山東省郯城縣重點(diǎn)名校2023屆下學(xué)期初三數(shù)學(xué)試題一模考試試卷含解析_第1頁
山東省郯城縣重點(diǎn)名校2023屆下學(xué)期初三數(shù)學(xué)試題一??荚囋嚲砗馕鯻第2頁
山東省郯城縣重點(diǎn)名校2023屆下學(xué)期初三數(shù)學(xué)試題一??荚囋嚲砗馕鯻第3頁
山東省郯城縣重點(diǎn)名校2023屆下學(xué)期初三數(shù)學(xué)試題一??荚囋嚲砗馕鯻第4頁
山東省郯城縣重點(diǎn)名校2023屆下學(xué)期初三數(shù)學(xué)試題一??荚囋嚲砗馕鯻第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

山東省郯城縣重點(diǎn)名校2023屆下學(xué)期初三數(shù)學(xué)試題一??荚囋嚲碚?qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題(共10小題,每小題3分,共30分)1.如圖,菱形ABCD的對(duì)角線交于點(diǎn)O,AC=8cm,BD=6cm,則菱形的高為()A.cm B.cm C.cm D.cm2.如圖,矩形ABCD的邊長AD=3,AB=2,E為AB的中點(diǎn),F(xiàn)在邊BC上,且BF=2FC,AF分別與DE、DB相交于點(diǎn)M,N,則MN的長為()A. B. C. D.3.不等式組的整數(shù)解有()A.0個(gè) B.5個(gè) C.6個(gè) D.無數(shù)個(gè)4.如圖所示,在長方形紙片ABCD中,AB=32cm,把長方形紙片沿AC折疊,點(diǎn)B落在點(diǎn)E處,AE交DC于點(diǎn)F,AF=25cm,則AD的長為()A.16cm B.20cm C.24cm D.28cm5.在如圖的2016年6月份的日歷表中,任意框出表中豎列上三個(gè)相鄰的數(shù),這三個(gè)數(shù)的和不可能是()A.27 B.51 C.69 D.726.如圖,已知△ABC中,∠C=90°,若沿圖中虛線剪去∠C,則∠1+∠2等于()A.90° B.135° C.270° D.315°7.下列實(shí)數(shù)為無理數(shù)的是()A.-5 B. C.0 D.π8.計(jì)算(﹣ab2)3的結(jié)果是()A.﹣3ab2 B.a(chǎn)3b6 C.﹣a3b5 D.﹣a3b69.下列圖形中,既是軸對(duì)稱圖形又是中心對(duì)稱圖形的是A. B. C. D.10.式子在實(shí)數(shù)范圍內(nèi)有意義,則x的取值范圍是()A.x>﹣2 B.x≥﹣2 C.x<﹣2 D.x≤﹣2二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.太極揉推器是一種常見的健身器材.基本結(jié)構(gòu)包括支架和轉(zhuǎn)盤,數(shù)學(xué)興趣小組的同學(xué)對(duì)某太極揉推器的部分?jǐn)?shù)據(jù)進(jìn)行了測(cè)量:如圖,立柱AB的長為125cm,支架CD、CE的長分別為60cm、40cm,支點(diǎn)C到立柱頂點(diǎn)B的距離為25cm.支架CD,CE與立柱AB的夾角∠BCD=∠BCE=45°,轉(zhuǎn)盤的直徑FG=MN=60cm,D,E分別是FG,MN的中點(diǎn),且CD⊥FG,CE⊥MN,則兩個(gè)轉(zhuǎn)盤的最低點(diǎn)F,N距離地面的高度差為_____cm.(結(jié)果保留根號(hào))12.若分式方程有增根,則m的值為______.13.因式分解:x2﹣3x+(x﹣3)=_____.14.反比例函數(shù)y=與正比例函數(shù)y=k2x的圖象的一個(gè)交點(diǎn)為(2,m),則=____.15.某校為了了解學(xué)生雙休日參加社會(huì)實(shí)踐活動(dòng)的情況,隨機(jī)抽取了100名學(xué)生進(jìn)行調(diào)查,并繪成如圖所示的頻數(shù)分布直方圖.已知該校共有1000名學(xué)生,據(jù)此估計(jì),該校雙休日參加社會(huì)實(shí)踐活動(dòng)時(shí)間在2~2.5小時(shí)之間的學(xué)生數(shù)大約是全體學(xué)生數(shù)的________(填百分?jǐn)?shù)).16.已知點(diǎn)P是線段AB的黃金分割點(diǎn),PA>PB,AB=4cm,則PA=____cm.三、解答題(共8題,共72分)17.(8分)博鰲亞洲論壇2018年年會(huì)于4月8日在海南博鰲拉開帷幕,組委會(huì)在會(huì)議中心的墻壁上懸掛會(huì)旗,已知矩形DCFE的兩邊DE,DC長分別為1.6m,1.2m.旗桿DB的長度為2m,DB與墻面AB的夾角∠DBG為35°.當(dāng)會(huì)旗展開時(shí),如圖所示,(1)求DF的長;(2)求點(diǎn)E到墻壁AB所在直線的距離.(結(jié)果精確到0.1m.參考數(shù)據(jù):sin35°≈0.57,cos35°≈0.82,tan35°≈0.70)18.(8分)計(jì)算:-2-2-+019.