![2024屆河北省任丘第一中學數(shù)學高二上期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第1頁](http://file4.renrendoc.com/view/6f307c01f0f37f707d773ad153edf9f4/6f307c01f0f37f707d773ad153edf9f41.gif)
![2024屆河北省任丘第一中學數(shù)學高二上期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第2頁](http://file4.renrendoc.com/view/6f307c01f0f37f707d773ad153edf9f4/6f307c01f0f37f707d773ad153edf9f42.gif)
![2024屆河北省任丘第一中學數(shù)學高二上期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第3頁](http://file4.renrendoc.com/view/6f307c01f0f37f707d773ad153edf9f4/6f307c01f0f37f707d773ad153edf9f43.gif)
![2024屆河北省任丘第一中學數(shù)學高二上期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第4頁](http://file4.renrendoc.com/view/6f307c01f0f37f707d773ad153edf9f4/6f307c01f0f37f707d773ad153edf9f44.gif)
![2024屆河北省任丘第一中學數(shù)學高二上期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第5頁](http://file4.renrendoc.com/view/6f307c01f0f37f707d773ad153edf9f4/6f307c01f0f37f707d773ad153edf9f45.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2024屆河北省任丘第一中學數(shù)學高二上期末質(zhì)量跟蹤監(jiān)視模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知橢圓的左,右兩個焦點分別為,若橢圓C上存在一點A,滿足,則橢圓C的離心率的取值范圍是()A. B.C. D.2.已知直線和圓,則“”是“直線與圓相切”的().A.必要不充分條件 B.充分不必要條件C.充要條件 D.既不充分也不必要條件3.某種產(chǎn)品的廣告費支出與銷售額(單位:萬元)之間的關(guān)系如下表:245683040605070若已知與的線性回歸方程為,那么當廣告費支出為5萬元時,隨機誤差的效應(殘差)為萬元(殘差=真實值-預測值)A.40 B.30C.20 D.104.已知是邊長為6的等邊所在平面外一點,,當三棱錐的體積最大時,三棱錐外接球的表面積為()A. B.C. D.5.某市要對兩千多名出租車司機的年齡進行調(diào)查,現(xiàn)從中隨機抽出100名司機,已知抽到的司機年齡都在[20,45]歲之間,根據(jù)調(diào)查結(jié)果得出司機的年齡情況殘缺的頻率分布直方圖如圖所示,利用這個殘缺的頻率分布直方圖估計該市出租車司機年齡的中位數(shù)大約是()A.31.6歲 B.32.6歲C.33.6歲 D.36.6歲6.在中,已知點在線段上,點是的中點,,,,則的最小值為()A. B.4C. D.7.已知數(shù)列{an}的前n項和為Sn,滿足a1=1,-=1,則an=()A.2n-1 B.nC.2n-1 D.2n-18.已知集合A=()A. B.C.或 D.9.橢圓C:的焦點為,,點P在橢圓上,若,則的面積為()A.48 B.40C.28 D.2410.已知數(shù)列的前n項和為,則“數(shù)列是等比數(shù)列”為“存在,使得”的()A.既不充分也不必要條件 B.必要不充分條件C.充要條件 D.充分不必要條件11.已知直線與圓交于兩點,過分別作的垂線與軸交于兩點,則A.2 B.3C. D.412.