關(guān)于初中數(shù)學(xué)八年級(jí)下電子白板教案5篇_第1頁(yè)
關(guān)于初中數(shù)學(xué)八年級(jí)下電子白板教案5篇_第2頁(yè)
關(guān)于初中數(shù)學(xué)八年級(jí)下電子白板教案5篇_第3頁(yè)
關(guān)于初中數(shù)學(xué)八年級(jí)下電子白板教案5篇_第4頁(yè)
關(guān)于初中數(shù)學(xué)八年級(jí)下電子白板教案5篇_第5頁(yè)
已閱讀5頁(yè),還剩15頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

第關(guān)于初中數(shù)學(xué)八年級(jí)下電子白板教案5篇初中數(shù)學(xué)八年級(jí)下電子白板教案(篇1)

學(xué)習(xí)目標(biāo)

1、在同一直角坐標(biāo)系中,感受圖形上點(diǎn)的坐標(biāo)變化與圖形的變化(平移、軸對(duì)稱、伸長(zhǎng)、壓縮)之間的關(guān)系并能找出變化規(guī)律。

2、由坐標(biāo)的變化探索新舊圖形之間的變化。

重點(diǎn)

1、作某一圖形關(guān)于對(duì)稱軸的對(duì)稱圖形,并能寫出所得圖形相應(yīng)各點(diǎn)的坐標(biāo)。

2、根據(jù)軸對(duì)稱圖形的`特點(diǎn),已知軸一邊的圖形或坐標(biāo)確定另一邊的圖形或坐標(biāo)。

難點(diǎn)

體會(huì)極坐標(biāo)和直角坐標(biāo)思想,并能解決一些簡(jiǎn)單的問題

學(xué)習(xí)過程(導(dǎo)入、探究新知、即時(shí)練習(xí)、小結(jié)、達(dá)標(biāo)檢測(cè)、作業(yè))

第一課時(shí)

學(xué)習(xí)過程:

一、舊知回顧:

1、平面直角坐標(biāo)系定義:在平面內(nèi),兩條____________且有公共_________的數(shù)軸組成平面直角坐標(biāo)系。

2、坐標(biāo)平面內(nèi)點(diǎn)的坐標(biāo)的表示方法____________。

3、各象限點(diǎn)的坐標(biāo)的特征:

二、新知檢索:

1、在方格紙上描出下列各點(diǎn)(0,0),(5,4),(3,0),(5,1),(5,-1),

(3,0),(4,-2),(0,0)并用線段依次連接,觀察形成了什么圖形

三、典例分析

例1、

(1)將魚的頂點(diǎn)的縱坐標(biāo)保持不變,橫坐標(biāo)分別加5畫出圖形,分析所得圖形與原來圖形相比有什么變化?如果縱坐標(biāo)保持不變,橫坐標(biāo)分別減2呢?

(2)將魚的頂點(diǎn)的橫坐標(biāo)保持不變,縱坐標(biāo)分別加3畫出圖形,分析所得圖形與原來圖形相比有什么變化?如果橫坐標(biāo)保持不變,縱坐標(biāo)減2呢?

例2、(1)將魚的頂點(diǎn)的縱坐標(biāo)保持不變,橫坐標(biāo)分別變?yōu)樵瓉淼?倍畫出圖形,分析所得圖形與原來圖形相比有什么變化?

(2)將魚的頂點(diǎn)的橫坐標(biāo)保持不變,縱坐標(biāo)分別變?yōu)樵瓉淼?/2畫出圖形,分析所得圖形與原來圖形相比有什么變化?

四、題組訓(xùn)練

1、在平面直角坐標(biāo)系中,將坐標(biāo)為(0,0),(2,4),(2,0),(4,4)的點(diǎn)用線段依次連接起來形成一個(gè)圖案。

(1)這四個(gè)點(diǎn)的縱坐標(biāo)保持不變,橫坐標(biāo)變成原來的1/2,將所得的四個(gè)點(diǎn)用線段依次連接起來,所得圖案與原來圖案相比有什么變化?

(2)縱、橫分別加3呢?

(3)縱、橫分別變成原來的2倍呢?