(8分)我們給出如下定義:順次連接任意一個(gè)四邊形各邊中點(diǎn)所得的四邊形叫中點(diǎn)四邊形.如圖1,四邊形ABCD中,點(diǎn)E,F(xiàn),G,H分別為邊AB,BC,CD,DA的中點(diǎn).求證:中點(diǎn)四邊形EFGH是平行四邊形;如圖2,點(diǎn)P是四邊形ABCD內(nèi)一點(diǎn),且滿足PA=PB,PC=PD,∠APB=∠CPD,點(diǎn)E,F(xiàn),G,H分別為邊AB,BC,CD,DA的中點(diǎn),猜想中點(diǎn)四邊形EFGH的形狀,并證明你的猜想;若改變(2)中的條件,使∠APB=∠CPD=90°,其他條件不變,直接寫出中點(diǎn)四邊形EFGH的形狀.(不必證明)20.(8分)如圖,在平面直角坐標(biāo)系中,矩形OCDE的三個(gè)頂點(diǎn)分別是C(3,0),D(3,4),E(0,4).點(diǎn)A在DE上,以A為頂點(diǎn)的拋物線過點(diǎn)C,且對(duì)稱軸x=1交x軸于點(diǎn)B.連接EC,AC.點(diǎn)P,Q為動(dòng)點(diǎn),設(shè)運(yùn)動(dòng)時(shí)間為t秒.(1)求拋物線的解析式.(2)在圖①中,若點(diǎn)P在線段OC上從點(diǎn)O向點(diǎn)C以1個(gè)單位/秒的速度運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段CE上從點(diǎn)C向點(diǎn)E以2個(gè)單位/秒的速度運(yùn)動(dòng),當(dāng)一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)隨之停止運(yùn)動(dòng).當(dāng)t為何值時(shí),△PCQ為直角三角形?(3)在圖②中,若點(diǎn)P在對(duì)稱軸上從點(diǎn)A開始向點(diǎn)B以1個(gè)單位/秒的速度運(yùn)動(dòng),過點(diǎn)P做PF⊥AB,交AC于點(diǎn)F,過點(diǎn)F作FG⊥AD于點(diǎn)G,交拋物線于點(diǎn)Q,連接AQ,CQ.當(dāng)t為何值時(shí),△ACQ的面積最大?最大值是多少?21.(8分)八年級(jí)(1)班研究性學(xué)習(xí)小組為研究全校同學(xué)課外閱讀情況,在全校隨機(jī)邀請(qǐng)了部分同學(xué)參與問卷調(diào)查,統(tǒng)計(jì)同學(xué)們一個(gè)月閱讀課外書的數(shù)量,并繪制了以下統(tǒng)計(jì)圖.請(qǐng)根據(jù)圖中信息解決下列問題:(1)共有名同學(xué)參與問卷調(diào)查;(2)補(bǔ)全條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖;(3)全校共有學(xué)生1500人,請(qǐng)估計(jì)該校學(xué)生一個(gè)月閱讀2本課外書的人數(shù)約為多少.22.(10分)學(xué)了統(tǒng)計(jì)知識(shí)后,小紅就本班同學(xué)上學(xué)“喜歡的出行方式”進(jìn)行了一次調(diào)查,圖(1)和圖(2)是她根據(jù)采集的數(shù)據(jù)繪制的兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中提供的信息解答以下問題:(1)補(bǔ)全條形統(tǒng)計(jì)圖,并計(jì)算出“騎車”部分所對(duì)應(yīng)的圓心角的度數(shù).(2)若由3名“喜歡乘車”的學(xué)生,1名“喜歡騎車”的學(xué)生組隊(duì)參加一項(xiàng)活動(dòng),現(xiàn)欲從中選出2人擔(dān)任組長(不分正副),求出2人都是“喜歡乘車”的學(xué)生的概率,(要求列表或畫樹狀圖)23.(12分)已知:關(guān)于x的一元二次方程kx2﹣(4k+1)x+3k+3=0(k是整數(shù)).(1)求證:方程有兩個(gè)不相等的實(shí)數(shù)根;(2)若方程的兩個(gè)實(shí)數(shù)根都是整數(shù),求k的值.24.如圖1,在Rt△ABC中,∠C=90°,AC=BC=2,點(diǎn)D、E分別在邊AC、AB上,AD=DE=AB,連接DE.將△ADE繞點(diǎn)A逆時(shí)針方向旋轉(zhuǎn),記旋轉(zhuǎn)角為θ.(1)問題發(fā)現(xiàn)①當(dāng)θ=0°時(shí),=;②當(dāng)θ=180°時(shí),=.(2)拓展探究試判斷:當(dāng)0°≤θ<360°時(shí),的大小有無變化?請(qǐng)僅就圖2的情形給出證明;(3)問題解決①在旋轉(zhuǎn)過程中,BE的最大值為;②當(dāng)△ADE旋轉(zhuǎn)至B、D、E三點(diǎn)共線時(shí),線段CD的長為.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】試題解析:∵菱形ABCD的對(duì)角線根據(jù)勾股定理,設(shè)菱形的高為h,則菱形的面積即解得即菱形的高為cm.故選B.2、B【解析】

