2022屆廣東省梅縣松口中學(xué)中考四模數(shù)學(xué)試題含解析_第1頁(yè)
2022屆廣東省梅縣松口中學(xué)中考四模數(shù)學(xué)試題含解析_第2頁(yè)
2022屆廣東省梅縣松口中學(xué)中考四模數(shù)學(xué)試題含解析_第3頁(yè)
2022屆廣東省梅縣松口中學(xué)中考四模數(shù)學(xué)試題含解析_第4頁(yè)
2022屆廣東省梅縣松口中學(xué)中考四模數(shù)學(xué)試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩18頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2021-2022中考數(shù)學(xué)模擬試卷請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題(共10小題,每小題3分,共30分)1.如圖是由7個(gè)同樣大小的正方體擺成的幾何體.將正方體①移走后,所得幾何體()A.主視圖不變,左視圖不變B.左視圖改變,俯視圖改變C.主視圖改變,俯視圖改變D.俯視圖不變,左視圖改變2.如圖是由5個(gè)相同的小正方體組成的立體圖形,這個(gè)立體圖形的俯視圖是()A. B. C. D.3.某居委會(huì)組織兩個(gè)檢查組,分別對(duì)“垃圾分類”和“違規(guī)停車”的情況進(jìn)行抽查.各組隨機(jī)抽取轄區(qū)內(nèi)某三個(gè)小區(qū)中的一個(gè)進(jìn)行檢查,則兩個(gè)組恰好抽到同一個(gè)小區(qū)的概率是()A. B. C. D.4.下列4個(gè)數(shù):,,π,()0,其中無(wú)理數(shù)是()A. B. C.π D.()05.x=1是關(guān)于x的方程2x﹣a=0的解,則a的值是()A.﹣2 B.2 C.﹣1 D.16.如圖,將△ABC沿著DE剪成一個(gè)小三角形ADE和一個(gè)四邊形D'E'CB,若DE∥BC,四邊形D'E'CB各邊的長(zhǎng)度如圖所示,則剪出的小三角形ADE應(yīng)是()A. B. C. D.7.如圖,矩形ABCD中,AB=10,BC=5,點(diǎn)E,F(xiàn),G,H分別在矩形ABCD各邊上,且AE=CG,BF=DH,則四邊形EFGH周長(zhǎng)的最小值為()A.5 B.10 C.10 D.158.已知:a、b是不等于0的實(shí)數(shù),2a=3b,那么下列等式中正確的是()A.a(chǎn)b=23 B.a(chǎn)9.如圖,在中,,將繞點(diǎn)逆時(shí)針旋轉(zhuǎn),使點(diǎn)落在線段上的點(diǎn)處,點(diǎn)落在點(diǎn)處,則兩點(diǎn)間的距離為()A. B. C. D.10.如圖,在平面直角坐標(biāo)系xOy中,A(2,0),B(0,2),⊙C的圓心為點(diǎn)C(﹣1,0),半徑為1.若D是⊙C上的一個(gè)動(dòng)點(diǎn),線段DA與y軸交于E點(diǎn),則△ABE面積的最小值是()A.2B.83C.2+2二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.