廣東省湛江市徐聞縣重點中學2022-2023學年初三第二次模考數(shù)學試題文試題含解析_第1頁
廣東省湛江市徐聞縣重點中學2022-2023學年初三第二次??紨?shù)學試題文試題含解析_第2頁
廣東省湛江市徐聞縣重點中學2022-2023學年初三第二次??紨?shù)學試題文試題含解析_第3頁
廣東省湛江市徐聞縣重點中學2022-2023學年初三第二次??紨?shù)學試題文試題含解析_第4頁
廣東省湛江市徐聞縣重點中學2022-2023學年初三第二次模考數(shù)學試題文試題含解析_第5頁
已閱讀5頁,還剩19頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

廣東省湛江市徐聞縣重點中學2022-2023學年初三第二次??紨?shù)學試題文試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,小明同學用自制的直角三角形紙板DEF測量樹的高度AB,他調整自己的位置,設法使斜邊DF保持水平,并且邊DE與點B在同一直線上.已知紙板的兩條邊DF=50cm,EF=30cm,測得邊DF離地面的高度AC=1.5m,CD=20m,則樹高AB為()A.12m B.13.5m C.15m D.16.5m2.一個半徑為24的扇形的弧長等于20π,則這個扇形的圓心角是()A.120° B.135° C.150° D.165°3.不等式3x<2(x+2)的解是()A.x>2 B.x<2 C.x>4 D.x<44.計算﹣1﹣(﹣4)的結果為()A.﹣3 B.3 C.﹣5 D.55.某廣場上有一個形狀是平行四邊形的花壇(如圖),分別種有紅、黃、藍、綠、橙、紫6種顏色的花.如果有AB∥EF∥DC,BC∥GH∥AD,那么下列說法錯誤的是()A.紅花、綠花種植面積一定相等B.紫花、橙花種植面積一定相等C.紅花、藍花種植面積一定相等D.藍花、黃花種植面積一定相等6.如圖,⊙O中,弦BC與半徑OA相交于點D,連接AB,OC,若∠A=60°,∠ADC=85°,則∠C的度數(shù)是()A.25° B.27.5° C.30° D.35°7.一小組8位同學一分鐘跳繩的次數(shù)如下:150,176,168,183,172,164,168,185,則這組數(shù)據(jù)的中位數(shù)為()A.172 B.171 C.170 D.1688.方程x2+2x﹣3=0的解是()A.x1=1,x2=3B.x1=1,x2=﹣3C.x1=﹣1,x2=3D.x1=﹣1,x2=﹣39.如圖,正方形ABCD的邊長為4,點M是CD的中點,動點E從點B出發(fā),沿BC運動,到點C時停止運動,速度為每秒1個長度單位;動點F從點M出發(fā),沿M→D→A遠動,速度也為每秒1個長度單位:動點G從點D出發(fā),沿DA運動,速度為每秒2個長度單位,到點A后沿AD返回,返回時速度為每秒1個長度單位,三個點的運動同時開始,同時結束.設點E的運動時間為x,△EFG的面積為y,下列能表示y與x的函數(shù)關系的圖象是()A. B.C. D.10.已知O為圓錐的頂點,M為圓錐底面上一點,點P在OM上.一只蝸牛從P點出發(fā),繞圓錐側面爬行,回到P點時所爬過的最短路線的痕跡如圖所示.若沿OM將圓錐側面剪開并展開,所得側面展開圖是()A. B.C. D.11.已知A(x1,y1),B(x2,y2)是反比例函數(shù)y=kx(k≠0)圖象上的兩個點,當x1<x2<0時,y1>y2A.第一象限B.第二象限C.第三象限D.第四象限12.在同一直角坐標系中,二次函數(shù)y=x2與反比例函數(shù)y=1x(x>0)的圖象如圖所示,若兩個函數(shù)圖象上有三個不同的點A(x1,m),B(x2,m),C(x3,m),其中m為常數(shù),令ω=x1+x2+x3A.1B.mC.m2D.1二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,在△ABC中,AB=2,BC=3.5,∠B=60°,將△ABC繞點A按順時針旋轉一定角度得到△ADE,當點B的對應點D恰好落在BC邊上時,則CD的長為_____.14.如圖,直線a∥b,∠P=75°,∠2=30°,則∠1=_____.15.如圖,Rt△ABC中,若∠C=90°,BC=4,tanA=,則AB=___.16.