過F作FH⊥AD于H,交ED于O,于是得到FH=AB=1,根據(jù)勾股定理得到AF===,根據(jù)平行線分線段成比例定理得到,OH=AE=,由相似三角形的性質(zhì)得到=,求得AM=AF=,根據(jù)相似三角形的性質(zhì)得到=,求得AN=AF=,即可得到結(jié)論.【詳解】過F作FH⊥AD于H,交ED于O,則FH=AB=1.∵BF=1FC,BC=AD=3,∴BF=AH=1,F(xiàn)C=HD=1,∴AF===,∵OH∥AE,∴=,∴OH=AE=,∴OF=FH﹣OH=1﹣=,∵AE∥FO,∴△AME∽△FMO,∴=,∴AM=AF=,∵AD∥BF,∴△AND∽△FNB,∴=,∴AN=AF=,∴MN=AN﹣AM=﹣=,故選B.【點(diǎn)睛】構(gòu)造相似三角形是本題的關(guān)鍵,且求長度問題一般需用到勾股定理來解決,常作垂線3、B【解析】

先解每一個(gè)不等式,求出不等式組的解集,再求整數(shù)解即可.【詳解】解不等式x+3>0,得x>﹣3,解不等式﹣x≥﹣2,得x≤2,∴不等式組的解集為﹣3<x≤2,∴整數(shù)解有:﹣2,﹣1,0,1,2共5個(gè),故選B.【點(diǎn)睛】本題主要考查了不等式組的解法,并會(huì)根據(jù)未知數(shù)的范圍確定它所滿足的特殊條件的值.一般方法是先解不等式組,再根據(jù)解集求出特殊值.4、C【解析】