如圖,拋物線交軸于,兩點(diǎn),交軸于點(diǎn),點(diǎn)關(guān)于拋物線的對(duì)稱軸的對(duì)稱點(diǎn)為,點(diǎn),分別在軸和軸上,則四邊形周長(zhǎng)的最小值為_(kāi)_________.12.如圖,在△ABC中,∠A=60°,若剪去∠A得到四邊形BCDE,則∠1+∠2=______.13.若圓錐的母線長(zhǎng)為4cm,其側(cè)面積,則圓錐底面半徑為cm.14.如圖,在每個(gè)小正方形的邊長(zhǎng)為1的網(wǎng)格中,點(diǎn)A,B,C均在格點(diǎn)上.(Ⅰ)AC的長(zhǎng)等于_____;(Ⅱ)在線段AC上有一點(diǎn)D,滿足AB2=AD?AC,請(qǐng)?jiān)谌鐖D所示的網(wǎng)格中,用無(wú)刻度的直尺,畫出點(diǎn)D,并簡(jiǎn)要說(shuō)明點(diǎn)D的位置是如何找到的(不要求證明)_____.15.如圖,在圓心角為90°的扇形OAB中,半徑OA=1cm,C為的中點(diǎn),D、E分別是OA、OB的中點(diǎn),則圖中陰影部分的面積為_(kāi)____cm1.16.計(jì)算的結(jié)果是______.三、解答題(共8題,共72分)17.(8分)如圖,在正方形ABCD中,點(diǎn)E、F、G、H分別是AB、BC、CD、DA邊上的動(dòng)點(diǎn),且AE=BF=CG=DH.(1)求證:△AEH≌△CGF;(2)在點(diǎn)E、F、G、H運(yùn)動(dòng)過(guò)程中,判斷直線EG是否經(jīng)過(guò)某一個(gè)定點(diǎn),如果是,請(qǐng)證明你的結(jié)論;如果不是,請(qǐng)說(shuō)明理由18.(8分)如圖,在10×10的網(wǎng)格中,每個(gè)小方格都是邊長(zhǎng)為1的小正方形,每個(gè)小正方形的頂點(diǎn)稱為格點(diǎn).如果拋物線經(jīng)過(guò)圖中的三個(gè)格點(diǎn),那么以這三個(gè)格點(diǎn)為頂點(diǎn)的三角形稱為該拋物線的“內(nèi)接格點(diǎn)三角形”.設(shè)對(duì)稱軸平行于y軸的拋物線與網(wǎng)格對(duì)角線OM的兩個(gè)交點(diǎn)為A,B,其頂點(diǎn)為C,如果△ABC是該拋物線的內(nèi)接格點(diǎn)三角形,AB=3,且點(diǎn)A,B,C的橫坐標(biāo)xA,xB,xC滿足xA<xC<xB,那么符合上述條件的拋物線條數(shù)是()A.7 B.8 C.14 D.1619.(8分)“不出城郭而獲山水之怡,身居鬧市而有林泉之致”,合肥市某區(qū)不斷推進(jìn)“園林城市”建設(shè),今春種植了四類花苗,園林部門從種植的這批花苗中隨機(jī)抽取了2000株,將四類花苗的種植株數(shù)繪制成扇形統(tǒng)計(jì)圖,將四類花苗的成活株數(shù)繪制成條形統(tǒng)圖.經(jīng)統(tǒng)計(jì)這批2000株的花苗總成活率為90%,其中玉蘭和月季的成活率較高,根據(jù)圖表中的信息解答下列問(wèn)題:扇形統(tǒng)計(jì)圖中玉蘭所對(duì)的圓心角為,并補(bǔ)全條形統(tǒng)計(jì)圖;該區(qū)今年共種植月季8000株,成活了約株;園林部門決定明年從這四類花苗中選兩類種植,請(qǐng)用列表法或畫樹狀圖求恰好選到成活率較高的兩類花苗的概率.20.