歸納:圖形坐標(biāo)變化規(guī)律

1、平移規(guī)律:2、圖形伸長(zhǎng)與壓縮:

第二課時(shí)

一、舊知回顧:

1、軸對(duì)稱圖形定義:如果一個(gè)圖形沿著對(duì)折后兩部分完全重合,這樣的圖形叫做軸對(duì)稱圖形。

中心對(duì)稱圖形定義:在同一平面內(nèi),如果把一個(gè)圖形繞某一點(diǎn)旋轉(zhuǎn),旋轉(zhuǎn)后的圖形能和原圖形完全重合,那么這個(gè)圖形就叫做中心對(duì)稱圖形

二、新知檢索:

1、如圖,左邊的魚與右邊的魚關(guān)于y軸對(duì)稱。

1、左邊的魚能由右邊的魚通過平移、壓縮或拉伸而得到嗎?

2、各個(gè)對(duì)應(yīng)頂點(diǎn)的坐標(biāo)有怎樣的關(guān)系?

3、如果將圖中右邊的魚沿_軸正方向平移1個(gè)單位長(zhǎng)度,為保持整個(gè)圖形關(guān)于y軸對(duì)稱,那么左邊的魚各個(gè)頂點(diǎn)的坐標(biāo)將發(fā)生怎樣的變化?

三、典例分析,如圖所示,

1、右圖的魚是通過什么樣的變換得到左圖的魚的。

2、如果將右邊的魚的橫坐標(biāo)保持不變,縱坐標(biāo)分別變?yōu)樵瓉淼?倍,畫出圖形,得到的魚與原來的魚有什么樣的位置關(guān)系。

3、如果將右邊的魚的縱、橫坐標(biāo)都分別變?yōu)樵瓉淼?倍,得到的魚與原來的魚有什么樣的位置關(guān)系

四、題組練習(xí)

1、將坐標(biāo)作如下變化時(shí),圖形將怎樣變化?

①(_,y)(_,y+4)②(_,y)(_,y-2)③(_,y)(1/2_,y)

④(_,y)(3_,y)⑤(_,y)(_,1/2y)⑥(_,y)(3_,3y)

2、如圖,在第一象限里有一只蝴蝶,在第二象限里作出一只和它形狀、大小完全一樣的蝴蝶,并寫出第二象限中蝴蝶各個(gè)頂點(diǎn)的坐標(biāo)。

3、如圖,作字母M關(guān)于y軸的軸對(duì)稱圖形,并寫出所得圖形相應(yīng)各端點(diǎn)的坐標(biāo)。

4、描出下圖中楓葉圖案關(guān)于_軸的軸對(duì)稱圖形的簡(jiǎn)圖。

初中數(shù)學(xué)八年級(jí)下電子白板教案(篇2)

教學(xué)目標(biāo):

1.了解算術(shù)平方根的概念,會(huì)用根號(hào)表示正數(shù)的算術(shù)平方根,并了解算術(shù)平方根的非負(fù)性。

2.了解開方與乘方互為逆運(yùn)算,會(huì)用平方運(yùn)算求某些非負(fù)數(shù)的算術(shù)平方根。

教學(xué)重點(diǎn):

算術(shù)平方根的概念。

教學(xué)難點(diǎn):

根據(jù)算術(shù)平方根的概念正確求出非負(fù)數(shù)的算術(shù)平方根。

教學(xué)過程

一、情境導(dǎo)入

請(qǐng)同學(xué)們欣賞本節(jié)導(dǎo)圖,并回答問題,學(xué)校要舉行金秋美術(shù)作品比賽,小歐很高興,他想裁出一塊面積為25的正方形畫布,畫上自己的得意之作參加比賽,這塊正方形畫布的邊長(zhǎng)應(yīng)取多少?如果這塊畫布的面積是?這個(gè)問題實(shí)際上是已知一個(gè)正數(shù)的平方,求這個(gè)正數(shù)的問題?

這就要用到平方根的概念,也就是本章的主要學(xué)習(xí)內(nèi)容.這節(jié)課我們先學(xué)習(xí)有關(guān)算術(shù)平方根的概念.

二、導(dǎo)入新課:

1、提出問題:(書P68頁(yè)的問題)

你是怎樣算出畫框的邊長(zhǎng)等于5dm的呢?(學(xué)生思考并交流解法)

這個(gè)問題相當(dāng)于在等式擴(kuò)=25中求出正數(shù)_的值.

一般地,如果一個(gè)正數(shù)_的平方等于a,即=a,那么這個(gè)正數(shù)_叫做a的算術(shù)平方根.a的算術(shù)平方根記為,讀作根號(hào)a,a叫做被開方數(shù).規(guī)定:0的算術(shù)平方根是0.

也就是,在等式=a(_0)中,規(guī)定_=.

