2024屆江蘇省鹽城市東臺三倉中學(xué)高二上數(shù)學(xué)期末檢測模擬試題含解析_第1頁
2024屆江蘇省鹽城市東臺三倉中學(xué)高二上數(shù)學(xué)期末檢測模擬試題含解析_第2頁
2024屆江蘇省鹽城市東臺三倉中學(xué)高二上數(shù)學(xué)期末檢測模擬試題含解析_第3頁
2024屆江蘇省鹽城市東臺三倉中學(xué)高二上數(shù)學(xué)期末檢測模擬試題含解析_第4頁
2024屆江蘇省鹽城市東臺三倉中學(xué)高二上數(shù)學(xué)期末檢測模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2024屆江蘇省鹽城市東臺三倉中學(xué)高二上數(shù)學(xué)期末檢測模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.圓x2+y2-4=0與圓x2+y2-4x+4y-12=0公共弦所在直線方程為()A. B.C. D.2.等比數(shù)列的公比,中有連續(xù)四項在集合中,則等于()A. B.C D.3.2018年,倫敦著名的建筑事務(wù)所steynstudio在南非完成了一個驚艷世界的作品一一雙曲線建筑的教堂,白色的波浪形屋頂像翅膀一樣漂浮,建筑師通過雙曲線的設(shè)計元素賦予了這座教堂輕盈,極簡和雕塑般的氣質(zhì),如圖.若將此大教堂外形弧線的一段近似看成焦點在y軸上的雙曲線下支的一部分,且該雙曲線的上焦點到下頂點的距離為18,到漸近線距離為12,則此雙曲線的離心率為()A. B.C. D.4.已知,若對于且都有成立,則實數(shù)的取值范圍是()A. B.C. D.5.函數(shù)在處的切線方程為()A. B.C. D.6.已知橢圓的左右焦點分別為,,過C上的P作y軸的垂線,垂足為Q,若四邊形是菱形,則C的離心率為()A. B.C. D.7.已知直線與圓交于A,B兩點,O為原點,且,則實數(shù)m等于()A. B.C. D.8.已知,,若不等式恒成立,則正數(shù)的最小值是()A.2 B.4C.6 D.89.直線在y軸上的截距為()A. B.C. D.10.下列命題中,真命題的個數(shù)為()(1)是為雙曲線的充要條件;(2)若,則;(3)若,,則;(4)橢圓上的點距點最近的距離為;A.個 B.個C.個 D.個11.在中,角,,所對的邊分別為,,,若,,,則A. B.2C.3 D.12.已知拋物線的焦點為F,過點F作傾斜角為的直線l與拋物線交于兩點,則POQ(O為坐標(biāo)原點)的面積S等于()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.圓(x+2)2+y2=4與圓(x-2)2+(y-1)2=9的位置關(guān)系為________14.若“”是“”必要不充分條件,則實數(shù)的最大值為_______15.若實數(shù)、滿足,則的取值范圍為___________.16.已知,求_____________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列的首項,其前n項和為,且滿足.(1)求數(shù)列的通項公式;(2)設(shè),數(shù)列的前n項和為,且,求n.18.(12分)已知函數(shù),其中,.(1)當(dāng)時,求曲線在點處切線方程;(2)求函數(shù)的單調(diào)區(qū)間.19.(12分)如圖,在正方體中,E,F(xiàn),G,H,K,L分別是AB,,,,,DA各棱的中點.(1)求證:E,F(xiàn),G,H,K,L共面:(2)求證:平面EFGHKL;(3)求與平面EFGHKL所成角的余弦值.20.(12分)新疆長絨棉品質(zhì)優(yōu)良,纖維柔長,被世人譽為“棉中極品”,產(chǎn)于我國新疆的吐魯番盆地、塔里木盆地的阿克蘇、喀什等地.棉花的纖維長度是評價棉花質(zhì)量的重要指標(biāo)之一,在新疆某地區(qū)成熟的長絨棉中隨機(jī)抽測了一批棉花的纖維長度(單位:mm),將樣本數(shù)據(jù)制成頻率分布直方圖如下:(1)求的值;(2)估計該樣本數(shù)據(jù)的平均數(shù)(同一組中的數(shù)據(jù)用該組數(shù)據(jù)區(qū)間的中點值為代表);(3)根據(jù)棉花纖維長度將棉花等級劃分如下:纖維長度小于30mm大于等于30mm,小于40mm大于等于40mm等級二等品一等品特等品從該地區(qū)成熟的棉花中隨機(jī)抽測兩根棉花的纖維長度,用樣本的頻率估計概率,求至少有一根棉花纖維長度達(dá)到特等品的概率.21.(12分)已知直線和的交點為(1)若直線經(jīng)過點且與直線平行,求直線的方程;(2)若直線經(jīng)過點且與兩坐標(biāo)軸圍成的三角形的面積為,求直線的方程22.