(8分)如圖,將矩形OABC放在平面直角坐標(biāo)系中,O為原點(diǎn),點(diǎn)A在x軸的正半軸上,B(8,6),點(diǎn)D是射線AO上的一點(diǎn),把△BAD沿直線BD折疊,點(diǎn)A的對(duì)應(yīng)點(diǎn)為A′.(1)若點(diǎn)A′落在矩形的對(duì)角線OB上時(shí),OA′的長(zhǎng)=;(2)若點(diǎn)A′落在邊AB的垂直平分線上時(shí),求點(diǎn)D的坐標(biāo);(3)若點(diǎn)A′落在邊AO的垂直平分線上時(shí),求點(diǎn)D的坐標(biāo)(直接寫出結(jié)果即可).21.(8分)如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖象分別交x軸、y軸于A、B兩點(diǎn),與反比例函數(shù)的圖象交于C、D兩點(diǎn).已知點(diǎn)C的坐標(biāo)是(6,-1),D(n,3).求m的值和點(diǎn)D的坐標(biāo).求的值.根據(jù)圖象直接寫出:當(dāng)x為何值時(shí),一次函數(shù)的值大于反比例函數(shù)的值?22.(10分)(2016山東省煙臺(tái)市)某中學(xué)廣場(chǎng)上有旗桿如圖1所示,在學(xué)習(xí)解直角三角形以后,數(shù)學(xué)興趣小組測(cè)量了旗桿的高度.如圖2,某一時(shí)刻,旗桿AB的影子一部分落在平臺(tái)上,另一部分落在斜坡上,測(cè)得落在平臺(tái)上的影長(zhǎng)BC為4米,落在斜坡上的影長(zhǎng)CD為3米,AB⊥BC,同一時(shí)刻,光線與水平面的夾角為72°,1米的豎立標(biāo)桿PQ在斜坡上的影長(zhǎng)QR為2米,求旗桿的高度(結(jié)果精確到0.1米).(參考數(shù)據(jù):sin72°≈0.95,cos72°≈0.31,tan72°≈3.08)23.(12分)如圖所示,在平面直角坐標(biāo)系xOy中,正方形OABC的邊長(zhǎng)為2cm,點(diǎn)A、C分別在y軸的負(fù)半軸和x軸的正半軸上,拋物線y=ax2+bx+c經(jīng)過(guò)點(diǎn)A、B和D(4,-2(1)求拋物線的表達(dá)式.(2)如果點(diǎn)P由點(diǎn)A出發(fā)沿AB邊以2cm/s的速度向點(diǎn)B運(yùn)動(dòng),同時(shí)點(diǎn)Q由點(diǎn)B出發(fā),沿BC邊以1cm/s的速度向點(diǎn)C運(yùn)動(dòng),當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)S=PQ2(cm2).①試求出S與運(yùn)動(dòng)時(shí)間t之間的函數(shù)關(guān)系式,并寫出t的取值范圍;②當(dāng)S取54(3)在拋物線的對(duì)稱軸上求點(diǎn)M,使得M到D、A的距離之差最大,求出點(diǎn)M的坐標(biāo).24.我校春晚遴選男女主持人各一名,甲乙丙三班各派出一名男生和一名女生去參加主持人精選。(1)選中的男主持人為甲班的頻率是(2)選中的男女主持人均為甲班的概率是多少?(用樹狀圖或列表)