2、試一試:你能根據(jù)等式:=144說出144的算術(shù)平方根是多少嗎?并用等式表示出來.

3、想一想:下列式子表示什么意思?你能求出它們的值嗎?

建議:求值時(shí),要按照算術(shù)平方根的意義,寫出應(yīng)該滿足的關(guān)系式,然后按照算術(shù)平方根的記法寫出對(duì)應(yīng)的值.例如表示25的算術(shù)平方根。

4、例1求下列各數(shù)的算術(shù)平方根:

(1)100;(2)1;(3);(4)0.0001

三、練習(xí)

P69練習(xí)1、2

四、探究:(課本第69頁(yè))

怎樣用兩個(gè)面積為1的小正方形拼成一個(gè)面積為2的大正方形?

方法1:課本中的方法,略;

方法2:

可還有其他方法,鼓勵(lì)學(xué)生探究。

問題:這個(gè)大正方形的邊長(zhǎng)應(yīng)該是多少呢?

大正方形的邊長(zhǎng)是,表示2的算術(shù)平方根,它到底是個(gè)多大的數(shù)?你能求出它的值嗎?

建議學(xué)生觀察圖形感受的大小.小正方形的對(duì)角線的長(zhǎng)是多少呢?(用刻度尺測(cè)量它與大正方形的邊長(zhǎng)的大小)它的近似值我們將在下節(jié)課探究.

五、小結(jié):

1、這節(jié)課學(xué)習(xí)了什么呢?

2、算術(shù)平方根的具體意義是怎么樣的?

3、怎樣求一個(gè)正數(shù)的算術(shù)平方根

六、課外作業(yè):

P75習(xí)題13.1活動(dòng)第1、2、3題

初中數(shù)學(xué)八年級(jí)下電子白板教案(篇3)

教學(xué)目標(biāo)

理解平行四邊形的定義,能根據(jù)定義探究平行四邊形的性質(zhì).

教學(xué)思考

1.通過觀察、實(shí)驗(yàn)、猜想、驗(yàn)證、推理、交流等數(shù)學(xué)活動(dòng),發(fā)展學(xué)生合情推理能力和動(dòng)手操作能力及應(yīng)用數(shù)學(xué)的意識(shí)與能力.

2.能夠根據(jù)平行四邊形的性質(zhì)進(jìn)行簡(jiǎn)單的推理和計(jì)算.

解決問題

通過平行四邊形性質(zhì)的探索過程,豐富學(xué)生從事數(shù)學(xué)活動(dòng)的經(jīng)驗(yàn)與體驗(yàn),能運(yùn)用平行四邊形的性質(zhì)進(jìn)行有關(guān)的推理和計(jì)算,發(fā)展應(yīng)用意識(shí).

情感態(tài)度

在應(yīng)用平行四邊形的性質(zhì)的過程養(yǎng)成獨(dú)立思考的習(xí)慣,在數(shù)學(xué)學(xué)習(xí)活動(dòng)中獲得成功的體驗(yàn).

重點(diǎn)

平行四邊形的性質(zhì)的探究和平行四邊形的性質(zhì)的應(yīng)用.

難點(diǎn)

平行四邊形的性質(zhì)的應(yīng)用.

教學(xué)流程安排

活動(dòng)流程圖

活動(dòng)內(nèi)容和目的

活動(dòng)1欣賞圖片,了解生活中的特殊四邊形

活動(dòng)2剪三角形紙片,拼凸四邊形

活動(dòng)3理解平行四邊形的概念

活動(dòng)4探究平行四邊形邊、角的性質(zhì)

活動(dòng)5平行四邊形性質(zhì)的應(yīng)用

活動(dòng)6評(píng)價(jià)反思、布置作業(yè)

熟悉生活中特殊的四邊形,導(dǎo)出課題.

通過用三角形拼四邊形的過程,滲透轉(zhuǎn)化思想,激發(fā)探索精神.

掌握平行四邊形的定義及表示方法.

探究平行四邊形的性質(zhì).

運(yùn)用平行四邊形的性質(zhì).

學(xué)生交流,內(nèi)化知識(shí),課后鞏固知識(shí).

教學(xué)過程設(shè)計(jì)

問題與情景

師生行為

設(shè)計(jì)意圖

[活動(dòng)1]

下面的圖片中,有你熟悉的哪些圖形?

(出示圖片)

演示圖片,學(xué)生欣賞.