(10分)如圖,點是曲線上的動點(點在軸左側(cè)),以點為頂點作等腰梯形,使點在此曲線上,點在軸上.設(shè),等腰梯的面積為.(1)寫出函數(shù)的解析式,并求出函數(shù)的定義域;(2)當(dāng)為何值時,等腰梯形的面積最大?求出最大面積.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解題分析】兩圓的方程消掉二次項后的二元一次方程即為公共弦所在直線方程.【題目詳解】由x2+y2-4=0與x2+y2-4x+4y-12=0兩式相減得:,即.故選:B2、C【解題分析】經(jīng)分析可得,等比數(shù)列各項的絕對值單調(diào)遞增,將五個數(shù)按絕對值的大小排列,計算相鄰兩項的比值,根據(jù)等比數(shù)列的定義即可求解.【題目詳解】因為等比數(shù)列中有連續(xù)四項在集合中,所以中既有正數(shù)項也有負(fù)數(shù)項,所以公比,因為,所以,且負(fù)數(shù)項為相隔兩項,所以等比數(shù)列各項的絕對值單調(diào)遞增,按絕對值排列可得,因,,,,所以是中連續(xù)四項,所以,故選:C.3、A【解題分析】設(shè)出雙曲線的方程,根據(jù)已知條件列出方程組即可求解.【題目詳解】設(shè)雙曲線的方程為,由雙曲線的上焦點到下頂點的距離為18,即,上焦點的坐標(biāo)為,其中一條漸近線為,上焦點到漸近線的距離為,則,解得,,即,故選:.4、D【解題分析】根據(jù)題意轉(zhuǎn)化為對于且時,都有恒成立,構(gòu)造函數(shù),轉(zhuǎn)化為時,恒成立,求得的導(dǎo)數(shù),轉(zhuǎn)化為在上恒成立,即可求解.【題目詳解】由題意,對于且都有成立,不妨設(shè),可得恒成立,即對于且時,都有恒成立,構(gòu)造函數(shù),可轉(zhuǎn)化為,函數(shù)為單調(diào)遞增函數(shù),所以當(dāng)時,恒成立,又由,所以在上恒成立,即在上恒成立,又由,所以,即實數(shù)取值范圍為.故選:D5、C【解題分析】利用導(dǎo)數(shù)的幾何意義即可求切線方程﹒【題目詳解】,,,,在處的切線為:,即﹒故選:C﹒6、C【解題分析】根據(jù)題意求出P點坐標(biāo),代入橢圓方程中,可整理得到關(guān)于a,c的等式,進(jìn)一步整理為關(guān)于e的方程,解得答案.【題目詳解】如圖示:由題意可知,因為四邊形是菱形,所以,則,所以P點坐標(biāo)為,將P點坐標(biāo)為代入得:,整理得,故,由于,解得,所以,故選:C.7、A【解題分析】根據(jù)給定條件求出,再求出圓O到直線l的距離即可計算作答.【題目詳解】圓的圓心O,半徑,因,則,而,則,即是正三角形,點O到直線l的距離,因此,,解得,所以實數(shù)m等于.故選:A8、B【解題分析】由基本不等式求出的最小值,只需最小值大于等于18,得到關(guān)于的不等式,求解,即可得出結(jié)論.【題目詳解】,因為不等式恒成立,所以,即,解得,所以.故選:B.【題目點撥】本題考查基本不等式的應(yīng)用,考查一元二次不等式的解法,屬于基礎(chǔ)題.9、D【解題分析】將代入直線方程求y值即可.【題目詳解】令,則,得.所以直線在y軸上的截距為.故選:D10、A【解題分析】利用方程表示雙曲線求出的取值范圍,利用集合的包含關(guān)系可判斷(1)的正誤;直接判斷命題的正誤,可判斷(2)的正誤;利用空間向量垂直的坐標(biāo)表示可判斷(3)的正誤;利用橢圓的有界性可判斷(4)的正誤.【題目詳解】對于(1),若曲線為雙曲線,則,即,解得或,因為或,因此,是為雙曲線的充分不必要條件,(1)錯;對于(2),若,則或,(2)錯;對于(3),,則,(3)對;對于(4),設(shè)點為橢圓上一點,則且,則點到點的距離為,(4)錯.故選:A.11、A【解題分析】利用正弦定理,可直接求出的值.【題目詳解】在中,由正弦定理得,所以,故選A.【題目點撥】本題考查利用正弦定理求邊,要記得正弦定理所適用的基本類型,考查計算能力,屬于基礎(chǔ)題12、A【解題分析】由拋物線的方程可得焦點的坐標(biāo),由題意設(shè)直線的方程,與拋物線的方程,聯(lián)立求出兩根之和及兩根之積,進(jìn)而求出,的縱坐標(biāo)之差的絕對值,代入三角形的面積公式求出面積【題目詳解】拋物線的焦點為,,由題意可得直線的方程為,設(shè),,,,聯(lián)立,整理可得:,則,,所以,所以,故選:A二、填空題:本題共4小題,每小題5分,共20分。13、相交【解題分析】由題意知,兩圓的圓心分別為(-2,0),(2,1),故兩圓的圓心距離為,兩圓的半徑之差為1,半徑之和為5,而1<<5,所以兩圓的位置關(guān)系為相交14、【解題分析】設(shè)的解集為集合,由題意可得是的真子集,即可求解.