參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】

分別得到將正方體①移走前后的三視圖,依此即可作出判斷.【詳解】將正方體①移走前的主視圖為:第一層有一個(gè)正方形,第二層有四個(gè)正方形,正方體①移走后的主視圖為:第一層有一個(gè)正方形,第二層有四個(gè)正方形,沒(méi)有改變。將正方體①移走前的左視圖為:第一層有一個(gè)正方形,第二層有兩個(gè)正方形,正方體①移走后的左視圖為:第一層有一個(gè)正方形,第二層有兩個(gè)正方形,沒(méi)有發(fā)生改變。將正方體①移走前的俯視圖為:第一層有四個(gè)正方形,第二層有兩個(gè)正方形,正方體①移走后的俯視圖為:第一層有四個(gè)正方形,第二層有兩個(gè)正方形,發(fā)生改變。故選A.【點(diǎn)睛】考查了三視圖,從幾何體的正面,左面,上面看到的平面圖形中正方形的列數(shù)以及每列正方形的個(gè)數(shù)是解決本題的關(guān)鍵.2、C【解析】

從上面看共有2行,上面一行有3個(gè)正方形,第二行中間有一個(gè)正方形,故選C.3、C【解析】分析:將三個(gè)小區(qū)分別記為A、B、C,列舉出所有情況即可,看所求的情況占總情況的多少即可.詳解:將三個(gè)小區(qū)分別記為A、B、C,列表如下:ABCA(A,A)(B,A)(C,A)B(A,B)(B,B)(C,B)C(A,C)(B,C)(C,C)由表可知,共有9種等可能結(jié)果,其中兩個(gè)組恰好抽到同一個(gè)小區(qū)的結(jié)果有3種,所以兩個(gè)組恰好抽到同一個(gè)小區(qū)的概率為.故選:C.點(diǎn)睛:此題主要考查了列表法求概率,列表法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,適合于兩步完成的事件;樹狀圖法適用于兩步或兩步以上完成的事件;解題時(shí)還要注意是放回實(shí)驗(yàn)還是不放回實(shí)驗(yàn).用到的知識(shí)點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.4、C【解析】=3,是無(wú)限循環(huán)小數(shù),π是無(wú)限不循環(huán)小數(shù),,所以π是無(wú)理數(shù),故選C.5、B【解析】試題解析:把x=1代入方程1x-a=0得1-a=0,解得a=1.故選B.考點(diǎn):一元一次方程的解.6、C【解析】

利用相似三角形的性質(zhì)即可判斷.【詳解】設(shè)AD=x,AE=y(tǒng),∵DE∥BC,∴△ADE∽△ABC,∴,∴,∴x=9,y=12,故選:C.【點(diǎn)睛】考查平行線的性質(zhì),相似三角形的判定和性質(zhì)等知識(shí),解題的關(guān)鍵是熟練掌握基本知識(shí),屬于中考??碱}型.7、B【解析】作點(diǎn)E關(guān)于BC的對(duì)稱點(diǎn)E′,連接E′G交BC于點(diǎn)F,此時(shí)四邊形EFGH周長(zhǎng)取最小值,過(guò)點(diǎn)G作GG′⊥AB于點(diǎn)G′,如圖所示,∵AE=CG,BE=BE′,∴E′G′=AB=10,∵GG′=AD=5,∴E′G=,∴C四邊形EFGH=2E′G=10,故選B.【點(diǎn)睛】本題考查了軸對(duì)稱-最短路徑問(wèn)題,矩形的性質(zhì)等,根據(jù)題意正確添加輔助線是解題的關(guān)鍵.8、B【解析】∵2a=3b,∴ab=3故選B.9、A【解析】

先利用勾股定理計(jì)算出AB,再在Rt△BDE中,求出BD即可;【詳解】解:∵∠C=90°,AC=4,BC=3,

∴AB=5,

∵△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn),使點(diǎn)C落在線段AB上的點(diǎn)E處,點(diǎn)B落在點(diǎn)D處,

∴AE=AC=4,DE=BC=3,

∴BE=AB-AE=5-4=1,

在Rt△DBE中,BD=,故選A.【點(diǎn)睛】本題考查了旋轉(zhuǎn)的性質(zhì):對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等;對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;旋轉(zhuǎn)前、后的圖形全等.10、C【解析】當(dāng)⊙C與AD相切時(shí),△ABE面積最大,連接CD,則∠CDA=90°,∵A(2,0),B(0,2),⊙C的圓心為點(diǎn)C(-1,0),半徑為1,∴CD=1,AC=2+1=3,∴AD=AC2-CD∵∠AOE=∠ADC=90°,∠EAO=∠CAD,∴△AOE∽△ADC,∴OA即222=∴BE=OB+OE=2+2∴S△ABE=1BE?OA=12×(2+22故答案為C.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、【解析】