函數(shù)在處有極值為,則的值為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設在中,角A、B、C所對的邊分別為a、b、c,從下列四個條件:①;②;③;④中選出三個條件,能使?jié)M足所選條件的存在且唯一的所有c的值為______.14.已知某次數(shù)學期末試卷中有8道4選1的單選題15.過拋物線焦點的直線交拋物線于A,B兩點,若線段AB中點的縱坐標為4,則線段AB的長度為___________.16.若,均為正數(shù),且,(1)的最大值為;(2)的最小值為;(3)的最小值為;(4)的最小值為,則結(jié)論正確的是__________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在△ABC中,角A、B、C所對的邊分別為a、b、c,角A、B、C的度數(shù)成等差數(shù)列,(1)若,求c的值;(2)求最大值18.(12分)已知點為拋物線的焦點,點在拋物線上,的面積為1.(1)求拋物線的標準方程;(2)設點是拋物線上異于點的一點,直線與直線交于點,過作軸的垂線交拋物線于點,求證:直線過定點.19.(12分)已知一張紙上畫有半徑為4圓O,在圓O內(nèi)有一個定點A,且,折疊紙片,使圓上某一點剛好與A點重合,這樣的每一種折法,都留下一條直線折痕,當取遍圓上所有點時,所有折痕與的交點形成的曲線記為C.(1)求曲線C的焦點在軸上的標準方程;(2)過曲線C的右焦點(左焦點為)的直線l與曲線C交于不同的兩點M,N,記的面積為S,試求S的取值范圍.20.(12分)某校在全體同學中隨機抽取了100名同學,進行體育鍛煉時間的專項調(diào)查.將調(diào)查數(shù)據(jù)按平均每天鍛煉時間的多少(單位:分鐘)分成五組:,,,,,得到如圖所示的頻率分布直方圖.將平均每天體育鍛煉時間不少于60分鐘的同學定義為鍛煉達標,平均每天體育鍛煉時間少于60分鐘的同學定義為鍛煉不達標(1)求a的值,并估計該校同學平均每天體育鍛煉時間的中位數(shù);(2)在樣本中,對平均每天體育鍛煉時間不達標的同學,按分層抽樣的方法抽取6名同學了解不達標的原因,再從這6名同學中隨機抽取2名進行調(diào)研,求這2名同學中至少有一名每天體育鍛煉時間(單位:分鐘)在內(nèi)的概率21.(12分)在平面直角坐標系中,動點到直線的距離與到點的距離之差為.(1)求動點的軌跡的方程;(2)過點的直線與交于、兩點,若的面積為,求直線的方程.22.(10分)如圖,四棱錐P—ABCD中,底面ABCD是邊長為的正方形E,F(xiàn)分別為PC,BD的中點,側(cè)面PAD⊥底面ABCD,且PA=PD=AD.(Ⅰ)求證:EF//平面PAD;(Ⅱ)求三棱錐C—PBD的體積.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解題分析】根據(jù)題意可知當A為橢圓的上下頂點時,即可滿足橢圓C上存在一點A,使得,由此可得,解此不等式可得答案.【題目詳解】由橢圓的對稱性可知,當A為橢圓的上下頂點時,最大,故只需即可滿足題意,設O為坐標原點,則只需,即有,所以,解得,故選:C2、B【解題分析】首先求出直線與圓相切時的取值,再根據(jù)充分必要條件的定義判斷.【題目詳解】若直線與圓相切,則圓心到直線的距離,則,解得,所以“”是“直線與圓相切”的充分不必要條件.故選:B【題目點撥】本題考查直線與圓的位置關(guān)系,充分必要條件,重點考查計算,理解能力,屬于基礎題型.3、D【解題分析】分析:把所給的廣告費支出5萬元時,代入線性回歸方程,做出相應的銷售額,這是一個預測值,再求出與真實值之間有一個誤差即得.詳解:與的線性回歸方程為,當時,50,當廣告費支出5萬元時,由表格得:,故隨機誤差的效應(殘差)為萬元.故選D.點睛:本題考查回歸分析的初步應用,考查求線性回歸方程,考查預測y的值,是一個綜合題4、C【解題分析】由題意分析可得,當時三棱錐的體積最大,然后作圖,將三棱錐還原成正三棱柱,按照正三棱柱外接球半徑的計算方法來計算,即可計算出球半徑,從而完成求解.【題目詳解】由題意可知,當三棱錐的體積最大時是時,為正三角形,如圖所示,將三棱錐補成正三棱柱,該正三棱柱的外接球就是三棱錐的外接球,而正三棱柱的外接球球心落在上下底面外接圓圓心連線的中點上,設外接圓半徑為,三棱錐外接球半徑為,由正弦定理可得:,所以,,所以三棱錐外接球的表面積為.