教師介紹四邊形與我們生活密切聯(lián)系,學(xué)生可再補(bǔ)充列舉.

從實(shí)例圖片中,抽象出的特殊四邊形,培養(yǎng)學(xué)生的抽象思維.通過舉例,讓學(xué)生感受到數(shù)學(xué)與我們的生活緊密聯(lián)系.

問題與情景

師生行為

設(shè)計(jì)意圖

[活動(dòng)2]

拼一拼

將一張紙對(duì)折,剪下兩張疊放的三角形紙片.將這兩個(gè)三角形相等的一組邊重合,你會(huì)得到怎樣的圖形.

(1)你拼出了怎樣的凸四邊形?與同伴交流.

(2)一位同學(xué)拼出了如下圖所示的一個(gè)四邊形,這個(gè)四邊形的對(duì)邊有怎樣的位置關(guān)系?說說你的理由.

學(xué)生經(jīng)過實(shí)驗(yàn)操作,開展獨(dú)立思考與合作學(xué)習(xí).

教師深入學(xué)生之中,觀察學(xué)生頻出的方法與過程,接受學(xué)生質(zhì)疑并指導(dǎo)個(gè)別學(xué)生探究.

教師待學(xué)生充分探究后,請(qǐng)學(xué)生展示拼圖的方法和不同的圖形.并引導(dǎo)學(xué)生分析(2)中的四邊形的邊的位置特征,從而引出本節(jié)課研究的內(nèi)容

初中數(shù)學(xué)八年級(jí)下電子白板教案(篇4)

一、內(nèi)容和內(nèi)容解析

1.內(nèi)容

二次根式的性質(zhì)。

2.內(nèi)容解析

本節(jié)教材是在學(xué)生學(xué)習(xí)二次根式概念的基礎(chǔ)上,結(jié)合二次根式的概念和算術(shù)平方根的概念,通過觀察、歸納和思考得到二次根式的兩個(gè)基本性質(zhì).

對(duì)于二次根式的性質(zhì),教材沒有直接從算術(shù)平方根的意義得到,而是考慮學(xué)生的年齡特征,先通過“探究”欄目中給出四個(gè)具體問題,讓學(xué)生學(xué)生根據(jù)算術(shù)平方根的意義,就具體數(shù)字進(jìn)行分析得出結(jié)果,再分析這些結(jié)果的共同特征,由特殊到一般地歸納出結(jié)論.基于以上分析,確定本節(jié)課的教學(xué)重點(diǎn)為:理解二次根式的性質(zhì).

二、目標(biāo)和目標(biāo)解析

1.教學(xué)目標(biāo)

(1)經(jīng)歷探索二次根式的性質(zhì)的過程,并理解其意義;

(2)會(huì)運(yùn)用二次根式的性質(zhì)進(jìn)行二次根式的化簡(jiǎn);

(3)了解代數(shù)式的概念.

2.目標(biāo)解析

(1)學(xué)生能根據(jù)具體數(shù)字分析和算術(shù)平方根的意義,由特殊到一般地歸納出二次根式的性質(zhì),會(huì)用符號(hào)表述這一性質(zhì);

(2)學(xué)生能靈活運(yùn)用二次根式的性質(zhì)進(jìn)行二次根式的化簡(jiǎn);

(3)學(xué)生能從已學(xué)過的各種式子中,體會(huì)其共同特點(diǎn),得出代數(shù)式的概念.

三、教學(xué)問題診斷分析

二次根式的性質(zhì)是二次根式化簡(jiǎn)和運(yùn)算的重要基礎(chǔ).學(xué)生根據(jù)二次根式的概念和算術(shù)平方根的意義,由特殊到一般地得出二次根式的性質(zhì)后,重在能靈活運(yùn)用二次根式的性質(zhì)進(jìn)行二次根式的化簡(jiǎn)和解決一些綜合性較強(qiáng)的問題.由于學(xué)生初次學(xué)習(xí)二次根式的性質(zhì),對(duì)二次根式性質(zhì)的靈活運(yùn)用存在一定的困難,突破這一難點(diǎn)需要教師精心設(shè)計(jì)好每一道習(xí)題,讓學(xué)生在練習(xí)中進(jìn)一步掌握二次根式的性質(zhì),培養(yǎng)其靈活運(yùn)用的能力.

本節(jié)課的教學(xué)難點(diǎn)為:二次根式性質(zhì)的靈活運(yùn)用.