根據(jù)拋物線解析式求得點(diǎn)D(1,4)、點(diǎn)E(2,3),作點(diǎn)D關(guān)于y軸的對(duì)稱點(diǎn)D′(﹣1,4)、作點(diǎn)E關(guān)于x軸的對(duì)稱點(diǎn)E′(2,﹣3),從而得到四邊形EDFG的周長(zhǎng)=DE+DF+FG+GE=DE+D′F+FG+GE′,當(dāng)點(diǎn)D′、F、G、E′四點(diǎn)共線時(shí),周長(zhǎng)最短,據(jù)此根據(jù)勾股定理可得答案.【詳解】如圖,在y=﹣x2+2x+3中,當(dāng)x=0時(shí),y=3,即點(diǎn)C(0,3),∵y=﹣x2+2x+3=﹣(x-1)2+4,∴對(duì)稱軸為x=1,頂點(diǎn)D(1,4),則點(diǎn)C關(guān)于對(duì)稱軸的對(duì)稱點(diǎn)E的坐標(biāo)為(2,3),作點(diǎn)D關(guān)于y軸的對(duì)稱點(diǎn)D′(﹣1,4),作點(diǎn)E關(guān)于x軸的對(duì)稱點(diǎn)E′(2,﹣3),連結(jié)D′、E′,D′E′與x軸的交點(diǎn)G、與y軸的交點(diǎn)F即為使四邊形EDFG的周長(zhǎng)最小的點(diǎn),四邊形EDFG的周長(zhǎng)=DE+DF+FG+GE=DE+D′F+FG+GE′=DE+D′E′==∴四邊形EDFG周長(zhǎng)的最小值是.【點(diǎn)睛】本題主要考查拋物線的性質(zhì)以及兩點(diǎn)間的距離公式,解題的關(guān)鍵是熟練掌握拋物線的性質(zhì),利用數(shù)形結(jié)合得出答案.12、240.【解析】

試題分析:∠1+∠2=180°+60°=240°.考點(diǎn):1.三角形的外角性質(zhì);2.三角形內(nèi)角和定理.13、3【解析】∵圓錐的母線長(zhǎng)是5cm,側(cè)面積是15πcm2,∴圓錐的側(cè)面展開(kāi)扇形的弧長(zhǎng)為:l==6π,∵錐的側(cè)面展開(kāi)扇形的弧長(zhǎng)等于圓錐的底面周長(zhǎng),∴r==3cm,14、5見(jiàn)解析.【解析】

(1)由勾股定理即可求解;(2)尋找格點(diǎn)M和N,構(gòu)建與△ABC全等的△AMN,易證MN⊥AC,從而得到MN與AC的交點(diǎn)即為所求D點(diǎn).【詳解】(1)AC=;(2)如圖,連接格點(diǎn)M和N,由圖可知:AB=AM=4,BC=AN=,AC=MN=,∴△ABC≌△MAN,∴∠AMN=∠BAC,∴∠MAD+∠CAB=∠MAD+∠AMN=90°,∴MN⊥AC,易解得△MAN以MN為底時(shí)的高為,∵AB2=AD?AC,∴AD=AB2÷AC=,綜上可知,MN與AC的交點(diǎn)即為所求D點(diǎn).【點(diǎn)睛】本題考查了平面直角坐標(biāo)系中定點(diǎn)的問(wèn)題,理解第2問(wèn)中構(gòu)造全等三角形從而確定D點(diǎn)的思路.15、π+﹣【解析】試題分析:如圖,連接OC,EC,由題意得△OCD≌△OCE,OC⊥DE,DE==,所以S四邊形ODCE=×1×=,S△OCD=,又S△ODE=×1×1=,S扇形OBC==,所以陰影部分的面積為:S扇形OBC+S△OCD﹣S△ODE=+﹣;故答案為.考點(diǎn):扇形面積的計(jì)算.16、【解析】

