深度學(xué)習(xí)一線實(shí)戰(zhàn)暑期研討基礎(chǔ)_第1頁
深度學(xué)習(xí)一線實(shí)戰(zhàn)暑期研討基礎(chǔ)_第2頁
深度學(xué)習(xí)一線實(shí)戰(zhàn)暑期研討基礎(chǔ)_第3頁
深度學(xué)習(xí)一線實(shí)戰(zhàn)暑期研討基礎(chǔ)_第4頁
深度學(xué)習(xí)一線實(shí)戰(zhàn)暑期研討基礎(chǔ)_第5頁
已閱讀5頁,還剩88頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

234

DiscreteValueContinuousValue圖像表示:Gabor圖像表示:Gabor圖像集表示:Manifold,GMM,LMNN,NCA…..詞典學(xué)習(xí)&CreditedtoProf.XiaogangWangandProf.Shiguang CreditedtoProf.Songchun DiscreteValueContinuousValue端到端學(xué)習(xí)(EndtoCreditedtoProf.Shiguang CreditedtoDr.Naiyan CreditedtoDr.Naiyan 多多PascalVOC目標(biāo)檢測(cè)CreditedtoProf.ShiguangShanwith

Fastdescriptorcoding(LLCJinjunWang’sCVPR10&Super+SVMLin,Y’sCompressedFisherVectorsPerronnin,F’sECCV10,Sanchez,J’sDCNNAlexNet8層網(wǎng)絡(luò)KrizhevskyA’sDCNN:基于網(wǎng)絡(luò)可視化技術(shù)Zeiler,M.D’sECCV14在AlexNetDCNN:NetChristianSzegedy’sCVPR15,22層+Inception結(jié)DCNN:VGGNetKarenSimonyan’sarXiv14,19DCNN:ResidualNetKaimingHe’sarXiv15,152SelectiveSearchJ.R.R.Uijlings’sIJCV13+efficientencodingdenselysampledcolordescriptorsvandeSande’sTPAMI10,CVPR14RCNNRossGirshick’sCVPR14+NetworkInNetworkMinLin’sFasterRCNNShaoqingRen’sNIPS15DeepResidualNetworkKaimingHe’sMeanMean

CombinedMultishot

VectorVector

gh-dimintgh-dim

TLTL

Unrestricted Outside Unrestricted+LabeledOutside 網(wǎng)絡(luò)變大變深(VGGFace16FaceNet22層數(shù)據(jù)量不斷增大(DeepFace400萬,F(xiàn)aceNet2億3DeepID[Sun’sDeepID2[Sun’sDeepID2+[Sun’s-1FaceNet[Schroff’s1ModifiedfromProf.ModifiedfromProf.LeCunandProf. 來自:BoleiZhouetalObjectDetectorsEmergeinDeepSceneCNNsICLRConv,Conv,Pooling,ReLU,connected,BN,NIN, N,SiameseNet,機(jī)制LossFunc,e.g.SoftmaxLoss,SigmoidCross-entropy,…BP,SGD,AdaDelta,Path-Dropout,Fine-tune,CreditedtoProf.MeinaKan,PHDStudentXinLiuandShuzhe McCulloch,Warren;WalterPitts(1943)."ALogicalCalculusofIdeasImmanentinNervousActivity".BulletinofMathematicalBiophysics5(4):115–133F.Rosenblatt.Theperceptron:Aprobabilisticmodelforinformationstorageandorganizationinthebrain. PsychologicalReview,65:386-408,Minsky&Papert的專著Perceptron(1969) Novikoff,A.B.J.(1962).Onconvergenceproofsonperceptrons.ProceedingsoftheSymposiumontheMathematicalTheoryofAutomata(pp.615–622)IEEEFrankRosenblatt2014-GeoffreyE.Hinton2012-VladimirN.Vapnik2009-JohnJ.Hopfield多層感知機(jī)卷積網(wǎng)絡(luò)

DecisionSparseGraphRumelhart,DavidE.;Hinton,GeoffreyE.;Williams,RonaldJ.(8October1986)."Learningrepresentationsbyback-propagatingerrors".Nature323(6088):533–536.CreditedtoProf.ShiguangHinton,G.E.,Osindero,S.andTeh,Y.,Afastlearningalgorithmfordeepbeliefnets.NeuralComputation18:1527-1554,2006Hinton,G.E.andSalakhutdinov,R.R.Reducingthedimensionalityofdatawithneuralnetworks.Science,Vol.313.no.5786,pp.504-507,28July2006YoshuaBengio,PascalLamblin,DanPopoviciandHugoLaroce,GreedyLayer-WiseTrainingofDeepNetworks,NIPS2006CreditedtoProf.Eric deeplearningDCNNAlexKrizhevsky’s止過擬合,LocalResponseNormalization增強(qiáng)泛化能力評(píng)價(jià)評(píng)價(jià) 評(píng)價(jià)RNNLanguage評(píng)價(jià)CreditedtoProf.MeinaKan,PHDStudentXinLiuandShuzhe ReLU/

MoonMoonStart...:... ,其中??∈?????1,??∈?????1,??∈??:...Backward運(yùn)算:????=???????,????=?? 連續(xù)卷積???,

=?????(??,??)