首先根據(jù)平行線的性質(zhì)以及折疊的性質(zhì)證明∠EAC=∠DCA,根據(jù)等角對(duì)等邊證明FC=AF,則DF即可求得,然后在直角△ADF中利用勾股定理求解.【詳解】∵長方形ABCD中,AB∥CD,∴∠BAC=∠DCA,又∵∠BAC=∠EAC,∴∠EAC=∠DCA,∴FC=AF=25cm,又∵長方形ABCD中,DC=AB=32cm,∴DF=DC-FC=32-25=7cm,在直角△ADF中,AD==24(cm).故選C.【點(diǎn)睛】本題考查了折疊的性質(zhì)以及勾股定理,在折疊的過程中注意到相等的角以及相等的線段是關(guān)鍵.5、D【解析】設(shè)第一個(gè)數(shù)為x,則第二個(gè)數(shù)為x+7,第三個(gè)數(shù)為x+1.列出三個(gè)數(shù)的和的方程,再根據(jù)選項(xiàng)解出x,看是否存在.解:設(shè)第一個(gè)數(shù)為x,則第二個(gè)數(shù)為x+7,第三個(gè)數(shù)為x+1故三個(gè)數(shù)的和為x+x+7+x+1=3x+21當(dāng)x=16時(shí),3x+21=69;當(dāng)x=10時(shí),3x+21=51;當(dāng)x=2時(shí),3x+21=2.故任意圈出一豎列上相鄰的三個(gè)數(shù)的和不可能是3.故選D.“點(diǎn)睛“此題主要考查了一元一次方程的應(yīng)用,解題關(guān)鍵是要讀懂題目的意思,根據(jù)題目給出的條件,找出合適的等量關(guān)系列出方程,再求解.6、C【解析】

根據(jù)四邊形的內(nèi)角和與直角三角形中兩個(gè)銳角關(guān)系即可求解.【詳解】解:∵四邊形的內(nèi)角和為360°,直角三角形中兩個(gè)銳角和為90°,∴∠1+∠2=360°﹣(∠A+∠B)=360°﹣90°=270°.故選:C.【點(diǎn)睛】此題主要考查角度的求解,解題的關(guān)鍵是熟知四邊形的內(nèi)角和為360°.7、D【解析】

無理數(shù)就是無限不循環(huán)小數(shù).理解無理數(shù)的概念,一定要同時(shí)理解有理數(shù)的概念,有理數(shù)是整數(shù)與分?jǐn)?shù)的統(tǒng)稱.即有限小數(shù)和無限循環(huán)小數(shù)是有理數(shù),而無限不循環(huán)小數(shù)是無理數(shù).由此即可判定選擇項(xiàng).【詳解】A、﹣5是整數(shù),是有理數(shù),選項(xiàng)錯(cuò)誤;B、是分?jǐn)?shù),是有理數(shù),選項(xiàng)錯(cuò)誤;C、0是整數(shù),是有理數(shù),選項(xiàng)錯(cuò)誤;D、π是無理數(shù),選項(xiàng)正確.故選D.【點(diǎn)睛】此題主要考查了無理數(shù)的定義,其中初中范圍內(nèi)學(xué)習(xí)的無理數(shù)有:π,2π等;開方開不盡的數(shù);以及像0.1010010001…,等有這樣規(guī)律的數(shù).8、D【解析】

根據(jù)積的乘方與冪的乘方計(jì)算可得.【詳解】解:(﹣ab2)3=﹣a3b6,故選D.【點(diǎn)睛】本題主要考查冪的乘方與積的乘方,解題的關(guān)鍵是掌握積的乘方與冪的乘方的運(yùn)算法則.9、D【解析】