二次根式的加減運(yùn)算,先化為最簡(jiǎn)二次根式,再將被開(kāi)方數(shù)相同的二次根式進(jìn)行合并.【詳解】.【點(diǎn)睛】考點(diǎn):二次根式的加減法.三、解答題(共8題,共72分)17、(1)見(jiàn)解析;(2)直線EG經(jīng)過(guò)一個(gè)定點(diǎn),這個(gè)定點(diǎn)為正方形的中心(AC、BD的交點(diǎn));理由見(jiàn)解析.【解析】分析:(1)由正方形的性質(zhì)得出∠A=∠C=90°,AB=BC=CD=DA,由AE=BF=CG=DH證出AH=CF,由SAS證明△AEH≌△CGF即可求解;(2)連接AC、EG,交點(diǎn)為O;先證明△AOE≌△COG,得出OA=OC,證出O為對(duì)角線AC、BD的交點(diǎn),即O為正方形的中心.詳解:(1)證明:∵四邊形ABCD是正方形,∴∠A=∠C=90°,AB=BC=CD=DA,∵AE=BF=CG=DH,∴AH=CF,在△AEH與△CGF中,AH=CF,∠A=∠C,AE=CG,∴△AEH≌△CGF(SAS);(2)直線EG經(jīng)過(guò)一個(gè)定點(diǎn),這個(gè)定點(diǎn)為正方形的中心(AC、BD的交點(diǎn));理由如下:連接AC、EG,交點(diǎn)為O;如圖所示:∵四邊形ABCD是正方形,∴AB∥CD,∴∠OAE=∠OCG,在△AOE和△COG中,∠OAE=∠OCG,∠AOE=∠COG,AE=CG,∴△AOE≌△COG(AAS),∴OA=OC,OE=OG,即O為AC的中點(diǎn),∵正方形的對(duì)角線互相平分,∴O為對(duì)角線AC、BD的交點(diǎn),即O為正方形的中心.點(diǎn)睛:考查了正方形的性質(zhì)與判定、全等三角形的判定與性質(zhì)等知識(shí);本題綜合性強(qiáng),有一定難度,特別是(2)中,需要通過(guò)作輔助線證明三角形全等才能得出結(jié)果.18、C【解析】

根據(jù)在OB上的兩個(gè)交點(diǎn)之間的距離為3,可知兩交點(diǎn)的橫坐標(biāo)的差為3,然后作出最左邊開(kāi)口向下的拋物線,再向右平移1個(gè)單位,向上平移1個(gè)單位得到開(kāi)口向下的拋物線的條數(shù),同理可得開(kāi)口向上的拋物線的條數(shù),然后相加即可得解.【詳解】解:如圖,開(kāi)口向下,經(jīng)過(guò)點(diǎn)(0,0),(1,3),(3,3)的拋物線的解析式為y=﹣x2+4x,然后向右平移1個(gè)單位,向上平移1個(gè)單位一次得到一條拋物線,可平移6次,所以,一共有7條拋物線,同理可得開(kāi)口向上的拋物線也有7條,所以,滿足上述條件且對(duì)稱軸平行于y軸的拋物線條數(shù)是:7+7=1.故選C.【點(diǎn)睛】本題是二次函數(shù)綜合題.主要考查了網(wǎng)格結(jié)構(gòu)的知識(shí)與二次函數(shù)的性質(zhì),二次函數(shù)圖象與幾何變換,作出圖形更形象直觀.19、(1)72°,見(jiàn)解析;(2)7280;(3)16【解析】