如圖,點A,B,C在⊙O上,∠OBC=18°,則∠A=_______________________.17.如圖,在△ABC中,∠ACB=90°,點D是CB邊上一點,過點D作DE⊥AB于點E,點F是AD的中點,連結EF、FC、CE.若AD=2,∠CFE=90°,則CE=_____.18.計算:___.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)某經(jīng)銷商從市場得知如下信息:A品牌手表B品牌手表進價(元/塊)700100售價(元/塊)900160他計劃用4萬元資金一次性購進這兩種品牌手表共100塊,設該經(jīng)銷商購進A品牌手表x塊,這兩種品牌手表全部銷售完后獲得利潤為y元.試寫出y與x之間的函數(shù)關系式;若要求全部銷售完后獲得的利潤不少于1.26萬元,該經(jīng)銷商有哪幾種進貨方案;選擇哪種進貨方案,該經(jīng)銷商可獲利最大;最大利潤是多少元.20.(6分)武漢二中廣雅中學為了進一步改進本校九年級數(shù)學教學,提高學生學習數(shù)學的興趣.校教務處在九年級所有班級中,每班隨機抽取了6名學生,并對他們的數(shù)學學習情況進行了問卷調查:我們從所調查的題目中,特別把學生對數(shù)學學習喜歡程度的回答(喜歡程度分為:“非常喜歡”、“比較喜歡”、“不太喜歡”、“很不喜歡”,針對這個題目,問卷時要求每位被調查的學生必須從中選一項且只能選一項)結果進行了統(tǒng)計.現(xiàn)將統(tǒng)計結果繪制成如下兩幅不完整的統(tǒng)計圖.請你根據(jù)以上提供的信息,解答下列問題:(1)補全上面的條形統(tǒng)計圖和扇形統(tǒng)計圖;(2)所抽取學生對數(shù)學學習喜歡程度的眾數(shù)是,圖②中所在扇形對應的圓心角是;(3)若該校九年級共有960名學生,請你估算該年級學生中對數(shù)學學習“不太喜歡”的有多少人?21.(6分)如圖,一次函數(shù)y=kx+b(k、b為常數(shù),k≠0)的圖象與x軸、y軸分別交于A、B兩點,且與反比例函數(shù)y=nx(1)求一次函數(shù)與反比例函數(shù)的解析式;(2)記兩函數(shù)圖象的另一個交點為E,求△CDE的面積;(3)直接寫出不等式kx+b≤nx22.(8分)如圖,已知點A(﹣2,0),B(4,0),C(0,3),以D為頂點的拋物線y=ax2+bx+c過A,B,C三點.(1)求拋物線的解析式及頂點D的坐標;(2)設拋物線的對稱軸DE交線段BC于點E,P為第一象限內拋物線上一點,過點P作x軸的垂線,交線段BC于點F,若四邊形DEFP為平行四邊形,求點P的坐標.23.(8分)已知正方形ABCD的邊長為2,作正方形AEFG(A,E,F(xiàn),G四個頂點按逆時針方向排列),連接BE、GD,(1)如圖①,當點E在正方形ABCD外時,線段BE與線段DG有何關系?直接寫出結論;(2)如圖②,當點E在線段BD的延長線上,射線BA與線段DG交于點M,且DG=2DM時,求邊AG的長;(3)如圖③,當點E在正方形ABCD的邊CD所在的直線上,直線AB與直線DG交于點M,且DG=4DM時,直接寫出邊AG的長.24.(10分)某高中進行“選科走班”教學改革,語文、數(shù)學、英語三門為必修學科,另外還需從物理、化學、生物、政治、歷史、地理(分別記為A、B、C、D、E、F)六門選修學科中任選三門,現(xiàn)對該校某班選科情況進行調查,對調查結果進行了分析統(tǒng)計,并制作了兩幅不完整的統(tǒng)計圖.請根據(jù)以上信息,完成下列問題:該班共有學生人;請將條形統(tǒng)計圖補充完整;該班某同學物理成績特別優(yōu)異,已經(jīng)從選修學科中選定物理,還需從余下選修學科中任意選擇兩門,請用列表或畫樹狀圖的方法,求出該同學恰好選中化學、歷史兩科的概率.25.(10分)如圖,在平面直角坐標系xOy中,直線y=x+b與雙曲線y=相交于A,B兩點,已知A(2,5).求:b和k的值;△OAB的面積.26.(12分)先化簡,再求值:,其中x滿足x2-2x-2=0.27.(12分)如圖,四邊形ABCD中,∠C=90°,AD⊥DB,點E為AB的中點,DE∥BC.(1)求證:BD平分∠ABC;(2)連接EC,若∠A=30°,DC=,求EC的長.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】