根據(jù)軸對(duì)稱圖形和中心對(duì)稱圖形的定義逐項(xiàng)識(shí)別即可,在平面內(nèi),把一個(gè)圖形繞某一點(diǎn)旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠與原來的圖形重合,那么這個(gè)圖形就叫做中心對(duì)稱圖形;如果一個(gè)圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個(gè)圖形叫做軸對(duì)稱圖形.【詳解】解:A.是軸對(duì)稱圖形,但不是中心對(duì)稱圖形,故不符合題意;B.不是軸對(duì)稱圖形,是中心對(duì)稱圖形,故不符合題意;C.是軸對(duì)稱圖形,但不是中心對(duì)稱圖形,故不符合題意;D.既是軸對(duì)稱圖形又是中心對(duì)稱圖形,故符合題意.故選D.【點(diǎn)睛】本題考查了軸對(duì)稱圖形和中心對(duì)稱圖形的識(shí)別,熟練掌握軸對(duì)稱圖形和中心對(duì)稱圖形的定義是解答本題的關(guān)鍵.10、B【解析】

根據(jù)二次根式有意義的條件可得,再解不等式即可.【詳解】解:由題意得:,解得:,

故選:B.【點(diǎn)睛】此題主要考查了二次根式有意義的條件,關(guān)鍵是掌握二次根式中的被開方數(shù)是非負(fù)數(shù).二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、10【解析】

作FP⊥地面于P,CJ⊥PF于J,F(xiàn)Q∥PA交CD于Q,QH⊥CJ于H.NT⊥地面于T.解直角三角形求出FP、NT即可解決問題.【詳解】解:作FP⊥地面于P,CJ⊥PF于J,F(xiàn)Q∥PA交CD于Q,QH⊥CJ于H.NT⊥地面于T.由題意△QDF,△QCH都是等腰直角三角形,四邊形FQHJ是矩形,∴DF=DQ=30cm,CQ=CD?DQ=60?30=30cm,∴FJ=QH=15cm,∵AC=AB?BC=125?25=100cm,∴PF=(15+100)cm,同法可求:NT=(100+5),∴兩個(gè)轉(zhuǎn)盤的最低點(diǎn)F,N距離地面的高度差為=(15+100)-(100+5)=10故答案為:10【點(diǎn)睛】本題考查解直角三角形的應(yīng)用,解題的關(guān)鍵是學(xué)會(huì)添加常用輔助線,構(gòu)造直角三角形解決問題,屬于中考??碱}型.12、-1【解析】

增根是分式方程化為整式方程后產(chǎn)生的使分式方程的分母為0的根.把增根代入化為整式方程的方程即可求出m的值.【詳解】方程兩邊都乘(x-1),得x-1(x-1)=-m∵原方程增根為x=1,∴把x=1代入整式方程,得m=-1,故答案為:-1.【點(diǎn)睛】本題考查了分式方程的增根,增根確定后可按如下步驟進(jìn)行:化分式方程為整式方程;把增根代入整式方程即可求得相關(guān)字母的值.13、(x-3)(x+1);【解析】根據(jù)因式分解的概念和步驟,可先把原式化簡,然后用十字相乘分解,即原式=x2﹣3x+x﹣3=x2﹣2x﹣3=(x﹣3)(x+1);或先把前兩項(xiàng)提公因式,然后再把x-3看做整體提公因式:原式=x(x﹣3)+(x﹣3)=(x﹣3)(x+1).故答案為(x﹣3)(x+1).點(diǎn)睛:此題主要考查了因式分解,關(guān)鍵是明確因式分解是把一個(gè)多項(xiàng)式化為幾個(gè)因式積的形式.再利用因式分解的一般步驟:一提(公因式)、二套(平方差公式,完全平方公式)、三檢查(徹底分解),進(jìn)行分解因式即可.14、4【解析】

利用交點(diǎn)(2,m)同時(shí)滿足在正比例函數(shù)和反比例函數(shù)上,分別得出m和、的關(guān)系.【詳解】把點(diǎn)(2,m)代入反比例函數(shù)和正比例函數(shù)中得,,,則.【點(diǎn)睛】本題主要考查了函數(shù)的交點(diǎn)問題和待定系數(shù)法,熟練掌握待定系數(shù)法是本題的解題關(guān)鍵.15、.【解析】