四、教學(xué)過程設(shè)計(jì)

1.探究性質(zhì)1

問題1你能解釋下列式子的含義嗎?

師生活動(dòng):教師引導(dǎo)學(xué)生說出每一個(gè)式子的含義.

設(shè)計(jì)意圖讓學(xué)生初步感知,這些式子都表示一個(gè)非負(fù)數(shù)的算術(shù)平方根的平方.

問題2根據(jù)算術(shù)平方根的意義填空,并說出得到結(jié)論的依據(jù).

師生活動(dòng)學(xué)生獨(dú)立完成填空后,讓學(xué)生展示其思維過程,說出得到結(jié)論的依據(jù).

設(shè)計(jì)意圖學(xué)生通過計(jì)算或根據(jù)算術(shù)平方根的意義得出結(jié)論,為歸納二次根式的性質(zhì)1作鋪墊.

問題3從以上的結(jié)論中你能發(fā)現(xiàn)什么規(guī)律?你能用一個(gè)式子表示這個(gè)規(guī)律嗎?

師生活動(dòng):引導(dǎo)學(xué)生歸納得出二次根式的性質(zhì):(≥0).

設(shè)計(jì)意圖讓學(xué)生經(jīng)歷從特殊到一般的過程,概括出二次根式的性質(zhì)1,培養(yǎng)學(xué)生抽象概括的能力.

例2計(jì)算

(1);(2).

師生活動(dòng):學(xué)生獨(dú)立完成,集體訂正.

設(shè)計(jì)意圖鞏固二次根式的性質(zhì)1,學(xué)會(huì)靈活運(yùn)用.

2.探究性質(zhì)2

問題4你能解釋下列式子的含義嗎?

師生活動(dòng):教師引導(dǎo)學(xué)生說出每一個(gè)式子的含義.

設(shè)計(jì)意圖讓學(xué)生初步感知,這些式子都表示一個(gè)數(shù)的平方的算術(shù)平方根.

問題5根據(jù)算術(shù)平方根的意義填空,并說出得到結(jié)論的依據(jù).

師生活動(dòng)學(xué)生獨(dú)立完成填空后,讓學(xué)生展示其思維過程,說出得到結(jié)論的依據(jù).

設(shè)計(jì)意圖學(xué)生通過計(jì)算或根據(jù)算術(shù)平方根的意義得出結(jié)論,為歸納二次根式的性質(zhì)2作鋪墊.

問題6從以上的結(jié)論中你能發(fā)現(xiàn)什么規(guī)律?你能用一個(gè)式子表示這個(gè)規(guī)律嗎?

師生活動(dòng):引導(dǎo)學(xué)生歸納得出二次根式的性質(zhì):(≥0)

設(shè)計(jì)意圖讓學(xué)生經(jīng)歷從特殊到一般的過程,概括出二次根式的性質(zhì)2,培養(yǎng)學(xué)生抽象概括的能力.

例3計(jì)算

(1);(2).

師生活動(dòng):學(xué)生獨(dú)立完成,集體訂正.

設(shè)計(jì)意圖鞏固二次根式的性質(zhì)2,學(xué)會(huì)靈活運(yùn)用.

3.歸納代數(shù)式的概念

問題7回顧我們學(xué)過的式子,如,(≥0),這些式子有哪些共同特征?

師生活動(dòng):學(xué)生概括式子的共同特征,得出代數(shù)式的概念.

設(shè)計(jì)意圖學(xué)生通過觀察式子的共同特征,形成代數(shù)式的概念,培養(yǎng)學(xué)生的概括能力.

4.綜合運(yùn)用

(1)算一算:

設(shè)計(jì)意圖設(shè)計(jì)有一定綜合性的題目,考查學(xué)生的靈活運(yùn)用的能力,第(2)、(3)、(4)小題要特別注意結(jié)果的符號(hào).

(2)想一想:中,的取值范圍是什么?當(dāng)≥0時(shí),等于多少?當(dāng)時(shí),又等于多少?

設(shè)計(jì)意圖通過此問題的設(shè)計(jì),加深學(xué)生對(duì)的理解,開闊學(xué)生的視野,訓(xùn)練學(xué)生的思維.

(3)談一談你對(duì)與的認(rèn)識(shí).

設(shè)計(jì)意圖加深學(xué)生對(duì)二次根式性質(zhì)的理解.

5.總結(jié)反思

(1)你知道了二次根式的哪些性質(zhì)?

(2)運(yùn)用二次根式性質(zhì)進(jìn)行化簡(jiǎn)需要注意什么?