利用直角三角形DEF和直角三角形BCD相似求得BC的長后加上小明同學的身高即可求得樹高AB.【詳解】∵∠DEF=∠BCD=90°,∠D=∠D,∴△DEF∽△DCB,∴,∵DF=50cm=0.5m,EF=30cm=0.3m,AC=1.5m,CD=20m,∴由勾股定理求得DE=40cm,∴,∴BC=15米,∴AB=AC+BC=1.5+15=16.5(米).故答案為16.5m.【點睛】本題考查了相似三角形的應用,解題的關鍵是從實際問題中整理出相似三角形的模型.2、C【解析】

這個扇形的圓心角的度數(shù)為n°,根據(jù)弧長公式得到20π=,然后解方程即可.【詳解】解:設這個扇形的圓心角的度數(shù)為n°,根據(jù)題意得20π=,解得n=150,即這個扇形的圓心角為150°.故選C.【點睛】本題考查了弧長公式:L=(n為扇形的圓心角的度數(shù),R為扇形所在圓的半徑).3、D【解析】

不等式先展開再移項即可解答.【詳解】解:不等式3x<2(x+2),展開得:3x<2x+4,移項得:3x-2x<4,解之得:x<4.故答案選D.【點睛】本題考查了解一元一次不等式,解題的關鍵是熟練的掌握解一元一次不等式的步驟.4、B【解析】

原式利用減法法則變形,計算即可求出值.【詳解】,故選:B.【點睛】本題主要考查了有理數(shù)的加減,熟練掌握有理數(shù)加減的運算法則是解決本題的關鍵.5、C【解析】

圖中,線段GH和EF將大平行四邊形ABCD分割成了四個小平行四邊形,平行四邊形的對角線平分該平行四邊形的面積,據(jù)此進行解答即可.【詳解】解:由已知得題圖中幾個四邊形均是平行四邊形.又因為平行四邊形的一條對角線將平行四邊形分成兩個全等的三角形,即面積相等,故紅花和綠花種植面積一樣大,藍花和黃花種植面積一樣大,紫花和橙花種植面積一樣大.故選擇C.【點睛】本題考查了平行四邊形的定義以及性質,知道對角線平分平行四邊形是解題關鍵.6、D【解析】分析:直接利用三角形外角的性質以及鄰補角的關系得出∠B以及∠ODC度數(shù),再利用圓周角定理以及三角形內角和定理得出答案.詳解:∵∠A=60°,∠ADC=85°,∴∠B=85°-60°=25°,∠CDO=95°,∴∠AOC=2∠B=50°,∴∠C=180°-95°-50°=35°故選D.點睛:此題主要考查了圓周角定理以及三角形內角和定理等知識,正確得出∠AOC度數(shù)是解題關鍵.7、C【解析】

先把所給數(shù)據(jù)從小到大排列,然后根據(jù)中位數(shù)的定義求解即可.【詳解】從小到大排列:150,164,168,168,,172,176,183,185,∴中位數(shù)為:(168+172)÷2=170.故選C.【點睛】本題考查了中位數(shù),如果一組數(shù)據(jù)有奇數(shù)個,那么把這組數(shù)據(jù)從小到大排列后,排在中間位置的數(shù)是這組數(shù)據(jù)的中位數(shù);如果一組數(shù)據(jù)有偶數(shù)個,那么把這組數(shù)據(jù)從小到大排列后,排在中間位置的兩個數(shù)的平均數(shù)是這組數(shù)據(jù)的中位數(shù).8、B【解析】

本題可對方程進行因式分解,也可把選項中的數(shù)代入驗證是否滿足方程.【詳解】x2+2x-3=0,即(x+3)(x-1)=0,∴x1=1,x2=﹣3故選:B.【點睛】本題考查了一元二次方程的解法.解一元二次方程常用的方法有直接開平方法,配方法,公式法,因式分解法,要根據(jù)方程的特點靈活選用合適的方法.本題運用的是因式分解法.9、A【解析】

