第二講平面向量的線性運(yùn)算專題講義-2021-2022學(xué)年高一下學(xué)期數(shù)學(xué)人教A版必修4Word版含解析_第1頁
第二講平面向量的線性運(yùn)算專題講義-2021-2022學(xué)年高一下學(xué)期數(shù)學(xué)人教A版必修4Word版含解析_第2頁
第二講平面向量的線性運(yùn)算專題講義-2021-2022學(xué)年高一下學(xué)期數(shù)學(xué)人教A版必修4Word版含解析_第3頁
第二講平面向量的線性運(yùn)算專題講義-2021-2022學(xué)年高一下學(xué)期數(shù)學(xué)人教A版必修4Word版含解析_第4頁
第二講平面向量的線性運(yùn)算專題講義-2021-2022學(xué)年高一下學(xué)期數(shù)學(xué)人教A版必修4Word版含解析_第5頁
已閱讀5頁,還剩3頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

第二講平面向量的線性運(yùn)算第二講??考點(diǎn)全解知識梳理夯實(shí)基礎(chǔ)知識點(diǎn)知識點(diǎn)1向量的加法1.向量加法的定義已知向量,,在平面內(nèi)任取一點(diǎn),作,,則向量叫做與的和,記作,即.如圖:求兩個(gè)向量和的運(yùn)算,叫向量的加法.對于零向量與任一向量,仍然有.2.向量求和的法則法則三角形法則前提已知非零向量,,在平面內(nèi)任取一點(diǎn)作法作,,再作向量結(jié)論向量叫做與的和,記作,即圖形平行四邊形法則前提已知不共線的兩個(gè)向量,,在平面內(nèi)任取一點(diǎn)作法以同一點(diǎn)為起點(diǎn)的兩個(gè)已知向量,為鄰邊作平行四邊形結(jié)論對角線就是與的和圖形3.向量求和的多邊形法則已知個(gè)向量,依次把這個(gè)向量收尾相連,以第一個(gè)向量的起點(diǎn)為起點(diǎn),第個(gè)向量的終點(diǎn)為終點(diǎn)的向量叫這個(gè)向量的和向量,這個(gè)法則叫向量求和的多邊形法則.知識點(diǎn)知識點(diǎn)2向量的減法1.相反向量與長度相等、方向相反的向量,叫的相反向量,記作.(1)規(guī)定:零向量的相反向量仍是零向量.(2)關(guān)于相反向量有:①;②;③若,互為相反向量,則,,.2.向量的減法定義,即減去一個(gè)向量相當(dāng)于加上這個(gè)向量的相反量.作法在平面內(nèi)任取一點(diǎn),做,,則向量,如圖:幾何意義若把兩個(gè)向量,起點(diǎn)放在一起,則可以表示為從向量的終點(diǎn)指向向量的向量.知識點(diǎn)知識點(diǎn)3向量數(shù)乘運(yùn)算及其幾何意義1.實(shí)數(shù)與向量的積的定義實(shí)數(shù)與向量的積是個(gè)向量,記作,它的長度與方向規(guī)定如下:(1);(2)()的方向:當(dāng)時(shí),與的方向相同;當(dāng)時(shí),與的方向相反;當(dāng)時(shí),.特別地,當(dāng)或時(shí),或.2.向量數(shù)乘的運(yùn)算律:設(shè),是實(shí)數(shù),則有(結(jié)合律)(第一分配律)(第二分配律)??課前檢測分析原因快速成長判斷正誤,正確畫(√),錯(cuò)誤畫(×).(1)如果非零向量與的方向相同或相反,那么的方向必與,之一的方向相同.()(2)在中,必有.()(3)若,則,,為一個(gè)三角形的三個(gè)頂點(diǎn).()(4)若,均為非零向量,則與一定相等.()??考向剖析考法整合分類解讀題型題型1向量加法運(yùn)算例1如圖,已知,,求作向量.例1【變式1-1】如圖,已知,,,求作向量.例2例2(1);(2).【變式2-1】化簡:(1);(2).題型題型2向量減法運(yùn)算例3如圖,已知,,求作向量.例3【變式3-1】如圖,已知,,,求作向量.例4下列四式中不能化簡為的是()例4A.B.C.D.【變式4-1】化簡:(1);(2).題型題型3向量的線性運(yùn)算例5例5(1);(2);【變式5-1】下列各式計(jì)算正確的有(填序號).①;②;③;④【變式5-2】若,化簡:.題型題型4向量的模例6(1)已知邊長為1的正方形,設(shè),,,則.例6(2)在平行四邊形中,,若,則.【變式6-1】設(shè)點(diǎn)是線段的中點(diǎn),點(diǎn)在線段外,,,則.【變式6-2】如圖,四面體的每條棱長都等于,點(diǎn),分別為棱,的中點(diǎn),則=_____;____________.題型題型5在幾何圖中用已知向量表示未知向量例7如圖,已知四邊形為平行四邊形,與相交于,,,設(shè),,試用基底表示向量,,.例7【變式7-1】如圖,在梯形中,,,為線段的中點(diǎn),且,則()A.B.C.D.【變式7-2】在中,點(diǎn)P為中點(diǎn),點(diǎn)D在上,且,則()A.B.C. D.例8如圖,在中,,是上的一點(diǎn),若,則實(shí)數(shù)的值為.例8【變式8-1】如圖,在矩形ABCD中,,F(xiàn)為DE的中點(diǎn),若,則=____.??鞏固練習(xí)鞏固解題策略培養(yǎng)核心素養(yǎng)1.化簡下列各式:(1);(2).(3)2.在平行四邊形ABCD中,設(shè)對角線AC與BD相交于點(diǎn)O,則()A. B. C. D.3.在五邊形中(如圖),()A.B.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論