2024屆河北省滄州市示范名校高二數(shù)學(xué)第一學(xué)期期末統(tǒng)考模擬試題含解析_第1頁
2024屆河北省滄州市示范名校高二數(shù)學(xué)第一學(xué)期期末統(tǒng)考模擬試題含解析_第2頁
2024屆河北省滄州市示范名校高二數(shù)學(xué)第一學(xué)期期末統(tǒng)考模擬試題含解析_第3頁
2024屆河北省滄州市示范名校高二數(shù)學(xué)第一學(xué)期期末統(tǒng)考模擬試題含解析_第4頁
2024屆河北省滄州市示范名校高二數(shù)學(xué)第一學(xué)期期末統(tǒng)考模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2024屆河北省滄州市示范名校高二數(shù)學(xué)第一學(xué)期期末統(tǒng)考模擬試題考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知向量,,且,則值是()A. B.C. D.2.一組“城市平安建設(shè)”的滿意度測(cè)評(píng)結(jié)果,,…,的平均數(shù)為116分,則,,…,,116的()A.平均數(shù)變小 B.平均數(shù)不變C.標(biāo)準(zhǔn)差不變 D.標(biāo)準(zhǔn)差變大3.某產(chǎn)品的廣告費(fèi)用x與銷售額y的統(tǒng)計(jì)數(shù)據(jù)如下表:廣告費(fèi)用(萬元)4235銷售額(萬元)49263954根據(jù)上表可得回歸方程中的為9.4,據(jù)此模型預(yù)報(bào)廣告費(fèi)用為6萬元時(shí)銷售額為A.63.6萬元 B.65.5萬元C.67.7萬元 D.72.0萬元4.在等比數(shù)列中,,則等于()A. B.C. D.5.已知函數(shù),,若,使得,則實(shí)數(shù)的取值范圍是()A. B.C. D.6.將直線2x-y+λ=0沿x軸向左平移1個(gè)單位,所得直線與圓x2+y2+2x-4y=0相切,則實(shí)數(shù)λ值為()A.-3或7 B.-2或8C0或10 D.1或117.如圖,在三棱錐中,點(diǎn)E在上,滿足,點(diǎn)F為的中點(diǎn),記分別為,則()A. B.C. D.8.已知拋物線的方程為,則此拋物線的準(zhǔn)線方程為()A. B.C. D.9.若數(shù)列是等差數(shù)列,其前n項(xiàng)和為,若,且,則等于()A. B.C. D.10.已知雙曲線的焦距為,且雙曲線的一條漸近線與直線平行,則雙曲線的方程為()A. B.C. D.11.已知函數(shù)只有一個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍是()A B.C. D.12.已知數(shù)列的通項(xiàng)公式為,且數(shù)列是遞增數(shù)列,則實(shí)數(shù)的取值范圍是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.程大位《算法統(tǒng)宗》里有詩云“九百九十六斤棉,贈(zèng)分八子做盤纏.次第每人多十七,要將第八數(shù)來言.務(wù)要分明依次弟,孝和休惹外人傳.”意為:996斤棉花,分別贈(zèng)送給8個(gè)子女做旅費(fèi),從第一個(gè)開始,以后每人依次多17斤,直到第八個(gè)孩子為止.分配時(shí)一定要等級(jí)分明,使孝順子女的美德外傳,則第七個(gè)孩子分得斤數(shù)為___________.14.已知正項(xiàng)數(shù)列的前n項(xiàng)和為,且,則__________,滿足不等式的最大整數(shù)為__________15.已知直線在兩坐標(biāo)軸上的截距分別為,,則__________.16.如圖,正方形ABCD的邊長(zhǎng)為8,取正方形ABCD各邊的中點(diǎn)E,F(xiàn),G,H,作第2個(gè)正方形EFGH,然后再取正方形EFGH各邊的中點(diǎn)I,J,K,L,作第3個(gè)正方形IJKL.依此方法一直繼續(xù)下去.①從正方形ABCD開始,第7個(gè)正方形的邊長(zhǎng)為___;②如果這個(gè)作圖過程可以一直繼續(xù)下去,那么作到第n個(gè)正方形,這n個(gè)正方形的面積之和為___.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),,其中為自然對(duì)數(shù)的底數(shù).(1)若為的極值點(diǎn),求的單調(diào)區(qū)間和最大值;(2)是否存在實(shí)數(shù),使得的最大值是?