2024屆河南省開封市第十七中學(xué)高二數(shù)學(xué)第一學(xué)期期末考試試題含解析_第1頁
2024屆河南省開封市第十七中學(xué)高二數(shù)學(xué)第一學(xué)期期末考試試題含解析_第2頁
2024屆河南省開封市第十七中學(xué)高二數(shù)學(xué)第一學(xué)期期末考試試題含解析_第3頁
2024屆河南省開封市第十七中學(xué)高二數(shù)學(xué)第一學(xué)期期末考試試題含解析_第4頁
2024屆河南省開封市第十七中學(xué)高二數(shù)學(xué)第一學(xué)期期末考試試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2024屆河南省開封市第十七中學(xué)高二數(shù)學(xué)第一學(xué)期期末考試試題注意事項(xiàng)1.考生要認(rèn)真填寫考場號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.如圖,過拋物線的焦點(diǎn)的直線依次交拋物線及準(zhǔn)線于點(diǎn),若且,則拋物線的方程為()A.B.C.D.2.“五一”期間,甲、乙、丙三個(gè)大學(xué)生外出旅游,已知一人去北京,一人去兩安,一人去云南.回來后,三人對(duì)去向作了如下陳述:甲:“我去了北京,乙去了西安.”乙:“甲去了西安,丙去了北京.”丙:“甲去了云南,乙去了北京.”事實(shí)是甲、乙、丙三人陳述都只對(duì)了一半(關(guān)于去向的地點(diǎn)僅對(duì)一個(gè)).根據(jù)以上信息,可判斷下面說法中正確的是()A.甲去了西安 B.乙去了北京C.丙去了西安 D.甲去了云南3.拋物線上點(diǎn)的橫坐標(biāo)為4,則到拋物線焦點(diǎn)的距離等于()A.12 B.10C.8 D.64.已知直線在兩個(gè)坐標(biāo)軸上的截距之和為7,則實(shí)數(shù)m的值為()A.2 B.3C.4 D.55.已知拋物線的焦點(diǎn)為F,且點(diǎn)F與圓上點(diǎn)的距離的最大值為6,則拋物線的準(zhǔn)線方程為()A. B.C. D.6.設(shè)雙曲線:的左、右焦點(diǎn)分別為、,P為C上一點(diǎn),且,,則雙曲線的漸近線方程為()A. B.C. D.7.已知橢圓方程為,點(diǎn)在橢圓上,右焦點(diǎn)為F,過原點(diǎn)的直線與橢圓交于A,B兩點(diǎn),若,則橢圓的方程為()A. B.C. D.8.如圖是拋物線拱形橋,當(dāng)水面在時(shí),拱頂離水面,水面寬,若水面上升,則水面寬是()(結(jié)果精確到)(參考數(shù)值:)A B.C. D.9.若某群體中的成員只用現(xiàn)金支付的概率為,既用現(xiàn)金支付也用非現(xiàn)金支付的概率為,則不用現(xiàn)金支付的概率為()A. B.C. D.10.下列直線中,傾斜角為45°的是()A. B.C. D.11.小方每次投籃的命中率為,假設(shè)每次投籃相互獨(dú)立,則他連續(xù)投籃2次,恰有1次命中的概率為()A. B.C. D.12.已知圓,直線,直線l被圓O截得的弦長最短為()A. B.C.8 D.9二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)函數(shù)(1)求的最小正周期和的最大值;(2)已知銳角的內(nèi)角A,B,C對(duì)應(yīng)的邊分別為a,b,c,若,且,求的面積.14.已知數(shù)列的前項(xiàng)和為,且滿足,,則___________.15.已知函數(shù),若有兩個(gè)零點(diǎn),則的范圍是______16.我國著名數(shù)學(xué)家華羅庚曾說過:“數(shù)缺形時(shí)少直觀,形少數(shù)時(shí)難人微”.事實(shí)上,很多代數(shù)問題可以轉(zhuǎn)化為幾何問題加以解決,如:與相關(guān)的代數(shù)問題可以轉(zhuǎn)化為點(diǎn)與點(diǎn)之間距離的幾何問題.