故選:C.5、C【解題分析】先根據(jù)頻率分布直方圖中頻率之和為計算出數(shù)據(jù)位于的頻率,再利用頻率分布直方圖中求中位數(shù)的原則求出中位數(shù)【題目詳解】在頻率分布直方圖中,所有矩形面積之和為,所以,數(shù)據(jù)位于的頻率為,前兩個矩形的面積之和為,前三個矩形的面積之和為,所以,中位數(shù)位于區(qū)間,設中位數(shù)為,則有,解得(歲),故選C【題目點撥】本題考查頻率分布直方圖的性質(zhì)和頻率分布直方圖中中位數(shù)的計算,計算時要充分利用頻率分布直方圖中中位數(shù)的計算原理來計算,考查計算能力,屬于中等題6、C【解題分析】利用三點共線可得,由,利用基本不等式即可求解.【題目詳解】由點是的中點,則,又因為點在線段上,則,所以,當且僅當,時取等號,故選:C【題目點撥】本題考查了基本不等式求最值、平面向量共線的推論,考查了基本運算求解能力,屬于基礎題.7、A【解題分析】由題可得,利用與的關(guān)系即求.【題目詳解】∵a1=1,-=1,∴是以1為首項,以1為公差的等差數(shù)列,∴,即,∴當時,,當時,也適合上式,所以故選:A.8、A【解題分析】先求出集合,再根據(jù)集合的交集運算,即可求出結(jié)果.【題目詳解】因為集合,所以.故選:A.9、D【解題分析】根據(jù)給定條件結(jié)合橢圓定義求出,再判斷形狀計算作答.【題目詳解】橢圓C:的半焦距,長半軸長,由橢圓定義得,而,且,則有是直角三角形,,所以的面積為24.故選:D10、D【解題分析】由充分必要條件的定義,結(jié)合等比數(shù)列的通項公式和求和公式,以及利用特殊數(shù)列的分法,即可求解.【題目詳解】由題意,數(shù)列是等比數(shù)列,設等比數(shù)列的公比為,則,所以存在,使得,即充分性成立;若存在,使得,可取,即,可得,當,可得,此時數(shù)列不是等比數(shù)列,即必要性不成立,所以數(shù)列是等比數(shù)列為存在,使得的充分不必要條件.故選:D.11、D【解題分析】由題意,圓心到直線的距離,∴,∵直線∴直線的傾斜角為,∵過分別作的垂線與軸交于兩點,∴,故選D.12、B【解題分析】根據(jù)函數(shù)在處有極值為,由,求解.【題目詳解】因為函數(shù),所以,所以,,解得a=6,b=9,=-3,故選:B二、填空題:本題共4小題,每小題5分,共20分。13、,##,【解題分析】由①②結(jié)合正弦定理可求出,但是角不唯一,故所選條件中不能同時有①②,只能是①③④或②③④,若選①③④,結(jié)合余弦定理可求,若選②③④,結(jié)合正弦定理即可求解【題目詳解】由①②結(jié)合正弦定理,所以,此時角不唯一,所以故所選條件中不能同時有①②,所以只能是①③④或②③④,若選①③④,即,,,由余弦定理可得,解得,若選②③④,即,,,因為,,所以,由正弦定理得,,故答案為:,14、##0.84375【解題分析】合理設出事件,利用全概率公式進行求解.【題目詳解】設小王從這8題中任選1題,且作對為事件A,選到能完整做對的5道題為事件B,選到有思路的兩道題為事件C,選到完全沒有思路為事件D,則,,,由全概率公式可得:PA=PB故答案為:15、9【解題分析】由焦點弦公式和中點坐標公式可得.詳解】設,則,即,.故答案為:916、(1)(2)(4).【解題分析】利用基本不等式求的最大值可判斷(1);利用“”的妙用以及基本不等式可判斷(2);將所求代數(shù)式轉(zhuǎn)化為關(guān)于的二次函數(shù)結(jié)合由二次函數(shù)的性質(zhì)可得最值判斷C、D,進而可得正確答案.【題目詳解】對于(1):因為,均為正數(shù),且,則有,當且僅當時等號成立,即的最大值為,故(1)正確;對于(2):因為,當且僅當時等號成立,即的最小值為,故(2)正確;對于(3):因為,所以,在上單調(diào)遞減,無最小值,故(3)不正確;對于(4):,當且僅當時等號成立,即的最小值為,故(4)正確.故答案為:(1)(2)(4).三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)【解題分析】(1)利用等差數(shù)列以及三角形內(nèi)角和,正弦定理以及余弦定理求解即可;(2)利用正弦定理以及兩角和與差的三角函數(shù),結(jié)合三角函數(shù)的最值求解即可【題目詳解】(1)由角A、B、C的度數(shù)成等差數(shù)列,得2B=A+C又,∴由正弦定理,得,即由余弦定理,得,即,解得(2)由正弦定理,得,∴,∴由,得所以當時,即時,18、(1)(2)證明見解析【解題分析】(1)由條件列方程求,由此可得拋物線方程;(2)方法一:聯(lián)立直線與拋物線方程,結(jié)合條件三點共線,可證明直線過定點,方法二:聯(lián)立直線與拋物線方程,聯(lián)立直線與直線求,由垂直與軸列方程化簡,可證明直線過定點.