當點F在MD上運動時,0≤x<2;當點F在DA上運動時,2<x≤4.再按相關圖形面積公式列出表達式即可.【詳解】解:當點F在MD上運動時,0≤x<2,則:y=S梯形ECDG-S△EFC-S△GDF=,當點F在DA上運動時,2<x≤4,則:y=,綜上,只有A選項圖形符合題意,故選擇A.【點睛】本題考查了動點問題的函數(shù)圖像,抓住動點運動的特點是解題關鍵.10、D【解析】

此題運用圓錐的性質,同時此題為數(shù)學知識的應用,由題意蝸牛從P點出發(fā),繞圓錐側面爬行,回到P點時所爬過的最短,就用到兩點間線段最短定理.【詳解】解:蝸牛繞圓錐側面爬行的最短路線應該是一條線段,因此選項A和B錯誤,又因為蝸牛從p點出發(fā),繞圓錐側面爬行后,又回到起始點P處,那么如果將選項C、D的圓錐側面展開圖還原成圓錐后,位于母線OM上的點P應該能夠與母線OM′上的點(P′)重合,而選項C還原后兩個點不能夠重合.故選D.點評:本題考核立意相對較新,考核了學生的空間想象能力.11、B【解析】試題分析:當x1<x2<0時,y1>y2,可判定k>0,所以﹣k<0,即可判定一次函數(shù)y=kx﹣k的圖象經(jīng)過第一、三、四象限,所以不經(jīng)過第二象限,故答案選B.考點:反比例函數(shù)圖象上點的坐標特征;一次函數(shù)圖象與系數(shù)的關系.12、D【解析】

本題主要考察二次函數(shù)與反比例函數(shù)的圖像和性質.【詳解】令二次函數(shù)中y=m.即x2=m,解得x=m或x=-m.令反比例函數(shù)中y=m,即1x=m,解得x=1m,將x的三個值相加得到ω=m+(-m)+【點睛】巧妙借助三點縱坐標相同的條件建立起兩個函數(shù)之間的聯(lián)系,從而解答.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、1.1.【解析】分析:由將△ABC繞點A按順時針旋轉一定角度得到△ADE,當點B的對應點D恰好落在BC邊上,可得AD=AB,又由∠B=60°,可證得△ABD是等邊三角形,繼而可得BD=AB=2,則可求得答案.詳解:由旋轉的性質可得:AD=AB,∵∠B=60°,∴△ABD是等邊三角形,∴BD=AB,∵AB=2,BC=3.1,∴CD=BC-BD=3.1-2=1.1.故答案為:1.1.點睛:此題考查了旋轉的性質以及等邊三角形的判定與性質.此題比較簡單,注意掌握旋轉前后圖形的對應關系,注意數(shù)形結合思想的應用.14、45°【解析】過P作PM∥直線a,根據(jù)平行線的性質,由直線a∥b,可得直線a∥b∥PM,然后根據(jù)平行線的性質,由∠P=75°,∠2=30°,可得∠1=∠P-∠2=45°.故答案為45°.點睛:本題考查了平行線的性質的應用,能正確根據(jù)平行線的性質進行推理是解此題的關鍵,注意:兩直線平行,內錯角相等.15、1.【解析】

在Rt△ABC中,已知tanA,BC的值,根據(jù)tanA=,可將AC的值求出,再由勾股定理可將斜邊AB的長求出.【詳解】解:Rt△ABC中,∵BC=4,tanA=∴則故答案為1.【點睛】考查解直角三角形以及勾股定理,熟練掌握銳角三角函數(shù)是解題的關鍵.16、72°.【解析】

解:∵OB=OC,∠OBC=18°,∴∠BCO=∠OBC=18°,∴∠BOC=180°﹣2∠OBC=180°﹣2×18°=144°,∴∠A=∠BOC=×144°=72°.故答案為72°.【點睛】本題考查圓周角定理,掌握同弧所對的圓周角是圓心角的一半是本題的解題關鍵.17、【解析】