(3)請(qǐng)談?wù)劙l(fā)現(xiàn)二次根式性質(zhì)的思考過程?

(4)想一想,到現(xiàn)在為止,你學(xué)習(xí)了哪幾類字母表示數(shù)得到的式子?說說你對(duì)代數(shù)式的認(rèn)識(shí).

6.布置作業(yè):教科書習(xí)題16.1第2,4題.

五、目標(biāo)檢測(cè)設(shè)計(jì)

1.;;.

設(shè)計(jì)意圖考查對(duì)二次根式性質(zhì)的理解.

2.下列運(yùn)算正確的是()

A.B.C.D.

設(shè)計(jì)意圖考查學(xué)生運(yùn)用二次根式的性質(zhì)進(jìn)行化簡(jiǎn)的能力.

3.若,則的取值范圍是.

設(shè)計(jì)意圖考查學(xué)生對(duì)一個(gè)數(shù)非負(fù)數(shù)的算術(shù)平方根的理解.

4.計(jì)算:.

設(shè)計(jì)意圖考查二次根式性質(zhì)的靈活運(yùn)用.

初中數(shù)學(xué)八年級(jí)下電子白板教案(篇5)

平方差公式

學(xué)習(xí)目標(biāo):

1、能推導(dǎo)平方差公式,并會(huì)用幾何圖形解釋公式;

2、能用平方差公式進(jìn)行熟練地計(jì)算;

3、經(jīng)歷探索平方差公式的推導(dǎo)過程,發(fā)展符號(hào)感,體會(huì)特殊一般特殊的認(rèn)識(shí)規(guī)律.

學(xué)習(xí)重難點(diǎn):

重點(diǎn):能用平方差公式進(jìn)行熟練地計(jì)算;

難點(diǎn):探索平方差公式,并用幾何圖形解釋公式.

學(xué)習(xí)過程:

一、自主探索

1、計(jì)算:(1)(m+2)(m-2)(2)(1+3a)(1-3a)

(3)(_+5y)(_-5y)(4)(y+3z)(y-3z)

2、觀察以上算式及其運(yùn)算結(jié)果,你發(fā)現(xiàn)了什么規(guī)律?再舉兩例驗(yàn)證你的發(fā)現(xiàn).

3、你能用自己的語(yǔ)言敘述你的發(fā)現(xiàn)嗎?

4、平方差公式的特征:

(1)、公式左邊的兩個(gè)因式都是二項(xiàng)式。必須是相同的兩數(shù)的和與差。或者說兩個(gè)二項(xiàng)式必須有一項(xiàng)完全相同,另一項(xiàng)只有符號(hào)不同。

(2)、公式中的a與b可以是數(shù),也可以換成一個(gè)代數(shù)式。

二、試一試

例1、利用平方差公式計(jì)算

(1)(5+6_)(5-6_)(2)(_-2y)(_+2y)(3)(-m+n)(-m-n)

例2、利用平方差公式計(jì)算

(1)(1)(-_-y)(-_+y)(2)(ab+8)(ab-8)(3)(m+n)(m-n)+3n2

三、合作交流

如圖,邊長(zhǎng)為a的大正方形中有一個(gè)邊長(zhǎng)為b的小正方形.

(1)請(qǐng)表示圖中陰影部分的面積.

(2)小穎將陰影部分拼成了一個(gè)長(zhǎng)方形,這個(gè)長(zhǎng)方形的長(zhǎng)和寬分別是多少?你能表示出它的面積嗎?aab

(3)比較(1)(2)的結(jié)果,你能驗(yàn)證平方差公式嗎?

四、鞏固練習(xí)

1、利用平方差公式計(jì)算

(1)(a+2)(a-2)(2)(3a+2b)(3a-2b)

(3)(-_+1)(-_-1)(4)(-4k+3)(-4k-3)

2、利用平方差公式計(jì)算

(1)803797(2)398402

3.平方差公式(a+b)(a-b)=a2-b2中字母a,b表示()

A.只能是數(shù)B.只能是單項(xiàng)式C.只能是多項(xiàng)式D.以上都可以

4.下列多項(xiàng)式的乘法中,可以用平方差公式計(jì)算的是()

A.(a+b)(b+a)B.(-a+b)(a-b)

C.(a+b)(b-a)D.(a2-b)(b2+a)

5.下列計(jì)算中,錯(cuò)誤的有()

①(3a+4)(3a

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論