結(jié)合上述觀點(diǎn),可得方程的解是__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知直線和的交點(diǎn)為P,求:(1)過點(diǎn)P且與直線垂直的直線l的方程;(2)以點(diǎn)P為圓心,且與直線相交所得弦長為12的圓的方程;(3)從下面①②兩個(gè)問題中選一個(gè)作答,①若直線l過點(diǎn),且與兩坐標(biāo)軸的正半軸所圍成的三角形面積為,求直線l的方程②求圓心在直線上,與x軸相切,被直線截得的弦長的圓的方程注:如果選擇兩個(gè)問題分別作答,按第一個(gè)計(jì)分18.(12分)已知函數(shù).(1)求函數(shù)的單調(diào)區(qū)間;(2)當(dāng)時(shí),求函數(shù)的值域.19.(12分)如圖,在平面直角標(biāo)系中,已知n個(gè)圓與x軸和線均相切,且任意相鄰的兩個(gè)圓外切,其中圓.(1)求數(shù)列通項(xiàng)公式;(2)記n個(gè)圓的面積之和為S,求證:.20.(12分)已知直線過點(diǎn),且被兩條平行直線,截得的線段長為.(1)求的最小值;(2)當(dāng)直線與軸平行時(shí),求的值.21.(12分)已知與定點(diǎn),的距離比為的點(diǎn)P的軌跡為曲線C,過點(diǎn)的直線l與曲線C交于M,N兩點(diǎn).(1)求曲線C的軌跡方程;(2)若,求.22.(10分)已知等差數(shù)列的首項(xiàng)為2,公差為8.在中每相鄰兩項(xiàng)之間插入三個(gè)數(shù),使它們與原數(shù)列的項(xiàng)一起構(gòu)成一個(gè)新的等差數(shù)列.(1)求數(shù)列的通項(xiàng)公式;(2)若,,,,是從中抽取的若干項(xiàng)按原來的順序排列組成的一個(gè)等比數(shù)列,,,令,求數(shù)列的前項(xiàng)和.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解題分析】如圖根據(jù)拋物線定義可知,進(jìn)而推斷出的值,在直角三角形中求得,進(jìn)而根據(jù),利用比例線段的性質(zhì)可求得,則拋物線方程可得.【題目詳解】如圖分別過點(diǎn),作準(zhǔn)線的垂線,分別交準(zhǔn)線于點(diǎn),設(shè),則由已知得:,由定義得:,故在直角三角形中,,,,從而得,,求得,所以拋物線的方程為故選:D2、D【解題分析】根據(jù)題意,先假設(shè)甲去了北京正確,則可分析其他人的陳述是否符合題意,再假設(shè)乙去西安正確,分析其他人的陳述是否符合題意,即可得答案.【題目詳解】由題意得,甲、乙、丙三人的陳述都只對(duì)了一半,假設(shè)甲去了北京正確,對(duì)于甲的陳述:則乙去西安錯(cuò)誤,則乙去了云南;對(duì)于乙的陳述:甲去了西安錯(cuò)誤,則丙去了北京正確;對(duì)于丙的陳述:甲去了云南錯(cuò)誤,乙去了北京也錯(cuò)誤,故假設(shè)錯(cuò)誤.假設(shè)乙去了西安正確,對(duì)于甲的陳述:則甲去了北京錯(cuò)誤,則甲去了云南;對(duì)于乙的陳述:甲去了西安錯(cuò)誤,則丙去了北京正確;對(duì)于丙的陳述:甲去了云南正確,乙去了北京錯(cuò)誤,此種假設(shè)滿足題意,故甲去了云南.故選:D3、C【解題分析】根據(jù)焦半徑公式即可求出【題目詳解】因?yàn)?,所以,所以故選:C4、C【解題分析】求出直線方程在兩坐標(biāo)軸上的截距,列出方程,求出實(shí)數(shù)m的值.【題目詳解】當(dāng)時(shí),,故不合題意,故,,令得:,令得:,故,解得:.故選:C5、D【解題分析】先求得拋物線的焦點(diǎn)坐標(biāo),再根據(jù)點(diǎn)F與圓上點(diǎn)的距離的最大值為6求解.【題目詳解】因?yàn)閽佄锞€的焦點(diǎn)為F,且點(diǎn)F與圓上點(diǎn)的距離的最大值為6,所以,解得,所以拋物線準(zhǔn)線方程為,故選:D6、B【解題分析】根據(jù)雙曲線定義結(jié)合,求得,在中,利用余弦定理求得之間的關(guān)系,即可得出答案.【題目詳解】解:因?yàn)樵陔p曲線中,因?yàn)?,所以,所以,在中,,,由余弦定理可得,即,所以,所以,所以,所以雙曲線的漸近線方程為.故選:B.7、A【解題分析】根據(jù)橢圓的性質(zhì)可得,則橢圓方程可求.【題目詳解】由點(diǎn)在橢圓上得,由橢圓的對(duì)稱性可得,則,故橢圓方程為.