????,?????????,?????離散卷積????,Caffe實(shí)現(xiàn):????

=?????(??,??) ??????,?????????,???=?????(??,??) ??????+??,??+??????,多個(gè)FeatureMap: 接

CreditedtoDr.ShaoxinCreditedtoDr.ShaoxinPleasealsoreferto“NotesonConvolutionalNeural …Image:??×??×…

FeatureMatrixX:(????????×????????)×(C×K×…Kernel:????????×??×??×…bias:????????×1×1×

??????+??:????????×(??×??× …………??:????????×(????????×……OutputMatrix:????????×(????????×

Kernelsize:2x2Kernelsize:2x24346378445555686823

S(x)=1/(1+e-xy=xifx>

a(e-1)ifx£max(w1x1+b1,w2x2+b2 LeCun組2010年的文章Whatisthebestmulti-stagearchitectureforobjectrecognition?嘗試了各種非線性激活函Hinton組的“RectifiedLinearUnitsImproveRestrictedBoltzmannMachines”將NReLU用于RBM訓(xùn)練 48引入Bernoulli隨機(jī)數(shù)????代表dropout測(cè)試階段:DoG.E.Hinton,N.Srivastava,A.Krizhevsky,I.Sutskever,andR.R.Salakhutdinov.Improvingneuralnetworksbypreventingco-adaptationoffeaturedetectors.arXivpreprintarXiv:1207.0580,2012. Batch UntersuchungenzudynamischenneuronalenNetzen(1991LearningLong-TermDependencieswithGradientDescentisDifficult(1994引入三個(gè)Gate結(jié)構(gòu):ForgetGate,InputGate和Output 狀態(tài)與#1.狀態(tài)“遺忘”控制門forget狀態(tài)與#1.狀態(tài)“遺忘”控制門forget#2.輸入控制門input狀態(tài)與#1.狀態(tài)“遺忘”控制門forget#2.輸入控制門input狀態(tài)與#1.狀態(tài)“遺忘”控制門forget#2.輸入控制門input#3:#4.輸出控制門outputPeepholeGRU(inputgate和forgetgate合并為updateSoftmax+CrossEntropyE=-1N

log( ),l?[0,1,...,K-

n??nkn

CrossEntropyLossH(p,q)=-p(x)logxlog(x)'=x

當(dāng)xSigmoidCrossEntropy

?npnlo1?Tips1:目標(biāo)輸出需要?dú)w一化到[0,1]XinLiu*,ShaoxinLi*etal.AgeNet:DeeplyLearnedRegressorandClassifierforRobustApparentAgeEstimation.InternationalConferenceonComputerVisionChaLearnLaPWorkshop(ICCVW),2015.SoftmaxSigmoidCrossEntropy

E=- E=-

log(?nl),ln?[0,1,...,K-n?n?nSigmoidCrossEntropyLossGroud_truth:Pn=(pn,1-pnSigmoid??,1?

?n)

log?

plo1?

L[ log o1? SoftmaxLoss

Euclidean損失函數(shù):E=

?n Tips1:默認(rèn)的,Data層和ImageData Tips2:歐式損失前可以增加Sigmoid操 ContrastiveLoss(Siamese

1

[(y)d2+(1-y)max(margin-d,0)2,d

a-

nTips2:Caffe中的例子:TripletBasic適用場(chǎng)景:Learningtorank,人臉識(shí)別F.Schroff,D.Kalenichenko,andJ.Philbin,FaceNet:AUnifiedEmbeddingforFaceRecognition MoonEthanM.Ruddetal,MOON:AMixedObjectiveOptimizationNetworkfortheRecognitionofFacialAttributesCreditedtoProf.Back Rumelhart,DavidE.;Hinton,GeoffreyE.;Williams,RonaldJ.(8October1986)."Learningrepresentationsbyback-propagatingerrors".Nature323(6088):533–536.GradientDescentanditswt+1=wt w

StochasticGradientDescendwt+1=wt wL(w,xi,yi

: =w-1h

L(w,x,y

Mini-batchMini-batchfori=1: WeightL(w)=w)+L(w)= L(wtwt+1=wt+Without WithSGDvs.給定等高線下不同優(yōu)化算法的比 鞍點(diǎn)條件下不同優(yōu)化算法的比Inmathematics,asaddlepointisapointinthe ofafunctionwheretheslopes(derivatives)oforthogonalfunctioncomponentsdefiningthesurfaceezero(astationarypoint)butarenotaloc9以為例,點(diǎn)(0,0)是鞍點(diǎn),CreditedtoPHDStudentXinLiuandXiaoyi LearningCreditedtoProf.LearningRate在每隔stepsize輪迭代后減少base_lr: :base_lr: :“poly”power:0.5

base_lr:base_lr: :base_lr: :“step” :0.1stepsize:

LR(t)=base_lr·

t)Tbase_lr:0.01 :“inv”base_lr:0.01 :“inv” :power:LR(t)=base_lr·(1+g*iter)-LearningtolearnwithrecurrentneuralMa

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論