若存在,求出的值;若不存在,說明理由.18.(12分)已知數(shù)列{an}滿足*(1)求數(shù)列{an}的通項(xiàng)公式;(2)求數(shù)列{an}的前n項(xiàng)和Sn19.(12分)橢圓的離心率為,設(shè)為坐標(biāo)原點(diǎn),為橢圓的左頂點(diǎn),動(dòng)直線過線段的中點(diǎn),且與橢圓相交于、兩點(diǎn).已知當(dāng)直線的傾斜角為時(shí),(1)求橢圓的標(biāo)準(zhǔn)方程;(2)是否存在定直線,使得直線、分別與相交于、兩點(diǎn),且點(diǎn)總在以線段為直徑的圓上,若存在,求出所有滿足條件的直線的方程;若不存在,請(qǐng)說明理由20.(12分)已知命題:“曲線表示焦點(diǎn)在軸上的橢圓”,命題:“曲線表示雙曲線”.(1)若是真命題,求實(shí)數(shù)的取值范圍;(2)若是的必要不充分條件,求實(shí)數(shù)的取值范圍.21.(12分)已知等差數(shù)列的前項(xiàng)和為,,且.(1)求數(shù)列的通項(xiàng)公式;(2)設(shè)數(shù)列的前項(xiàng)和為,證明:.22.(10分)已知橢圓C:的離心率為,點(diǎn)和點(diǎn)都在橢圓C上,直線PA交x軸于點(diǎn)M(1)求橢圓C的方程,并求點(diǎn)M的坐標(biāo)(用m,n表示);(2)設(shè)O為原點(diǎn),點(diǎn)B與點(diǎn)A關(guān)于x軸對(duì)稱,直線PB交x軸于點(diǎn)N,問:y軸上是否存在點(diǎn)Q(不與O重合),使得?若存在,求點(diǎn)Q的坐標(biāo),若不存在,說明理由

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解題分析】求出向量,的坐標(biāo),利用向量數(shù)量積坐標(biāo)表示即可求解.【題目詳解】因?yàn)橄蛄?,,所以,,因?yàn)?,所以,解得:,故選:A.2、B【解題分析】利用平均數(shù)、方差的定義和性質(zhì)直接求出,,…,,116的平均數(shù)、方差從而可得答案.【題目詳解】,,…,的平均數(shù)為116分,則,,…,,116的平均數(shù)為設(shè),,…,的方差為則所以則,,…,,116的方差為所以,,…,,116的平均數(shù)不變,方差變小.標(biāo)準(zhǔn)差變小.故選:B3、B【解題分析】,∵數(shù)據(jù)的樣本中心點(diǎn)在線性回歸直線上,回歸方程中的為9.4,∴42=9.4×3.5+a,∴=9.1,∴線性回歸方程是y=9.4x+9.1,∴廣告費(fèi)用為6萬元時(shí)銷售額為9.4×6+9.1=65.5考點(diǎn):線性回歸方程4、C【解題分析】根據(jù),然后與,可得,最后簡(jiǎn)單計(jì)算,可得結(jié)果.【題目詳解】在等比數(shù)列中,由所以,又,所以所以故選:C【題目點(diǎn)撥】本題考查等比數(shù)列的性質(zhì),重在計(jì)算,當(dāng),在等差數(shù)列中有,在等比數(shù)列中,靈活應(yīng)用,屬基礎(chǔ)題.5、A【解題分析】由定義證明函數(shù)的單調(diào)性,再由函數(shù)不等式恒能成立的性質(zhì)得出,從而得出實(shí)數(shù)的取值范圍.【題目詳解】任取,,即函數(shù)在上單調(diào)遞減,若,使得,則即故選:A【題目點(diǎn)撥】結(jié)論點(diǎn)睛:本題考查不等式恒成立問題,解題關(guān)鍵是轉(zhuǎn)化為求函數(shù)的最值,轉(zhuǎn)化時(shí)要注意全稱量詞與存在量詞對(duì)題意的影響.等價(jià)轉(zhuǎn)化如下:(1),,使得成立等價(jià)于(2),,不等式恒成立等價(jià)于(3),,使得成立等價(jià)于(4),,使得成立等價(jià)于6、A【解題分析】根據(jù)直線平移的規(guī)律,由直線2x﹣y+λ=0沿x軸向左平移1個(gè)單位得到平移后直線的方程,然后因?yàn)榇酥本€與圓相切得到圓心到直線的距離等于半徑,利用點(diǎn)到直線的距離公式列出關(guān)于λ的方程,求出方程的解即可得到λ的值解:把圓的方程化為標(biāo)準(zhǔn)式方程得(x+1)2+(y﹣2)2=5,圓心坐標(biāo)為(﹣1,2),半徑為,直線2x﹣y+λ=0沿x軸向左平移1個(gè)單位后所得的直線方程為2(x+1)﹣y+λ=0,因?yàn)樵撝本€與圓相切,則圓心(﹣1,2)到直線的距離d==r=,化簡(jiǎn)得|λ﹣2|=5,即λ﹣2=5或λ﹣2=﹣5,解得λ=﹣3或7故選A考點(diǎn):直線與圓的位置關(guān)系7、B【解題分析】利用空間向量加減、數(shù)乘的幾何意義,結(jié)合三棱錐用表示出即可.