山東省肥城市第六高級(jí)中學(xué)2024屆數(shù)學(xué)高二上期末質(zhì)量檢測(cè)模擬試題含解析_第1頁(yè)
山東省肥城市第六高級(jí)中學(xué)2024屆數(shù)學(xué)高二上期末質(zhì)量檢測(cè)模擬試題含解析_第2頁(yè)
山東省肥城市第六高級(jí)中學(xué)2024屆數(shù)學(xué)高二上期末質(zhì)量檢測(cè)模擬試題含解析_第3頁(yè)
山東省肥城市第六高級(jí)中學(xué)2024屆數(shù)學(xué)高二上期末質(zhì)量檢測(cè)模擬試題含解析_第4頁(yè)
山東省肥城市第六高級(jí)中學(xué)2024屆數(shù)學(xué)高二上期末質(zhì)量檢測(cè)模擬試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩12頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

山東省肥城市第六高級(jí)中學(xué)2024屆數(shù)學(xué)高二上期末質(zhì)量檢測(cè)模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.饕餮紋是青銅器上常見的花紋之一,最早見于長(zhǎng)江中下游地區(qū)的良渚文化陶器和玉器上,盛行于商代至西周早期.將青銅器中的饕餮紋的一部分畫到方格紙上,如圖所示,每個(gè)小方格的邊長(zhǎng)為一個(gè)單位長(zhǎng)度,有一點(diǎn)從點(diǎn)出發(fā),每次向右或向下跳一個(gè)單位長(zhǎng)度,且向右或向下跳是等可能的,那么點(diǎn)經(jīng)過3次跳動(dòng)后恰好是沿著饕餮紋的路線到達(dá)點(diǎn)的概率為()A. B.C. D.2.已知斜三棱柱所有棱長(zhǎng)均為2,,點(diǎn)、滿足,,則()A. B.C.2 D.3.雙曲線的漸近線方程為()A. B.C. D.4.過點(diǎn)且與拋物線只有一個(gè)公共點(diǎn)的直線有()A.1條 B.2條C.3條 D.0條5.在數(shù)列中,,則()A.2 B.C. D.6.經(jīng)過點(diǎn)且與雙曲線有共同漸近線的雙曲線方程為()A. B.C. D.7.已知實(shí)數(shù)滿足方程,則的最大值為()A.3 B.2C. D.8.已知向量,,且,則的值為()A. B.C.或 D.或9.已知命題p:,總有,則為()A.,使得 B.,使得C.,總有 D.,總有10.傾斜角為120°,在x軸上截距為-1的直線方程是()A.x-y+1=0 B.x-y-=0C.x+y-=0 D.x+y+=011.設(shè)變量,滿足約束條件,則的最大值為()A.1 B.6C.10 D.1312.已知中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上的雙曲線的離心率為,則其漸近線方程為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖三角形數(shù)陣:132456109871112131415……按照自上而下,自左而右的順序,位于第行的第列,則______.14.已知函數(shù)的單調(diào)遞減區(qū)間是,則的值為______.15.已知點(diǎn),拋物線的焦點(diǎn)為,點(diǎn)是拋物線上任意一點(diǎn),則周長(zhǎng)的最小值是__________.16.已知是橢圓的左、右焦點(diǎn),在橢圓上運(yùn)動(dòng),當(dāng)?shù)闹底钚r(shí),的面積為_______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)雙曲線,離心率,虛軸長(zhǎng)為2(1)求雙曲線的標(biāo)準(zhǔn)方程;(2)經(jīng)過點(diǎn)的直線與雙曲線相交于兩點(diǎn),且為的中點(diǎn),求直線的方程18.