用被抽查的100名學(xué)生中參加社會(huì)實(shí)踐活動(dòng)時(shí)間在2~2.5小時(shí)之間的學(xué)生除以抽查的學(xué)生總?cè)藬?shù),即可得解.【詳解】由頻數(shù)分布直方圖知,2~2.5小時(shí)的人數(shù)為100﹣(8+24+30+10)=28,則該校雙休日參加社會(huì)實(shí)踐活動(dòng)時(shí)間在2~2.5小時(shí)之間的學(xué)生數(shù)大約是全體學(xué)生數(shù)的百分比為100%=28%.故答案為:28%.【點(diǎn)睛】本題考查了頻數(shù)分布直方圖以及用樣本估計(jì)總體,利用統(tǒng)計(jì)圖獲取信息時(shí),必須認(rèn)真觀察、分析、研究統(tǒng)計(jì)圖,才能作出正確的判斷和解決問題.一般來說,用樣本去估計(jì)總體時(shí),樣本越具有代表性、容量越大,這時(shí)對(duì)總體的估計(jì)也就越精確.16、2-2【解析】

根據(jù)黃金分割點(diǎn)的定義,知AP是較長線段;則AP=AB,代入運(yùn)算即可.【詳解】解:由于P為線段AB=4的黃金分割點(diǎn),且AP是較長線段;則AP=4×=cm,故答案為:(2-2)cm.【點(diǎn)睛】此題考查了黃金分割的定義,應(yīng)該識(shí)記黃金分割的公式:較短的線段=原線段的,難度一般.三、解答題(共8題,共72分)17、(1)1m.(1)1.5m.【解析】

(1)由題意知ED=1.6m,BD=1m,利用勾股定理得出DF=求出即可;(1)分別做DM⊥AB,EN⊥AB,DH⊥EN,垂足分別為點(diǎn)M、N、H,利用sin∠DBM=及cos∠DEH=,可求出EH,HN即可得出答案.【詳解】解:(1)在Rt△DEF中,由題意知ED=1.6m,BD=1m,DF==1.答:DF長為1m.(1)分別做DM⊥AB,EN⊥AB,DH⊥EN,垂足分別為點(diǎn)M、N、H,在Rt△DBM中,sin∠DBM=,∴DM=1?sin35°≈1.2.∵∠EDC=∠CNB,∠DCE=∠NCB,∴∠EDC=∠CBN=35°,在Rt△DEH中,cos∠DEH=,∴EH=1.6?cos35°≈1.3.∴EN=EH+HN=1.3+1.2=1.45≈1.5m.答:E點(diǎn)離墻面AB的最遠(yuǎn)距離為1.5m.【點(diǎn)睛】本題主要考查三角函數(shù)的知識(shí),牢記公式并靈活運(yùn)用是解題的關(guān)鍵。18、【解析】

直接利用負(fù)指數(shù)冪的性質(zhì)以及零指數(shù)冪的性質(zhì)和特殊角的銳角三角函數(shù)值分別化簡,再根據(jù)實(shí)數(shù)的運(yùn)算法則即可求出答案.【詳解】解:原式=【點(diǎn)睛】本題考查了負(fù)指數(shù)冪的性質(zhì)以及零指數(shù)冪的性質(zhì)和特殊角的銳角三角函數(shù)值,熟記這些運(yùn)算法則是解題的關(guān)鍵.19、(1)證明見解析;(2)四邊形EFGH是菱形,證明見解析;(3)四邊形EFGH是正方形.【解析】