【題目詳解】由題設(shè),,,,.故選:B8、A【解題分析】由拋物線的方程直接寫出其準(zhǔn)線方程即可.【題目詳解】由拋物線的方程為,則其準(zhǔn)線方程為:故選:A9、B【解題分析】由等差數(shù)列的通項(xiàng)公式和前項(xiàng)和公式求出的首項(xiàng)和公差,即可求出.【題目詳解】設(shè)等差數(shù)列的公差為,則解得:,所以.故選:B.10、B【解題分析】根據(jù)焦點(diǎn)在x軸上的雙曲線漸近線斜率為±可求a,b關(guān)系,再結(jié)合a,b,c關(guān)系即可求解﹒【題目詳解】∵雙曲線1(a>0,b>0)的焦距為2,且雙曲線的一條漸近線與直線2x+y=0平行,∴,∴b=2a,∵c2=a2+b2,∴a=1,b=2,∴雙曲線的方程為故選:B11、B【解題分析】將題目轉(zhuǎn)化為函數(shù)的圖像與的圖像只有一個(gè)交點(diǎn),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性與極值,作出圖像,利用數(shù)形結(jié)合求出的取值范圍.【題目詳解】由函數(shù)只有一個(gè)零點(diǎn),等價(jià)于函數(shù)的圖像與的圖像只有一個(gè)交點(diǎn),,求導(dǎo),令,得當(dāng)時(shí),,函數(shù)在上單調(diào)遞減;當(dāng)時(shí),,函數(shù)在上單調(diào)遞增;當(dāng)時(shí),,函數(shù)在上單調(diào)遞減;故當(dāng)時(shí),函數(shù)取得極小值;當(dāng)時(shí),函數(shù)取得極大值;作出函數(shù)圖像,如圖所示,由圖可知,實(shí)數(shù)的取值范圍是故選:B【題目點(diǎn)撥】方法點(diǎn)睛:已知函數(shù)有零點(diǎn)(方程有根)求參數(shù)值(取值范圍)常用的方法:(1)直接法:直接求解方程得到方程的根,再通過解不等式確定參數(shù)范圍;(2)分離參數(shù)法:先將參數(shù)分離,轉(zhuǎn)化成求函數(shù)的值域問題加以解決;(3)數(shù)形結(jié)合法:先對(duì)解析式變形,進(jìn)而構(gòu)造兩個(gè)函數(shù),然后在同一平面直角坐標(biāo)系中畫出函數(shù)的圖象,利用數(shù)形結(jié)合的方法求解.12、C【解題分析】利用遞增數(shù)列的定義即可.【題目詳解】由,∴,即是小于2n+1的最小值,∴,故選:C二、填空題:本題共4小題,每小題5分,共20分。13、167【解題分析】由題設(shè)知8個(gè)孩子分得斤數(shù)是公差為17的等差數(shù)列,設(shè)第一個(gè)孩子分得斤,應(yīng)用等差數(shù)列前n項(xiàng)和公式求,進(jìn)而由等差數(shù)列通項(xiàng)公式求即可.【題目詳解】由題意,設(shè)第一個(gè)孩子分得斤,則,所以,可得,故斤.故答案為:167.14、①.##②.【解題分析】由得到,即可得到數(shù)列是首項(xiàng)為1,公差為1的等差數(shù)列,從而求出,再根據(jù)求出,令,利用裂項(xiàng)相消法求出,即可求出的取值范圍,從而得解;【題目詳解】解:由,令,得,,解得;當(dāng)時(shí),,即因此,數(shù)列是首項(xiàng)為1,公差為1的等差數(shù)列,,即所以,令,所以,所以,則最大整數(shù)為;故答案為:;;15、##【解題分析】根據(jù)截距定義,分別令,可得.【題目詳解】由直線,令得,即令,得,即,故.故答案為:16、①.1②.【解題分析】根據(jù)題意,正方形邊長(zhǎng)成等比數(shù)列,正方形的面積等于邊長(zhǎng)的平方可得,然后根據(jù)等比數(shù)列的通項(xiàng)公式及等比數(shù)列的前n項(xiàng)和的公式即可求解.【題目詳解】設(shè)第n個(gè)正方形的邊長(zhǎng)為,第n個(gè)正方形的面積為,則第n個(gè)正方形的對(duì)角線長(zhǎng)為,所以第n+1個(gè)正方形的邊長(zhǎng)為,,∴數(shù)列{}是首項(xiàng)為,公比為的等比數(shù)列,,∴,即第7個(gè)正方形的邊長(zhǎng)為1;∴數(shù)列{}是首項(xiàng)為,公比為的等比數(shù)列,故答案為:1;.