故選:A.8、C【解題分析】先建立直角坐標(biāo)系,設(shè)拋物線方程為x2=my,將點(diǎn)坐標(biāo)代入拋物線方程求出m,從而可得拋物線方程,再令y=代入拋物線方程求出x,即可得到答案【題目詳解】解:如圖建立直角坐標(biāo)系,設(shè)拋物線方程為x2=my,由題意,將代入x2=my,得m=,所以拋物線的方程為x2=,令y=,解得,所以水面寬度為2.24×817.9m故選:C9、A【解題分析】利用對(duì)立事件概率公式可求得所求事件的概率.【題目詳解】由對(duì)立事件的概率公式可知,該群體中的成員不用現(xiàn)金支付的概率為.故選:A.10、C【解題分析】由直線傾斜角得出直線斜率,再由直線方程求出直線斜率,即可求解.【題目詳解】由直線傾斜角為45°,可知直線的斜率為,對(duì)于A,直線斜率為,對(duì)于B,直線無斜率,對(duì)于C,直線斜率,對(duì)于D,直線斜率,故選:C11、A【解題分析】先弄清連續(xù)投籃2次,恰有1次命中的情況有兩種,它們是互斥關(guān)系,因此根據(jù)相互獨(dú)立事件以及互斥事件的概率計(jì)算公式進(jìn)行求解.【題目詳解】由題意知,他連續(xù)投籃2次,有兩種互斥的情況,即第一次投中第二次不中和第一次不中第二次投中,因此恰有1次命中的概率為,故選:A.12、B【解題分析】先求得直線過定點(diǎn),再根據(jù)當(dāng)點(diǎn)與圓心連線垂直于直線l時(shí),被圓O截得的弦長最短求解.【題目詳解】因?yàn)橹本€方程,即為,所以直線過定點(diǎn),因?yàn)辄c(diǎn)在圓的內(nèi)部,當(dāng)點(diǎn)與圓心連線垂直于直線l時(shí),被圓O截得的弦長最短,點(diǎn)與圓心(0,0)的距離為,此時(shí),最短弦長為,故選:B二、填空題:本題共4小題,每小題5分,共20分。13、(1)的最小正周期為,的最大值為1(2)【解題分析】(1)直接根據(jù)的表達(dá)式和正弦函數(shù)的性質(zhì)可得到的最小正周期和最大值;(2)先根據(jù)求得角的大小為,然后在中利用余弦定理求得,最后根據(jù)三角形的面積公式即可【小問1詳解】已知?jiǎng)t的最小正周期為:則的最大值為:【小問2詳解】由可得:()或()又為銳角,則可得:.在中,由余弦定理可得:,即又,解得:則的面積為:14、【解題分析】當(dāng)時(shí),,可得,可得數(shù)列隔項(xiàng)成等比數(shù)列,即所以數(shù)列的奇數(shù)項(xiàng)和偶數(shù)項(xiàng)分別是等比數(shù)列,分別求和,即可得解.【題目詳解】因?yàn)椋?,所以,?dāng)時(shí),,∴,所以數(shù)列的奇數(shù)項(xiàng)和偶數(shù)項(xiàng)分別是等比數(shù)列,所以.故答案為:.15、【解題分析】利用導(dǎo)數(shù)求出函數(shù)的最小值,結(jié)合函數(shù)的圖象列式可求出結(jié)果.【題目詳解】,當(dāng)時(shí),,在上為增函數(shù),最多只有一個(gè)零點(diǎn),不符合題意;當(dāng)時(shí),令,得,令,得,所以在上為減函數(shù),在上為增函數(shù),所以在時(shí)取得極小值為,也是最小值,因?yàn)楫?dāng)趨近于正負(fù)無窮時(shí),都是趨近于正無窮,所以要使有兩個(gè)零點(diǎn),只要,即就可以了.所以的范圍是故答案為:.16、【解題分析】根據(jù)題意,列方程計(jì)算即可【題目詳解】因?yàn)?,所以,可轉(zhuǎn)化為點(diǎn)到點(diǎn)和點(diǎn)的距離之和為,所以點(diǎn)在橢圓上,則,解得.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)(3)答案見解析【解題分析】(1)聯(lián)立方程組求得交點(diǎn)的坐標(biāo),結(jié)合直線與直線垂直,求得直線的斜率為,利用直線的點(diǎn)斜式,即可求解;(2)先求得點(diǎn)到直線的距離為,由圓的的垂徑定理列出方程求得圓的半徑,即可求解;(3)若選①:設(shè)直線l的的斜率為,得到,結(jié)合題意列出方程,求得的值,即可求解;若選②,設(shè)所求圓的圓心為,半徑為,得到,利用圓的垂徑定理列出方程求得的值,即可求解.