(12分)在平面直角坐標(biāo)系xOy中,已知點(diǎn)、,點(diǎn)M滿足,記點(diǎn)M的軌跡為C(1)求C的方程;(2)若直線l過圓圓心D且與圓交于A,B兩點(diǎn),點(diǎn)P為C上一個(gè)動(dòng)點(diǎn),求的最小值19.(12分)如圖,在直三棱柱中,平面?zhèn)让妫?(1)求證:;(2)若直線與平面所成的角為,請(qǐng)問在線段上是否存在點(diǎn),使得二面角的大小為,若存在請(qǐng)求出的位置,不存在請(qǐng)說明理由.20.(12分)在數(shù)列中,,,(1)設(shè),證明:數(shù)列是等差數(shù)列;(2)求數(shù)列的前項(xiàng)和.21.(12分)已知圓心為的圓過原點(diǎn),且直線與圓相切于點(diǎn).(1)求圓的方程;(2)已知過點(diǎn)的直線的斜率為,且直線與圓相交于兩點(diǎn).①若,求弦的長(zhǎng);②若圓上存在點(diǎn),使得成立,求直線的斜率.22.(10分)已知數(shù)列中,,___________,其中.(1)求數(shù)列的通項(xiàng)公式;(2)設(shè),求證:數(shù)列是等比數(shù)列;(3)求數(shù)列的前n項(xiàng)和.從①前n項(xiàng)和,②,③且,這三個(gè)條件中任選一個(gè),補(bǔ)充在上面的問題中并作答.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解題分析】利用古典概型的概率求解.【題目詳解】解:點(diǎn)從點(diǎn)出發(fā),每次向右或向下跳一個(gè)單位長(zhǎng)度,跳3次,則樣本空間{(右,右,右),(右,右,下),(右,下,右),(下,右,右),(右,下,下),(下,右,下),(下,下,右),(下,下,下)},記“3次跳動(dòng)后,恰好是沿著饕餮紋的路線到達(dá)點(diǎn)B”為事件,則{(下,下,右)},由古典概型的概率公式可知故選:B2、D【解題分析】以向量為基底向量,則,根據(jù)條件由向量的數(shù)量積的運(yùn)算性質(zhì),兩邊平方可得答案.【題目詳解】以向量為基底向量,所以所以故選:D3、B【解題分析】把雙曲線的標(biāo)準(zhǔn)方程中的1換成0,可得其漸近線的方程【題目詳解】雙曲線的漸近線方程是,即,故選B【題目點(diǎn)撥】本題考查了雙曲線的標(biāo)準(zhǔn)方程與簡(jiǎn)單的幾何性質(zhì)等知識(shí),屬于基礎(chǔ)題4、B【解題分析】過的直線的斜率存在和不存在兩種情況分別討論即可得出答案.【題目詳解】易知過點(diǎn),且斜率不存在的直線為,滿足與拋物線只有一個(gè)公共點(diǎn).當(dāng)直線的斜率存在時(shí),設(shè)直線方程為,與聯(lián)立得,當(dāng)時(shí),方程有一個(gè)解,即直線與擾物線只有一個(gè)公共點(diǎn).故滿足題意的直線有2條.故選:B5、D【解題分析】根據(jù)遞推關(guān)系,代入數(shù)據(jù),逐步計(jì)算,即可得答案.【題目詳解】由題意得,令,可得,令,可得,令,可得,令,可得.故選:D6、C【解題分析】共漸近線的雙曲線方程,設(shè),把點(diǎn)代入方程解得參數(shù)即可.【題目詳解】設(shè),把點(diǎn)代入方程解得參數(shù),所以化簡(jiǎn)得方程故選:C.7、D【解題分析】將方程化為,由圓的幾何性質(zhì)可得答案.