根據(jù)直角三角形的中點性質結合勾股定理解答即可.【詳解】解:,點F是AD的中點,.故答案為:.【點睛】此題重點考查學生對勾股定理的理解。熟練掌握勾股定理是解題的關鍵.18、【解析】

直接利用負指數(shù)冪的性質以及零指數(shù)冪的性質分別化簡得出答案.【詳解】原式.故答案為.【點睛】本題考查了實數(shù)運算,正確化簡各數(shù)是解題的關鍵.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)y=140x+6000;(2)三種,答案見解析;(3)選擇方案③進貨時,經(jīng)銷商可獲利最大,最大利潤是13000元.【解析】

(1)根據(jù)利潤y=(A售價﹣A進價)x+(B售價﹣B進價)×(100﹣x)列式整理即可;(2)全部銷售后利潤不少于1.26萬元得到一元一次不等式組,求出滿足題意的x的正整數(shù)值即可;(3)利用y與x的函數(shù)關系式的增減性來選擇哪種方案獲利最大,并求此時的最大利潤即可.【詳解】解:(1)y=(900﹣700)x+(160﹣100)×(100﹣x)=140x+6000.由700x+100(100﹣x)≤40000得x≤50.∴y與x之間的函數(shù)關系式為y=140x+6000(x≤50)(2)令y≥12600,即140x+6000≥12600,解得x≥47.1.又∵x≤50,∴經(jīng)銷商有以下三種進貨方案:方案A品牌(塊)B品牌(塊)①4852②4951③5050(3)∵140>0,∴y隨x的增大而增大.∴x=50時y取得最大值.又∵140×50+6000=13000,∴選擇方案③進貨時,經(jīng)銷商可獲利最大,最大利潤是13000元.【點睛】本題考查由實際問題列函數(shù)關系式;一元一次不等式的應用;一次函數(shù)的應用.20、(1)答案見解析;(2)B,54°;(3)240人.【解析】

(1)根據(jù)D程度的人數(shù)和所占抽查總人數(shù)的百分率即可求出抽查總人數(shù),然后利用總人數(shù)減去A、B、D程度的人數(shù)即可求出C程度的人數(shù),然后分別計算出各程度人數(shù)占抽查總人數(shù)的百分率,從而補全統(tǒng)計圖即可;(2)根據(jù)眾數(shù)的定義即可得出結論,然后利用360°乘A程度的人數(shù)所占抽查總人數(shù)的百分率即可得出結論;(3)利用960乘C程度的人數(shù)所占抽查總人數(shù)的百分率即可.【詳解】解:(1)被調查的學生總人數(shù)為人,C程度的人數(shù)為人,則的百分比為、的百分比為、的百分比為,補全圖形如下:(2)所抽取學生對數(shù)學學習喜歡程度的眾數(shù)是、圖②中所在扇形對應的圓心角是.故答案為:;;(3)該年級學生中對數(shù)學學習“不太喜歡”的有人答:該年級學生中對數(shù)學學習“不太喜歡”的有240人.【點睛】此題考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖,結合條形統(tǒng)計圖和扇形統(tǒng)計圖得出有用信息是解決此題的關鍵.21、(1)y=﹣2x+1;y=﹣80x【解析】

(1)根據(jù)OA、OB的長寫出A、B兩點的坐標,再用待定系數(shù)法求解一次函數(shù)的解析式,然后求得點C的坐標,進而求出反比例函數(shù)的解析式.(2)聯(lián)立方程組求解出交點坐標即可.(3)觀察函數(shù)圖象,當函數(shù)y=kx+b的圖像處于y=nx下方或與其有重合點時,x的取值范圍即為【詳解】(1)由已知,OA=6,OB=1,OD=4,∵CD⊥x軸,∴OB∥CD,∴△ABO∽△ACD,∴,∴,∴CD=20,∴點C坐標為(﹣4,20),∴n=xy=﹣80.∴反比例函數(shù)解析式為:y=﹣,把點A(6,0),B(0,1)代入y=kx+b得:,解得:.∴一次函數(shù)解析式為:y=﹣2x+1,(2)當﹣=﹣2x+1時,解得,x1=10,x2=﹣4,當x=10時,y=﹣8,∴點E坐標為(10,﹣8),∴S△CDE=S△CDA+S△EDA=.(3)不等式kx+b≤,從函數(shù)圖象上看,表示一次函數(shù)圖象不低于反比例函數(shù)圖象,∴由圖象得,x≥10,或﹣4≤x<0.【點睛】本題考查了應用待定系數(shù)法求一次函數(shù)和反比例函數(shù)解析式以及用函數(shù)的觀點通過函數(shù)圖像解不等式.22、(1)y=﹣38x2+34x+3;D(1,278【解析】