(1)根據(jù)題意列式計(jì)算,補(bǔ)全條形統(tǒng)計(jì)圖即可;(2)根據(jù)題意列式計(jì)算即可;(3)畫樹狀圖得出所有等可能的情況數(shù),找出選到成活率較高的兩類樹苗的情況數(shù),即可求出所求的概率.【詳解】(1)扇形統(tǒng)計(jì)圖中玉蘭所對(duì)的圓心角為360°×(1-40%-15%-25%)=72°月季的株數(shù)為2000×90%-380-422-270=728(株),補(bǔ)全條形統(tǒng)計(jì)圖如圖所示:(2)月季的成活率為728所以月季成活株數(shù)為8000×91%=7280(株).故答案為:7280.(3)由題意知,成活率較高的兩類花苗是玉蘭和月季,玉蘭、月季、桂花、臘梅分別用A、B、C、D表示,畫樹狀圖如下:所有等可能的情況有12種,其中恰好選到成活率較高的兩類花苗有2種.∴P(恰好選到成活率較高的兩類花苗)=【點(diǎn)睛】此題主要考查了條形統(tǒng)計(jì)圖以及扇形統(tǒng)計(jì)圖的應(yīng)用,根據(jù)統(tǒng)計(jì)圖得出正確信息是解題關(guān)鍵.20、(1)1;(2)點(diǎn)D(8﹣23,0);(3)點(diǎn)D的坐標(biāo)為(35﹣1,0)或(﹣35﹣1,0).【解析】分析:(Ⅰ)由點(diǎn)B的坐標(biāo)知OA=8、AB=1、OB=10,根據(jù)折疊性質(zhì)可得BA=BA′=1,據(jù)此可得答案;(Ⅱ)連接AA′,利用折疊的性質(zhì)和中垂線的性質(zhì)證△BAA′是等邊三角形,可得∠A′BD=∠ABD=30°,據(jù)此知AD=ABtan∠ABD=23,繼而可得答案;(Ⅲ)分點(diǎn)D在OA上和點(diǎn)D在AO延長(zhǎng)線上這兩種情況,利用相似三角形的判定和性質(zhì)分別求解可得.詳解:(Ⅰ)如圖1,由題意知OA=8、AB=1,∴OB=10,由折疊知,BA=BA′=1,∴OA′=1.故答案為1;(Ⅱ)如圖2,連接AA′.∵點(diǎn)A′落在線段AB的中垂線上,∴BA=AA′.∵△BDA′是由△BDA折疊得到的,∴△BDA′≌△BDA,∴∠A′BD=∠ABD,A′B=AB,∴AB=A′B=AA′,∴△BAA′是等邊三角形,∴∠A′BA=10°,∴∠A′BD=∠ABD=30°,∴AD=ABtan∠ABD=1tan30°=23,∴OD=OA﹣AD=8﹣23,∴點(diǎn)D(8﹣23,0);(Ⅲ)①如圖3,當(dāng)點(diǎn)D在OA上時(shí).由旋轉(zhuǎn)知△BDA′≌△BDA,∴BA=BA′=1,∠BAD=∠BA′D=90°.∵點(diǎn)A′在線段OA的中垂線上,∴BM=AN=12OA=4,∴A′M=A'B2-B∴A′N=MN﹣A′M=AB﹣A′M=1﹣25,由∠BMA′=∠A′ND=∠BA′D=90°知△BMA′∽△A′ND,則A'MDN=BMA'解得:DN=35﹣5,則OD=ON+DN=4+35﹣5=35﹣1,∴D(35﹣1,0);②如圖4,當(dāng)點(diǎn)D在AO延長(zhǎng)線上時(shí),過(guò)點(diǎn)A′作x軸的平行線交y軸于點(diǎn)M,延長(zhǎng)AB交所作直線于點(diǎn)N,則BN=CM,MN=BC=OA=8,由旋轉(zhuǎn)知△BDA′≌△BDA,∴BA=BA′=1,∠BAD=∠BA′D=90°.∵點(diǎn)A′在線段OA的中垂線上,∴A′M=A′N=12MN則MC=BN=A'B2-A'N2=25,∴MO由∠EMA′=∠A′NB=∠BA′D=90°知△EMA′∽△A′NB,則MEA'N=MA'NB解得:ME=855,則OE=MO﹣ME=1+∵∠DOE=∠A′ME=90°、∠OED=∠MEA′,∴△DOE∽△A′ME,∴DOA'M=OEME,即解得:DO=33+1,則點(diǎn)D的坐標(biāo)為(﹣35﹣1,0).綜上,點(diǎn)D的坐標(biāo)為(35﹣1,0)或(﹣35﹣1,0).點(diǎn)睛:本題主要考查四邊形的綜合問(wèn)題,解題的關(guān)鍵是熟練掌握折疊變換的性質(zhì)、矩形的性質(zhì)、相似三角形的判定與性質(zhì)及勾股定理等知識(shí)點(diǎn).21、(1)m=-6,點(diǎn)D的坐標(biāo)為(-2,3);(2);(3)當(dāng)或時(shí),一次函數(shù)的值大于反比例函數(shù)的值.【解析】