【題目詳解】將方程變形為,則圓心坐標(biāo)為,半徑,則圓上的點(diǎn)的橫坐標(biāo)的范圍為:則x的最大值是故選:D.8、C【解題分析】根據(jù)空間向量平行的性質(zhì)得,代入數(shù)值解方程組即可.【題目詳解】因?yàn)?,所以,所以,所以,解得?故選:C.9、B【解題分析】由含有一個(gè)量詞的命題的否定的定義求解.【題目詳解】因?yàn)槊}p:,總有是全稱量詞命題,所以其否定為存在量詞命題,即,使得,故選:B10、D【解題分析】由傾斜角求出斜率,寫出斜截式方程,再化為一般式【題目詳解】由于傾斜角為120°,故斜率k=-.又直線過點(diǎn)(-1,0),所以方程為y=-(x+1),即x+y+=0.故選:D.【題目點(diǎn)撥】本題考查直線方程的斜截式,屬于基礎(chǔ)題11、C【解題分析】畫出約束條件表示的平面區(qū)域,將變形為,可得需要截距最小,觀察圖象,可得過點(diǎn)時(shí)截距最小,求出點(diǎn)A坐標(biāo),代入目標(biāo)式即可.【題目詳解】解:畫出約束條件表示的平面區(qū)域如圖中陰影部分:又,即,要取最大值,則在軸上截距要最小,觀察圖象可得過點(diǎn)時(shí)截距最小,由,得,則.故選:C.12、A【解題分析】根據(jù)離心率求出的值,再根據(jù)漸近線方程求解即可.【題目詳解】因雙曲線焦點(diǎn)在軸上,所以漸近線方程為:,又因?yàn)殡p曲線離心率為,且,所以,解得,即漸近線方程為:.故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】由題意可知到第行結(jié)束一共有個(gè)數(shù)字,由此可知在第行;又由圖可知,奇數(shù)行從左到右是從小到大排列,偶數(shù)行從左到右是從大到小排列,第行個(gè)數(shù)字從大到小排列,由此可知在到數(shù)第列,據(jù)此即可求出,進(jìn)而求出結(jié)果.【題目詳解】由圖可知,第1行有1個(gè)數(shù)字,第2行有2個(gè)數(shù)字,第2行有3個(gè)數(shù)字,……第行有個(gè)數(shù)字,由此規(guī)律可知,到第行結(jié)束一共有個(gè)數(shù)字;又當(dāng)時(shí),,所以第行結(jié)束一共有個(gè)數(shù)字;當(dāng)時(shí),,所以在第行,故;由圖可知,奇數(shù)行從左到右是從小到大排列,偶數(shù)行從左到右是從大到小排列,第行是偶數(shù)行,共個(gè)數(shù)字,從大到小排列,所以在倒數(shù)第列,所以,所以.故答案為:.14、【解題分析】先求出,由題設(shè)易知是的解集,利用根與系數(shù)關(guān)系求m、n,進(jìn)而求的值.【題目詳解】由題設(shè),,由單調(diào)遞減區(qū)間是,∴的解集為,則是的解集,∴,可得,故.故答案為:15、##【解題分析】利用拋物線的定義結(jié)合圖形即得.【題目詳解】拋物線的焦點(diǎn)為,準(zhǔn)線的方程為,過點(diǎn)作,垂足為,則,所以的周長(zhǎng)為,當(dāng)且僅當(dāng)三點(diǎn)共線時(shí)等號(hào)成立.故答案為:.16、【解題分析】根據(jù)橢圓定義得出,進(jìn)而對(duì)進(jìn)行化簡(jiǎn),結(jié)合基本不等式得出的最小值,并求出的值,進(jìn)而求出面積.【題目詳解】由橢圓定義可知,,所以,,當(dāng)且僅當(dāng),即時(shí)取“=”.又,所以.所以,由勾股定理可知:,所以.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解題分析】(1)根據(jù)題意求出即可得出;(2)利用點(diǎn)差法求出直線斜率即可得出方程.