(1)如圖1中,連接BD,根據(jù)三角形中位線定理只要證明EH∥FG,EH=FG即可.(2)四邊形EFGH是菱形.先證明△APC≌△BPD,得到AC=BD,再證明EF=FG即可.(3)四邊形EFGH是正方形,只要證明∠EHG=90°,利用△APC≌△BPD,得∠ACP=∠BDP,即可證明∠COD=∠CPD=90°,再根據(jù)平行線的性質(zhì)即可證明.【詳解】(1)證明:如圖1中,連接BD.∵點(diǎn)E,H分別為邊AB,DA的中點(diǎn),∴EH∥BD,EH=BD,∵點(diǎn)F,G分別為邊BC,CD的中點(diǎn),∴FG∥BD,F(xiàn)G=BD,∴EH∥FG,EH=GF,∴中點(diǎn)四邊形EFGH是平行四邊形.(2)四邊形EFGH是菱形.證明:如圖2中,連接AC,BD.∵∠APB=∠CPD,∴∠APB+∠APD=∠CPD+∠APD,即∠APC=∠BPD,在△APC和△BPD中,∵AP=PB,∠APC=∠BPD,PC=PD,∴△APC≌△BPD,∴AC=BD.∵點(diǎn)E,F(xiàn),G分別為邊AB,BC,CD的中點(diǎn),∴EF=AC,F(xiàn)G=BD,∵四邊形EFGH是平行四邊形,∴四邊形EFGH是菱形.(3)四邊形EFGH是正方形.證明:如圖2中,設(shè)AC與BD交于點(diǎn)O.AC與PD交于點(diǎn)M,AC與EH交于點(diǎn)N.∵△APC≌△BPD,∴∠ACP=∠BDP,∵∠DMO=∠CMP,∴∠COD=∠CPD=90°,∵EH∥BD,AC∥HG,∴∠EHG=∠ENO=∠BOC=∠DOC=90°,∵四邊形EFGH是菱形,∴四邊形EFGH是正方形.考點(diǎn):平行四邊形的判定與性質(zhì);中點(diǎn)四邊形.20、(1)y=﹣x2+2x+3;(2)當(dāng)t=或t=時(shí),△PCQ為直角三角形;(3)當(dāng)t=2時(shí),△ACQ的面積最大,最大值是1.【解析】

(1)根據(jù)拋物線的對(duì)稱軸與矩形的性質(zhì)可得點(diǎn)A的坐標(biāo),根據(jù)待定系數(shù)法可得拋物線的解析式;(2)先根據(jù)勾股定理可得CE,再分兩種情況:當(dāng)∠QPC=90°時(shí);當(dāng)∠PQC=90°時(shí);討論可得△PCQ為直角三角形時(shí)t的值;(3)根據(jù)待定系數(shù)法可得直線AC的解析式,根據(jù)S△ACQ=S△AFQ+S△CPQ可得S△ACQ==﹣(t﹣2)2+1,依此即可求解.【詳解】解:(1)∵拋物線的對(duì)稱軸為x=1,矩形OCDE的三個(gè)頂點(diǎn)分別是C(3,0),D(3,4),E(0,4),點(diǎn)A在DE上,∴點(diǎn)A坐標(biāo)為(1,4),設(shè)拋物線的解析式為y=a(x﹣1)2+4,把C(3,0)代入拋物線的解析式,可得a(3﹣1)2+4=0,解得a=﹣1.故拋物線的解析式為y=﹣(x﹣1)2+4,即y=﹣x2+2x+3;(2)依題意有:OC=3,OE=4,∴CE===5,當(dāng)∠QPC=90°時(shí),∵cos∠QPC=,∴,解得t=;當(dāng)∠PQC=90°時(shí),∵cos∠QCP=,∴,解得t=.∴當(dāng)t=或t=時(shí),△PCQ為直角三角形;(3)∵A(1,4),C(3,0),設(shè)直線AC的解析式為y=kx+b,則有:,解得.故直線AC的解析式為y=﹣2x+2.∵P(1,4﹣t),將y=4﹣t代入y=﹣2x+2中,得x=1+,∴Q點(diǎn)的橫坐標(biāo)為1+,將x=1+代入y=﹣(x﹣1)2+4中,得y=4﹣.∴Q點(diǎn)的縱坐標(biāo)為4﹣,∴QF=(4﹣)﹣(4﹣t)=t﹣,∴S△ACQ=S△AFQ+S△CFQ=FQ?AG+FQ?DG,=FQ(AG+DG),=FQ?AD,=×2(t﹣),=﹣(t﹣2)2+1,∴當(dāng)t=2時(shí),△ACQ的面積最大,最大值是1.【點(diǎn)睛】考查了二次函數(shù)綜合題,涉及的知識(shí)點(diǎn)有:拋物線的對(duì)稱軸,矩形的性質(zhì),待定系數(shù)法求拋物線的解析式,待定系數(shù)法求直線的解析式,勾股定理,銳角三角函數(shù),三角形面積,二次函數(shù)的最值,方程思想以及分類思想的運(yùn)用.21、(1)100;(2)補(bǔ)圖見解析;(3)570人.【解析】