(1)將點(diǎn)C的坐標(biāo)(6,-1)代入即可求出m,再把D(n,3)代入反比例函數(shù)解析式求出n即可.(2)根據(jù)C(6,-1)、D(-2,3)得出直線CD的解析式,再求出直線CD與x軸和y軸的交點(diǎn)即可,得出OA、OB的長(zhǎng),再根據(jù)銳角三角函數(shù)的定義即可求得;(3)根據(jù)函數(shù)的圖象和交點(diǎn)坐標(biāo)即可求得.【詳解】⑴把C(6,-1)代入,得.則反比例函數(shù)的解析式為,把代入,得,∴點(diǎn)D的坐標(biāo)為(-2,3).⑵將C(6,-1)、D(-2,3)代入,得,解得.∴一次函數(shù)的解析式為,∴點(diǎn)B的坐標(biāo)為(0,2),點(diǎn)A的坐標(biāo)為(4,0).∴,在在中,∴.⑶根據(jù)函數(shù)圖象可知,當(dāng)或時(shí),一次函數(shù)的值大于反比例函數(shù)的值【點(diǎn)睛】此題考查了反比例函數(shù)與一次函數(shù)的交點(diǎn)問(wèn)題.其知識(shí)點(diǎn)有解直角三角形,待定系數(shù)法求解析式,此題難度適中,注意掌握數(shù)形結(jié)合思想與方程思想的應(yīng)用.22、13.1.【解析】試題分析:如圖,作CM∥AB交AD于M,MN⊥AB于N,根據(jù)=,可求得CM的長(zhǎng),在RT△AMN中利用三角函數(shù)求得AN的長(zhǎng),再由MN∥BC,AB∥CM,判定四邊形MNBC是平行四邊形,即可得BN的長(zhǎng),最后根據(jù)AB=AN+BN即可求得AB的長(zhǎng).試題解析:如圖作CM∥AB交AD于M,MN⊥AB于N.由題意=,即=,CM=,在RT△AMN中,∵∠ANM=90°,MN=BC=4,∠AMN=72°,∴tan72°=,∴AN≈12.3,∵M(jìn)N∥BC,AB∥CM,∴四邊形MNBC是平行四邊形,∴BN=CM=,∴AB=AN+BN=13.1米.考點(diǎn):解直角三角形的應(yīng)用.23、(1)拋物線的解析式為:y=1(2)①S與運(yùn)動(dòng)時(shí)間t之間的函數(shù)關(guān)系式是S=5t2﹣8t+4,t的取值范圍是0≤t≤1;②存在.R點(diǎn)的坐標(biāo)是(3,﹣32(3)M的坐標(biāo)為(1,﹣83【解析】試題分析:(1)設(shè)拋物線的解析式是y=ax2+bx+c,求出A、B、D的坐標(biāo)代入即可;(2)①由勾股定理即可求出;②假設(shè)存在點(diǎn)R,可構(gòu)成以P、B、R、Q為頂點(diǎn)的平行四邊形,求出P、Q的坐標(biāo),再分為兩種種情況:A、B、C即可根據(jù)平行四邊形的性質(zhì)求出R的坐標(biāo);(3)A關(guān)

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論