列

(2)若bn=an-30,求數(shù)列{bn}前n項的最小值

0.已知f(___)=___2-2(n+1)___+n2+5n-7(n∈N______)

(1)設(shè)f(___)的圖象的頂點的橫坐標構(gòu)成數(shù)列{an},求證數(shù)列{an}是等差數(shù)列

(2設(shè)f(___)的圖象的頂點到___軸的距離構(gòu)成數(shù)列{dn},求數(shù)列{dn}的前n項和sn.

11.購買一件售價為5000元的商品,采用分期付款的辦法,每期付款數(shù)相同,購買后1個月第1次付款,再過1個月第2次付款,如此下去,共付款5次后還清,如果按月利率0.8%,每月利息按復(fù)利計算(上月利息要計入下月本金),那么每期應(yīng)付款多少(精確到1元)

12.某商品在最近100天內(nèi)的價格f(t)與時間t的

函數(shù)關(guān)系式是f(t)=

銷售量g(t)與時間t的函數(shù)關(guān)系是

g(t)=-t/3+109/3(0≤t≤100)

求這種商品的日銷售額的值

高三數(shù)學(xué)教案設(shè)計(篇7)

一、背景分析

最近3年高考數(shù)學(xué)命題很平穩(wěn),堅持了穩(wěn)中求改、穩(wěn)中創(chuàng)新的原則。充分發(fā)揮數(shù)學(xué)作為基礎(chǔ)學(xué)科的作用,既重視考查中學(xué)數(shù)學(xué)基礎(chǔ)知識的掌握程度,又注意考查進入高校繼續(xù)學(xué)習(xí)的潛能。做到了總體保持穩(wěn)定,深化能力立意,積極改革創(chuàng)新,兼顧了數(shù)學(xué)基礎(chǔ)、思想方法、思維、應(yīng)用、運算和潛能等多方面的考查,融入課程改革的理念,拓寬題材,選材多樣化,寬角度、多視點地考查數(shù)學(xué)素養(yǎng),多層次地

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論