【小問1詳解】解:由直線和的交點(diǎn)為P,聯(lián)立方程組,解得,即,因?yàn)橹本€與直線垂直,所以直線的斜率為,所以過點(diǎn)且與直線垂直的直線方程為,即.【小問2詳解】解:因?yàn)辄c(diǎn)到直線的距離為,設(shè)所求圓的半徑為,由圓的的垂徑定理得,弦長,解得,所以所求圓的方程為.【小問3詳解】解:若選①:直線l過點(diǎn),且與兩坐標(biāo)軸的正半軸所圍成的三角形面積為,設(shè)直線l的的斜率為,可得直線的方程為,即,則直線與坐標(biāo)軸的交點(diǎn)分別為,由,解得或,所以所求直線的方程為或.若選②,設(shè)所求圓的圓心為,半徑為,因?yàn)閳A與x軸相切,可得,又由圓心到直線的距離為,利用圓的垂徑定理可得,即,解得,即圓心坐標(biāo)為或,所以所求圓的方程為或.18、(1)單調(diào)遞增區(qū)間(?∞,?1)和(4,+∞),單調(diào)遞減區(qū)間(?1,4)(2)【解題分析】(1)求出,令,由導(dǎo)數(shù)的正負(fù)即可得到函數(shù)f(x)的單調(diào)遞增區(qū)間和遞減區(qū)間;(2)求出函數(shù)在區(qū)間中的單調(diào)性,求出極大值和極小值以及區(qū)間端點(diǎn)的函數(shù)值,比較大小即可得到答案【小問1詳解】由函數(shù)得,令,解得x<?1或x>4,;令,解得?1<x<4,故函數(shù)f(x)的單調(diào)遞增區(qū)間為(?∞,?1)和(4,+∞),單調(diào)遞減區(qū)間為(?1,4);【小問2詳解】由(1)可知,當(dāng)x∈[?3,?1)時(shí),,f(x)單調(diào)遞增,當(dāng)x∈(?1,4)時(shí),,f(x)單調(diào)遞減,當(dāng)x∈(4,6]時(shí),,f(x)單調(diào)遞增,所以當(dāng)x=?1時(shí),函數(shù)f(x)取得極大值f(?1)=,當(dāng)x=4時(shí),函數(shù)f(x)取得極小值f(4)=,又,所以當(dāng)x∈[?3,6]時(shí),函數(shù)f(x)的值域?yàn)?9、(1).(2)證明見解析.【解題分析】(1)由已知得,設(shè)圓分別切軸于點(diǎn),過點(diǎn)作,垂足為.在從而有得,由等比數(shù)列的定義得數(shù)列是以為首項(xiàng),為公比的等比數(shù)列.由此求得答案;(2)由(1)得再由圓的面積公式和等比數(shù)列求和公式計(jì)算可得證.【小問1詳解】解:直線的傾斜角為則圓心在直線上,,設(shè)圓分別切軸于點(diǎn),過點(diǎn)作,垂足為.在中,所以即化簡得,變形得,所以是以為首項(xiàng),為公比的等比數(shù)列.,.【小問2詳解】解:由(1)得所以,所以.20、(1)3;(2)5【解題分析】(1)由題可得和的距離即為的最小值;(2)可得此時(shí)直線的方程為,求出交點(diǎn)坐標(biāo)即可求出距離.【題目詳解】(1)由題可得當(dāng)且時(shí),取得最小值,即和的距離,由兩平行線間的距離公式,得,所以的最小值為3.(2)當(dāng)直線與軸平行時(shí),方程為,設(shè)直線與直線,分別交于點(diǎn),,則,,所以,即,所以.21、(1)(2)或【解題分析】(1)設(shè)曲線上的任意一點(diǎn),由題意可得,化簡即可得出(2)分直線的斜率不存在與存在兩種情況討論,當(dāng)斜率不存在時(shí),即可求出、的坐標(biāo),從而求出,當(dāng)直線的斜率存在,設(shè)直線方程為,,,聯(lián)立直線與圓的方程,消元列出韋達(dá)定理,則,即可求出,從而求出直線方程,由圓心在直線上,即可求出弦長;【小問1詳解】解:(1)設(shè)曲線上的任意一點(diǎn),由題意可得:,即,整理得【小問2詳解】解:依題意當(dāng)直線的斜率不存在時(shí),直線方程為,則,則或,即、,所以、,所以滿足條件,此時(shí),當(dāng)直線的斜率存在,設(shè)直線方程為,,,則,消去整理得,由,解得或,所以、,因?yàn)?,,?/p>

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論