(1)設拋物線的解析式為y=a(x+2)(x-4),將點C(0,3)代入可求得a的值,將a的值代入可求得拋物線的解析式,配方可得頂點D的坐標;(2)畫圖,先根據(jù)點B和C的坐標確定直線BC的解析式,設P(m,-38m2+34m+3),則F(m,-【詳解】解:(1)設拋物線的解析式為y=a(x+2)(x﹣4),將點C(0,3)代入得:﹣8a=3,解得:a=﹣38y=﹣38x2+34x+3=﹣38(x﹣1)2∴拋物線的解析式為y=﹣38x2+34x+3,且頂點D(1,(2)∵B(4,0),C(0,3),∴BC的解析式為:y=﹣34∵D(1,278當x=1時,y=﹣34+3=9∴E(1,94∴DE=278-94=9設P(m,﹣38m2+34m+3),則F(m,﹣∵四邊形DEFP是平行四邊形,且DE∥FP,∴DE=FP,即(﹣38m2+34m+3)﹣(﹣34解得:m1=1(舍),m2=3,∴P(3,158【點睛】本題主要考查的是二次函數(shù)的綜合應用,解答本題主要應用了待定系數(shù)法求一次函數(shù)和二次函數(shù)的解析式,利用方程思想列等式求點的坐標,難度適中.23、(1)結論:BE=DG,BE⊥DG.理由見解析;(1)AG=1;(3)滿足條件的AG的長為1或1.【解析】

(1)結論:BE=DG,BE⊥DG.只要證明△BAE≌△DAG(SAS),即可解決問題;(1)如圖②中,連接EG,作GH⊥AD交DA的延長線于H.由A,D,E,G四點共圓,推出∠ADO=∠AEG=45°,解直角三角形即可解決問題;(3)分兩種情形分別畫出圖形即可解決問題;【詳解】(1)結論:BE=DG,BE⊥DG.理由:如圖①中,設BE交DG于點K,AE交DG于點O.∵四邊形ABCD,四邊形AEFG都是正方形,∴AB=AD,AE=AG,∠BAD=∠EAG=90°,∴∠BAE=∠DAG,∴△BAE≌△DAG(SAS),∴BE=DG,∴∠AEB=∠AGD,∵∠AOG=∠EOK,∴∠OAG=∠OKE=90°,∴BE⊥DG.(1)如圖②中,連接EG,作GH⊥AD交DA的延長線于H.∵∠OAG=∠ODE=90°,∴A,D,E,G四點共圓,∴∠ADO=∠AEG=45°,∵∠DAM=90°,∴∠ADM=∠AMD=45°,∴∵DG=1DM,∴∵∠H=90°,∴∠HDG=∠HGD=45°,∴GH=DH=4,∴AH=1,在Rt△AHG中,(3)①如圖③中,當點E在CD的延長線上時.作GH⊥DA交DA的延長線于H.易證△AHG≌△EDA,可得GH=AB=1,∵DG=4DM.AM∥GH,∴∴DH=8,∴AH=DH﹣AD=6,在Rt△AHG中,②如圖3﹣1中,當點E在DC的延長線上時,易證:△AKE≌△GHA,可得AH=EK=BC=1.∵AD∥GH,∴∵AD=1,∴HG=10,在Rt△AGH中,綜上所述,滿足條件的AG的長為或.【點睛】本題屬于四邊形綜合題,考查了正方形的性質,全等三角形的判定和性質,平行線分線段成比例定理,等腰直角三角形的性質和判定,勾股定理等知識,解題的關鍵是學會添加常用輔助線,構造全等三角形解決問題,屬于中考壓軸題.24、(1)50人;(2)補圖見解析;(3).【解析】分析:(1)根據(jù)化學學科人數(shù)及其所占百分比可得總人數(shù);(2)根據(jù)各學科人數(shù)之和等于總人數(shù)求得歷史的人數(shù)即可;(3)列表得出所有等可能結果,從中

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論