【題目詳解】由得或,因為“”是“”的必要不充分條件,設(shè)或,,因為“”是“”的必要不充分條件,所以是的真子集,所以故答案為:【題目點撥】結(jié)論點睛:本題考查充分不必要條件的判斷,一般可根據(jù)如下規(guī)則判斷:(1)若是的必要不充分條件,則對應(yīng)集合是對應(yīng)集合的真子集;(2)是的充分不必要條件,則對應(yīng)集合是對應(yīng)集合的真子集;(3)是的充分必要條件,則對應(yīng)集合與對應(yīng)集合相等;(4)是的既不充分又不必要條件,對的集合與對應(yīng)集合互不包含15、【解題分析】直接利用換元法以及基本不等式,求出結(jié)果【題目詳解】解:設(shè),由于,所以,由于,(當(dāng)且僅當(dāng)時取等號)所以(當(dāng)且僅當(dāng)時取等號),(當(dāng)且僅當(dāng)時取等號),故,,所以,整理得:故的取值范圍為的取值范圍故答案為:16、【解題分析】根據(jù)導(dǎo)數(shù)的定義即可求解.【題目詳解】,所以,故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解題分析】(1)由條件得,則利用等差數(shù)列的定義可得答案;(2)利用裂項求和求出,再根據(jù)可求出n.【小問1詳解】由得,從而數(shù)列是以1為首項,1為公差的等差數(shù)列,所以;【小問2詳解】由(1)得,由得又,所以.18、(1);(2)答案見解析.【解題分析】(1)當(dāng)時,,求出函數(shù)的導(dǎo)函數(shù),再求出,,再利用點斜式求出切線方程;(2)首先求出函數(shù)的導(dǎo)函數(shù),再對參數(shù)分類討論,求出函數(shù)的單調(diào)區(qū)間;【題目詳解】解:(1)當(dāng)時,,所以,所以,,所以切線方程為:,即:(2)函數(shù)定義域為,,因為,①當(dāng)時,在上恒成立,所以函數(shù)的單調(diào)遞增區(qū)間為,無單調(diào)遞減區(qū)間;②當(dāng)時,由得,由得,所以函數(shù)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為【題目點撥】本題考查導(dǎo)數(shù)的幾何意義,利用導(dǎo)數(shù)研究含參函數(shù)的單調(diào)區(qū)間,屬于基礎(chǔ)題.19、(1)證明見解析;(2)證明見解析;(3).【解題分析】建立空間直角坐標(biāo)系,求出各點的坐標(biāo);(1)用向量的坐標(biāo)運算證明向量共面,進(jìn)而證明點共面;(2)利用向量的數(shù)量積的坐標(biāo)運算證明,即可;(3)確定平面EFGHKL的一個法向量,利用空間角度的向量計算公式求得答案.【小問1詳解】證明:以D為原點,分別以DA,DC,所在直線為x,y,z軸建立空間直角坐標(biāo)系,不妨設(shè)正方體的棱長為2.則,,,,,,,.可得,,,,,.可得,,,,,所以,,,,共面,又它們過同一點E,所以E,F(xiàn),G,H,K,L共面.【小問2詳解】證明:由(1)得,,又故,,又,所以平面LEF,即平面EFGHKL.【小問3詳解】由(2)知,是平面EFGHKL的一個法向量,設(shè)與平面EFGHKL所成角為,,,.所以,所以與平面EFGHKL所成角的余弦值為.20、(1)(2)(3)【解題分析】(1)由頻率分布直方圖中所有矩形的面積之和為1,可求出答案.(2)根據(jù)平均數(shù)的公式可得到答案.(3)先求出一根棉花纖維長度達(dá)到特等品的概率,然后分恰好有一根和兩根棉花小問1詳解】由解得【小問2詳解】該樣本數(shù)據(jù)的平均數(shù)為:【小問3詳解】由題意一根棉花纖維長度達(dá)到特等品的概率為:兩根棉花中至少有一根棉花纖維長度達(dá)到特等品的概率21、(1)(2)或【解題分析】(1)由已知可得交點坐標(biāo),再根據(jù)直線間的位置關(guān)系可得直線方程;(2)設(shè)直線方程,根據(jù)直線與兩坐標(biāo)軸圍成的三角形的面積,列出方程組,解方程.【小問1詳解】解:聯(lián)立的方程,解得,即設(shè)直線的方程為:,將帶入可得所以的方程為:;【小問2詳解】解:法①:易知直線在兩坐標(biāo)軸上的截距均不為,設(shè)直線方程為:,則直線與兩坐標(biāo)軸交點為,由題意得,解得:或所以直線的方程為:或,即:或.法②:設(shè)直線的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論