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)單調(diào)增區(qū)間是,單調(diào)減區(qū)間是;最大值為;(2)存在,.【解題分析】(1)利用為的極值點(diǎn)求得,進(jìn)而可得函數(shù)的單調(diào)區(qū)間和最大值;(2)對(duì)導(dǎo)函數(shù),分與進(jìn)行討論,得函數(shù)的單調(diào)性進(jìn)而求得最值,再由最大值是求出的值.【題目詳解】解:.(1)∵,,∴,由,得.∴,∴,,,,∴的單調(diào)增區(qū)間是,單調(diào)減區(qū)間是;的極大值為;也即的最大值為.(2)解:∵,∴,①當(dāng)時(shí),單調(diào)遞增,得的最大值是,解得,舍去;②時(shí),由,即,當(dāng),即時(shí),∴時(shí),;時(shí),;∴的單調(diào)增區(qū)間是,單調(diào)減區(qū)間是,又在上的最大值為,∴,∴;當(dāng),即時(shí),在單調(diào)遞增,∴的最大值是,解得,舍去;綜上:存在符合題意,此時(shí).【題目點(diǎn)撥】本題主要考查了函數(shù)的導(dǎo)數(shù)在求解函數(shù)的單調(diào)性及求解函數(shù)的最值中的應(yīng)用,還考查了函數(shù)的最值求解與分類討論的應(yīng)用,解題時(shí)要認(rèn)真審題,注意挖掘題設(shè)中的條件.18、(1)(2)【解題分析】(1)根據(jù)遞推關(guān)系式可得,再由等差數(shù)列的定義以及通項(xiàng)公式即可求解.(2)利用錯(cuò)位相減法即可求解.【小問1詳解】(1),即,所以數(shù)列為等差數(shù)列,公差為1,首項(xiàng)為1,所以,即.【小問2詳解】令,所以,所以19、(1)(2)存在,且直線的方程為或【解題分析】(1)分析可知,,直線的方程為,設(shè)點(diǎn)、,將直線的方程與橢圓的方程聯(lián)立,列出韋達(dá)定理,利用弦長(zhǎng)公式可求得的值,即可得出橢圓的標(biāo)準(zhǔn)方程;(2)設(shè)點(diǎn)、,設(shè)直線的方程為,將該直線方程與橢圓的方程聯(lián)立,列出韋達(dá)定理,求出點(diǎn)、,由已知得出,求出的值,即可得出結(jié)論.【小問1詳解】解:因?yàn)?,則,,所以,橢圓的方程為,即,易知點(diǎn),則點(diǎn),當(dāng)直線的傾斜角為時(shí),直線的方程為,設(shè)點(diǎn)、,聯(lián)立,可得,,由韋達(dá)定理可得,,所以,,解得,則,,因此,橢圓的標(biāo)準(zhǔn)方程為.【小問2詳解】解:易知點(diǎn),若直線與軸重合,則、為橢圓長(zhǎng)軸的兩個(gè)端點(diǎn),不合乎題意.設(shè)直線的方程為,設(shè)點(diǎn)、,聯(lián)立,可得,,由韋達(dá)定理可得,,直線的斜率為,直線的方程為,故點(diǎn),同理可得點(diǎn),,,由題意可得,解得或.因此,存在滿足題設(shè)條件的直線,且直線的方程為或,點(diǎn)總在以線段為直徑的圓上.【題目點(diǎn)撥】方法點(diǎn)睛:利用韋達(dá)定理法解決直線與圓錐曲線相交問題的基本步驟如下:(1)設(shè)直線方程,設(shè)交點(diǎn)坐標(biāo)為、;(2)聯(lián)立直線與圓錐曲線的方程,得到關(guān)于(或)的一元二次方程,必要時(shí)計(jì)算;(3)列出韋達(dá)定理;(4)將所求問題或題中的關(guān)系轉(zhuǎn)化為、(或、)的形式;(5)代入韋達(dá)定理求解.20、(1);(2).【解題分析】(1)根據(jù)方程為焦點(diǎn)在軸上的橢圓的條件列不等式組,解不等式組求得的取值范圍.(2)求得為真命題時(shí)的取值范圍,結(jié)合是的必要不充分條件列不等式組,解不等式組求得的取值范圍.【題目詳解】(1)若是真命題,所以,解得,所以的取值范圍是.(2)由(1)得,是真命題時(shí),的取值范圍是,為真命題時(shí),,所以的取值范圍是因?yàn)槭堑谋匾怀浞謼l件,所以,所以,等號(hào)不同時(shí)取得,所以【題目點(diǎn)撥】本小題主要考查橢圓、雙曲線,考查必要不充分條件求參數(shù).21、(1);(2)證明見解析.【解題分析】(1)根據(jù)等差數(shù)列的性質(zhì)及題干條件,可求得,代入公式,即可求得數(shù)列的通項(xiàng)公式;(2)由(1)可

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論