【小問1詳解】∵,,∴,,∵,∴,∴,∴雙曲線的標(biāo)準(zhǔn)方程為;【小問2詳解】設(shè)以定點(diǎn)為中點(diǎn)的弦的端點(diǎn)坐標(biāo)為,可得,,由在雙曲線上,可得:,兩式相減可得以定點(diǎn)為中點(diǎn)的弦所在的直線斜率為:則以定點(diǎn)為中點(diǎn)的弦所在的直線方程為,即為,聯(lián)立方程得:,,符合,∴直線的方程為:.18、(1)(2)23【解題分析】(1)根據(jù)雙曲線的定義判斷軌跡,直接寫出軌跡方程即可;(2)設(shè),利用向量坐標(biāo)運(yùn)算計(jì)算,再由二次函數(shù)求最值即可.【小問1詳解】由,則軌跡C是以點(diǎn)、為左、右焦點(diǎn)的雙曲線的右支,設(shè)軌跡C的方程為,則,可得,,所以C的方程為;【小問2詳解】設(shè),則,且,圓心,則因?yàn)椋瑒t當(dāng)時(shí),取最小值23.19、(1)證明見解析(2)存在,點(diǎn)E為線段中點(diǎn)【解題分析】(1)通過作輔助線結(jié)合面面垂直的性質(zhì)證明側(cè)面,從而證明結(jié)論;(2)建立空間直角坐標(biāo)系,求出相關(guān)點(diǎn)的坐標(biāo),再求相關(guān)的向量坐標(biāo),求平面的法向量,利用向量的夾角公式求得答案.【小問1詳解】證明:連接交于點(diǎn),因,則由平面?zhèn)让妫移矫鎮(zhèn)让?,得平面,又平面,所以三棱柱是直三棱柱,則底面ABC,所以.又,從而側(cè)面,又側(cè)面,故.【小問2詳解】由(1).平面,則直線與平面所成的角,所以,又,所以假設(shè)在線段上是否存在一點(diǎn)E,使得二面角的大小為,由是直三棱柱,所以以點(diǎn)A為原點(diǎn),以AC、所在直線分別為x,z軸,以過A點(diǎn)和AC垂直的直線為y軸,建立空間直角坐標(biāo)系,如圖所示,則,且設(shè),,得所以,設(shè)平面的一個(gè)法向量,由,得:,取,由(1)知平面,所以平面的一個(gè)法向量,所以,解得,∴點(diǎn)E為線段中點(diǎn)時(shí),二面角的大小為.20、(1)略(2)【解題分析】(1)題中條件,而要證明的是數(shù)列是等差數(shù)列,因此需將條件中所給的的遞推公式轉(zhuǎn)化為的遞推公式:,從而,,進(jìn)而得證;(2)由(1)可得,,因此數(shù)列的通項(xiàng)公式可以看成一個(gè)等差數(shù)列與等比數(shù)列的乘積,故可考慮采用錯(cuò)位相減法求其前項(xiàng)和,即有:①,①得:②,②-①得.試題解析:(1)∵,,又∵,∴,,∴則是為首項(xiàng)為公差的等差數(shù)列;由(1)得,∴,∴①,①得:②,②-①得.考點(diǎn):1.數(shù)列的通項(xiàng)公式;2.錯(cuò)位相減法求數(shù)列的和.21、(1);(2)①,②.【解題分析】(1)圓心在線段的垂直平分線上,圓心也在過點(diǎn)且與垂直的直線上,聯(lián)立求圓心,進(jìn)而得半徑即可;(2)①垂徑定理即可求弦長(zhǎng);②圓上存在點(diǎn),使得成立,即四邊形是平行四邊形,又,有都是等邊三角形,進(jìn)而得圓心到直線的距離為,列方程求解即可.試題解析:(1)由已知得,圓心在線段的垂直平分線上,圓心也在過點(diǎn)且與垂直的直線上,由得圓心,所以半徑,所以圓的方程為;(2)①由題意知,直線的方程為,即,∴圓心到直線的距離為,∴;②∵圓上存在點(diǎn),使得成立,∴四邊形是平行四邊形,又,∴都是等邊三角形,∴圓心到直線的距離為,又直線的方程為,即,∴,解得.22、(1)(2)見解析(3)【解題分析】(1)選①,根據(jù)與的關(guān)系即可得出答案

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論