(1)由讀書1本的人數(shù)及其所占百分比可得總?cè)藬?shù);(2)總?cè)藬?shù)乘以讀4本的百分比求得其人數(shù),減去男生人數(shù)即可得出女生人數(shù),用讀2本的人數(shù)除以總?cè)藬?shù)可得對(duì)應(yīng)百分比;(3)總?cè)藬?shù)乘以樣本中讀2本人數(shù)所占比例.【詳解】(1)參與問卷調(diào)查的學(xué)生人數(shù)為(8+2)÷10%=100人,故答案為:100;(2)讀4本的女生人數(shù)為100×15%﹣10=5人,讀2本人數(shù)所占百分比為20+補(bǔ)全圖形如下:(3)估計(jì)該校學(xué)生一個(gè)月閱讀2本課外書的人數(shù)約為1500×38%=570人.【點(diǎn)睛】本題考查的是條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖的綜合運(yùn)用,讀懂統(tǒng)計(jì)圖,從不同的統(tǒng)計(jì)圖中得到必要的信息是解決問題的關(guān)鍵.條形統(tǒng)計(jì)圖能清楚地表示出每個(gè)項(xiàng)目的數(shù)據(jù);扇形統(tǒng)計(jì)圖直接反映部分占總體的百分比大?。?2、(1)補(bǔ)全條形統(tǒng)計(jì)圖見解析;“騎車”部分所對(duì)應(yīng)的圓心角的度數(shù)為108°;(2)2人都是“喜歡乘車”的學(xué)生的概率為.【解析】

(1)從兩圖中可以看出乘車的有25人,占了50%,即可得共有學(xué)生50人;總?cè)藬?shù)減乘車的和騎車的人數(shù)就是步行的人數(shù),根據(jù)數(shù)據(jù)補(bǔ)全直方圖即可;要求扇形的度數(shù)就要先求出騎車的占的百分比,然后再求度數(shù);(2)列出從這4人中選兩人的所有等可能結(jié)果數(shù),2人都是“喜歡乘車”的學(xué)生的情況有3種,然后根據(jù)概率公式即可求得.【詳解】(1)被調(diào)查的總?cè)藬?shù)為25÷50%=50人;則步行的人數(shù)為50﹣25﹣15=10人;如圖所示條形圖,“騎車”部分所對(duì)應(yīng)的圓心角的度數(shù)=×360°=108°;(2)設(shè)3名“喜歡乘車”的學(xué)生表示為A、B、C,1名“喜歡騎車”的學(xué)生表示為D,則有AB、AC、AD、BC、BD、CD這6種等可能的情況,其中2人都是“喜歡乘車”的學(xué)生有3種結(jié)果,所以2人都是“喜歡乘車”的學(xué)生的概率為.【點(diǎn)睛】本題考查的是條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖的綜合運(yùn)用,讀懂統(tǒng)計(jì)圖,從不同的統(tǒng)計(jì)圖中得到必要的信息是解決問題的關(guān)鍵.條形統(tǒng)計(jì)圖能清楚地表示出每個(gè)項(xiàng)目的數(shù)據(jù);扇形統(tǒng)計(jì)圖直接反映部分占總體的百分比大?。?3、(3)證明見解析(3)3或﹣3【解析】

(3)根據(jù)一元二次方程的定義得k≠2,再計(jì)算判別式得到△=(3k-3)3,然后根據(jù)非負(fù)數(shù)的性質(zhì),即k的取值得到△>2,則可

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論