【小問1詳解】因為點在拋物線上,所以,即,,因為,故解得,拋物線的標準方程為【小問2詳解】設直線的方程為,由,得,所以,由(1)可知當時,,此時直線的方程為,若時,因為三點共線,所以,即,又因為,,化簡可得,又,進而可得,整理得,因為所以,此時直線的方程為,直線恒過定點又直線也過點,綜上:直線過定點解法二:設方程,得若直線斜率存在時斜率方程為即解得:,于是有整理得.(*)代入上式可得所以直線方程為直線過定點.若直線斜率不存在時,直線方程為所以P點坐標為,M點坐標為此時直線方程為過點綜上:直線過定點.【題目點撥】解決直線與拋物線的綜合問題時,要注意:(1)注意觀察應用題設中的每一個條件,明確確定直線、拋物線的條件;(2)強化有關(guān)直線與拋物線聯(lián)立得出一元二次方程后的運算能力,重視根與系數(shù)之間的關(guān)系、弦長、斜率、三角形的面積等問題19、(1);(2)﹒【解題分析】(1)根據(jù)題意,作出圖像,可得,由此可知M的軌跡C為以O、A為焦點的橢圓;(2)分為l斜率存在和不存在時討論,斜率存在時,直線方程和橢圓方程聯(lián)立,用韋達定理表示的面積,根據(jù)變量范圍可求面積的最大值﹒【小問1詳解】以OA中點G坐標原點,OA所在直線為x軸建立平面直角坐標系,如圖:∴可知,,設折痕與和分別交于M,N兩點,則MN垂直平分,∴,又∵,∴,∴M的軌跡是以O,A為焦點,4為長軸的橢圓.∴M的軌跡方程C為;【小問2詳解】設,,則的周長為當軸時,l的方程為,,,當l與x軸不垂直時,設,由得,∵>0,∴,,,令,則,,∵,∴,∴.綜上可知,S的取值范圍是20、(1),中位數(shù)為64;(2).【解題分析】(1)由頻率和為1求參數(shù)a,根據(jù)中位數(shù)的性質(zhì),結(jié)合頻率直方圖求中位數(shù).(2)首先由分層抽樣求6名同學的分布情況,再應用列舉法求概率.【題目詳解】(1)由題設,,可得,∴中位數(shù)應在之間,令中位數(shù)為,則,解得.∴該校同學平均每天體育鍛煉時間的中位數(shù)為64.(2)由題設,抽取6名同學中1名在,2名在,3名在,若1名在為,2名在為,3名在為,∴隨機抽取2名的可能情況有共15種,其中至少有一名在內(nèi)的共12種,∴這2名同學中至少有一名每天體育鍛煉時間(單位:分鐘)在內(nèi)的概率為.21、(1);(2)或.【解題分析】(1)本題首先可以設動點,然后根據(jù)題意得出,通過化簡即可得出結(jié)果;(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 中學物理聽評課記錄
- 南昌大學共青學院《教師資格筆試與面試實訓》2023-2024學年第二學期期末試卷
- 臨沂職業(yè)學院《工程圖學A》2023-2024學年第二學期期末試卷
- 遼寧科技大學《虛擬商業(yè)社會》2023-2024學年第二學期期末試卷
- 人民版道德與法治八上7.2《優(yōu)勢互補》表格式聽課評課記錄
- 河北省2024七年級道德與法治上冊第四單元追求美好人生第十二課端正人生態(tài)度第2課時正確對待順境和逆境背記新人教版
- 河北省2024七年級道德與法治上冊第二單元成長的時空第四課幸福和睦的家庭第2課時讓家更美好背記新人教版
- 廣西藝術(shù)學院《知識產(chǎn)權(quán)案例分析》2023-2024學年第二學期期末試卷
- 安慶省聯(lián)考高三數(shù)學試卷
- 語文網(wǎng)上聽評課記錄
- 2024年銀行考試-興業(yè)銀行筆試參考題庫含答案
- 診所校驗現(xiàn)場審核表
- Q/GDW-1738-2012配電網(wǎng)規(guī)劃設計技術(shù)導則
- 【藥用低密度聚乙烯袋探究4500字(論文)】
- 派出所上戶口委托書
- 鄉(xiāng)鎮(zhèn)林長制培訓課件
- 企業(yè)法律顧問方案
- 哈佛大學住房研究聯(lián)合中心:2024年美國房屋租賃報告
- 農(nóng)商銀行貴金屬分析報告
- 醫(yī)院6s管理成果匯報護理課件
- 軟件確認報告-模板
評論
0/150
提交評論